Biochemistry (Moscow)

, Volume 80, Issue 11, pp 1469–1477 | Cite as

Stages of cell cannibalism–entosis–in normal human keratinocyte culture

  • A. S. GaraninaEmail author
  • L. A. Khashba
  • G. E. Onishchenko


Entosis is a type of cell cannibalism during which one cell penetrates into another cell and usually dies inside it. Researchers mainly pay attention to initial and final stages of entosis. Besides, tumor cells in suspension are the primary object of studies. In the present study, we investigated morphological changes of both cells-participants of entosis during this process. The substrate-dependent culture of human normal keratinocytes HaCaT was chosen for the work. A combination of light microscopy and scanning electron microscopy was used to prove that one cell was completely surrounded by the plasma membrane of another cell. We investigated such “cell-in-cell” structures and described the structural and functional changes of both cells during entosis. The outer cell nucleus localization and shape were changed. Gradual degradation of the inner cell nucleus and of the junctions between the inner and the outer cells was revealed. Moreover, repeated redistribution of the outer cell membrane organelles (Golgi apparatus, lysosomes, mitochondria, and autophagosomes), rearrangement of its cytoskeleton, and change in the lysosomal, autophagosomal, and mitochondrial state in both entotic cells were observed during entosis. On the basis of these data, we divided entosis into five stages that make it possible to systematize description of this type of cell death.


entosis stages of entosis cell cannibalism cell organelles 



programmed cell death


scanning electron microscopy


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kerr, J. F. R., Wyllie, A. H., and Curruie, A. R. (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics, Br. J. Cancer, 26, 239257.CrossRefGoogle Scholar
  2. 2.
    Galluzzi, L., Bravo-San Pedro, J. M., Vitale, I., Aaronson, S. A., Abrams, J. M., Adam, D., Alnemri, E. S., Altucci, L., Andrews, D., Annicchiarico-Petruzzelli, M., Baehrecke, E. H., Bazan, N. G., Bertrand, M. J., Bianchi, K., Blagosklonny, M. V., Blomgren, K., Borner, C., Bredesen, D. E., Brenner, C., Campanella, M., Candi, E., Cecconi, F., Chan, F. K., Chandel, N. S., Cheng, E. H., Chipuk, J. E., Cidlowski, J. A., Ciechanover, A., Dawson, T. M., Dawson, V. L., De Laurenzi, V., De Maria, R., Debatin, K. M., Di Daniele, N., Dixit, V. M., Dynlacht, B. D., El-Deiry, W. S., Fimia, G. M., Flavell, R. A., Fulda, S., Garrido, C., Gougeon, M. L., Green, D. R., Gronemeyer, H., Hajnoczky, G., Hardwick, J. M., Hengartner, M. O., Ichijo, H., Joseph, B., Jost, P. J., Kaufmann, T., Kepp, O., Klionsky, D. J., Knight, R. A., Kumar, S., Lemasters, J. J., Levine, B., Linkermann, A., Lipton, S. A., Lockshin, R. A., Lopez-Otin, C., Lugli, E., Madeo, F., Malorni, W., Marine, J. C., Martin, S. J., Martinou, J. C., Medema, J. P., Meier, P., Melino, S., Mizushima, N., Moll, U., Munoz-Pinedo, C., Nunez, G., Oberst, A., Panaretakis, T., Penninger, J. M., Peter, M. E., Piacentini, M., Pinton, P., Prehn, J. H., Puthalakath, H., Rabinovich, G. A., Ravichandran, K. S., Rizzuto, R., Rodrigues, C. M., Rubinsztein, D. C., Rudel, T., Shi, Y., Simon, H. U., Stockwell, B. R., Szabadkai, G., Tait, S. W., Tang, H. L., Tavernarakis, N., Tsujimoto, Y., Vanden Berghe, T., Vandenabeele, P., Villunger, A., Wagner, E. F., Walczak, H., White, E., Wood, W. G., Yuan, J., Zakeri, Z., Zhivotovsky, B., Melino, G., and Kroemer, G. (2015) Essential versus accessory aspects of cell death: recommendations of the NCCD 2015, Cell Death Differ., 22, 58–73.PubMedCentralCrossRefPubMedGoogle Scholar
  3. 3.
    Kroemer, G., Galluzzi, L., Vandenabeele, P., Abrams, J., Alnemri, E. S., Baehrecke, E. H., Blagosklonny, M. V., ElDeiry, W. S., Golstein, P., Green, D. R., Hengartner, M., Knight, R. A., Kumar, S., Lipton, S. A., Malorni, W., Nunez, G., Peter, M. E., Tschopp, J., Yuan, J., Piacentini, M., Zhivotovsky, B., and Melino, G. (2009) Classification of cell death: recommendations of the Nomenclature Committee on Cell Death, Cell Death Differ., 12 (Suppl. 2), 1463–1467.CrossRefGoogle Scholar
  4. 4.
    Yuan, J., and Kroemer, G. (2010) Alternative cell death mechanisms in development and beyond, Genes Dev., 24, 2592–2602.PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    Overholtzer, M., Mailleux, A. A., Mouneimne, G., Normand, G., Schnitt, S. J., King, R. W., Cibas, E. S., and Brugge, J. S. (2007) A nonapoptotic cell death process, entosis, that occurs by cell-in-cell invasion, Cell, 131, 966979.CrossRefGoogle Scholar
  6. 6.
    Doukoumetzidis, K., and Hengartner, M. O. (2008) Dying to hold you, Nature, 451, 530–531.CrossRefPubMedGoogle Scholar
  7. 7.
    Guadamillas, M. C., Cerezo, A., and Del Pozo, M. A. (2011) Overcoming anoikis–pathways to anchorage-independent growth in cancer, J. Cell. Sci., 124, 3189–3197.CrossRefPubMedGoogle Scholar
  8. 8.
    Ishikawa, F., Ushida, K., Mori, K., and Shibanuma, M. (2015) Loss of anchorage primarily induces non-apoptotic cell death in a human mammary epithelial cell line under atypical focal adhesion kinase signaling, Cell Death Dis., 6, 1–12.CrossRefGoogle Scholar
  9. 9.
    Krajcovic, M., Johnson, N. B., Sun, Q., Normand, G., Hoover, N., Yao, E., Richardson, A. L., King, R. W., Cibas, E. S., Schnitt, S. J., Brugge, J. S., and Overholtzer, M. (2011) A non-genetic route to aneuploidy in human cancers, Nat. Cell Biol., 13, 324–330.PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Mazzone, M., Selfors, L. M., Albeck, J., Overholtzer, M., Sale, S., Carroll, D. L., Pandya, D., Lu, Y., Mills, G. B., Aster, J. C., Artavanis-Tsakonas, S., and Brugge, J. S. (2010) Dose-dependent induction of distinct phenotypic responses to Notch pathway activation in mammary epithelial cells, Proc. Natl. Acad. Sci. USA, 107, 5012–5017.PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Wan, Q., Liu, J., Zheng, Z., Zhu, H., Chu, X., Dong, Z., Huang, S., and Du, Q. (2012) Regulation of myosin activation during cell–cell contact formation by Par3-Lgl antagonism: entosis without matrix detachment, Mol. Biol. Cell, 23, 2076–2091.PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Overholtzer, M., and Brugge, J. S. (2008) The cell biology of cell-in-cell structures, Nat. Rev. Mol. Cell Biol., 9, 796809.CrossRefGoogle Scholar
  13. 13.
    Sun, Q., Cibas, E. S., Huang, H., Hodgson, L., and Overholtzer, M. (2014) Induction of entosis by epithelial cadherin expression, Cell Res., 24, 1288–1298.PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Gama, A., and Schmitt, F. (2012) Cadherin cell adhesion system in canine mammary cancer, Vet. Med. Int., 2012, 1–8.CrossRefGoogle Scholar
  15. 15.
    Hirokawa, N. (1996) Organelle transport along microtubules–the role of KIFs, Trends Cell Biol., 6, 135–141.CrossRefPubMedGoogle Scholar
  16. 16.
    Welte, M. A. (2004) Bidirectional transport along microtubules, Curr. Biol., 14, 525–537.CrossRefGoogle Scholar
  17. 17.
    Balzer, E. M., and Konstantopoulos, K. (2012) Intercellular adhesion: mechanisms for growth and metastasis of epithelial cancers, Wiley Interdiscip. Rev. Syst. Biol. Med., 4, 171–181.PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Florey, O., Gammoh, N., Kim, S. E., Jiang, X., and Overholtzer, M. (2014) V-ATPase and osmotic imbalances activate endolysosomal LC3 lipidation, Autophagy, 11, 8899.Google Scholar
  19. 19.
    Florey, O., Kim, S. E., Sandoval, C. P., Haynes, C. M., and Overholtzer, M. (2011) Autophagy machinery mediates macroendocytic processing and entotic cell death by targeting single membranes, Nat. Cell Biol., 13, 1335–1343.PubMedCentralCrossRefPubMedGoogle Scholar
  20. 20.
    Green, S. A., Zimmer, K. P., Griffiths, G., and Mellman, I. (1987) Kinetics of intracellular transport and sorting of lysosomal membrane and plasma membrane proteins, J. Cell Biol., 105, 1227–1240.CrossRefPubMedGoogle Scholar
  21. 21.
    Rohrer, J., and Kornfeld, R. (2001) Lysosomal hydrolase mannose 6-phosphate uncovering enzyme resides in the trans-Golgi network, Mol. Biol. Cell, 12, 1623–1631.PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Fukuda, M. (1991) Lysosomal membrane glycoproteins. Structure, biosynthesis, and intracellular rafficking, J. Biol. Chem., 266, 21327–21330.PubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • A. S. Garanina
    • 1
    Email author
  • L. A. Khashba
    • 1
  • G. E. Onishchenko
    • 1
  1. 1.Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations