Advertisement

Biochemistry (Moscow)

, Volume 80, Issue 11, pp 1457–1464 | Cite as

Mitochondrial fission and fusion

  • M. V. PatrushevEmail author
  • I. O. Mazunin
  • E. N. Vinogradova
  • P. A. Kamenski
Review

Abstract

Mitochondria are key cellular organelles responsible for many different functions. The molecular biology of mitochondria is continuously subject to comprehensive studies. However, detailed mechanisms of mitochondrial biogenesis are still unclear. Fusion and fission are among the most enigmatic processes connected with mitochondria. On the other hand, it has been shown that these events are of great biological importance for functioning of living cells. In this review, we summarize existing molecular data on mitochondrial dynamics and discuss possible biological functions of fusion and fission of these organelles.

Keywords

mitochondria fusion fission 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Martens, S., and McMahon, H. T. (2008) Mechanisms of membrane fusion: disparate players and common principles, Nat. Rev. Mol. Cell Biol., 7, 543–556.CrossRefGoogle Scholar
  2. 2.
    Jones, B. A., and Fangman, W. L. (1992) Mitochondrial DNA maintenance in yeast requires a protein containing a region related to the GTP-binding domain of dynamin, Genes Dev., 3, 380–389.CrossRefGoogle Scholar
  3. 3.
    Dudek, J., Rehling, P., and Van der Laan, M. (2013) Mitochondrial protein import: common principles and physiological networks, Biochim. Biophys. Acta, 2, 274–285.CrossRefGoogle Scholar
  4. 4.
    Wong, E. D., Wagner, J. A., Gorsich, S. W., McCaffery, J. M., Shaw, J. M., and Nunnari, J. (2000) The dynaminrelated GTPase, Mgm1p, is an intermembrane space protein required for maintenance of fusion competent mitochondria, J. Cell. Biol., 2, 341–352.CrossRefGoogle Scholar
  5. 5.
    Herlan, M., Vogel, F., Bornhovd, C., Neupert, W., and Reichert, A. S. (2003) Processing of Mgm1 by the rhomboid-type protease Pcp1 is required for maintenance of mitochondrial morphology and of mitochondrial DNA, J. Biol. Chem., 278, 27781–27788.CrossRefPubMedGoogle Scholar
  6. 6.
    Esser, K., Tursun, B., Ingenhoven, M., Michaelis, G., and Pratje, E. (2002) A novel two-step mechanism for removal of a mitochondrial signal sequence involves the mAAA complex and the putative rhomboid protease Pcp1, J. Mol. Biol., 323, 835–843.CrossRefPubMedGoogle Scholar
  7. 7.
    Ha, Y., Akiyama, Y., and Xue, Y. (2013) Structure and mechanism of rhomboid protease, J. Biol. Chem., 22, 15430–15436.CrossRefGoogle Scholar
  8. 8.
    Herlan, M., Bornhovd, C., Hell, K., Neupert, W., and Reichert, A. S. (2004) Alternative topogenesis of Mgm1 and mitochondrial morphology depend on ATP and a functional import motor, J. Cell Biol., 2, 167–173.CrossRefGoogle Scholar
  9. 9.
    Van der Bliek, A. M., Shen, Q., and Kawajiri, S. (2013) Mechanisms of mitochondrial fission and fusion, Cold Spring Harb. Perspect. Biol., 5, a011072.PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Guan, K., Farh, L., Marshall, T. K., and Deschenes, R. J. (1993) Normal mitochondrial structure and genome maintenance in yeast requires the dynamin-like product of the MGM1 gene, Curr. Genet., 24, 141–148.CrossRefPubMedGoogle Scholar
  11. 11.
    Meeusen, S., DeVay, R., Block, J., Cassidy-Stone, A., Wayson, S., McCaffery, J. M., and Nunnari, J. (2006) Mitochondrial inner-membrane fusion and crista maintenance requires the dynamin-related GTPase Mgm1, Cell, 127, 383–395.CrossRefPubMedGoogle Scholar
  12. 12.
    Alexander, C., Votruba, M., Pesch, U. E., Thiselton, D. L., Mayer, S., Moore, A., Rodriguez, M., Kellner, U., LeoKottler, B., Auburger, G., Bhattacharya, S. S., and Wissinger, B. (2000) OPA1, encoding a dynamin-related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28, Nat. Genet., 26, 211–215.CrossRefPubMedGoogle Scholar
  13. 13.
    Delettre, C., Lenaers, G., Griffoin, J. M., Gigarel, N., Lorenzo, C., Belenguer, P., Pelloquin, L., Grosgeorge, J., Turc-Carel, C., Perret, E., Astarie-Dequeker, C., Lasquellec, L., Arnaud, B., Ducommun, B., Kaplan, J., and Hamel, C. P. (2000) Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy, Nat. Genet., 26, 207–210.CrossRefPubMedGoogle Scholar
  14. 14.
    Cipolat, S., Rudka, T., Hartmann, D., Costa, V., Serneels, L., Craessaerts, K., Metzger, K., Frezza, C., Annaert, W., D’Adamio, L., Derks, C., Dejaegere, T., Pellegrini, L., D’Hooge, R., Scorrano, L., and De Strooper, B. (2006) Mitochondrial rhomboid PARL regulates cytochrome c release during apoptosis via OPA1-dependent cristae remodeling, Cell, 126, 163–175.CrossRefPubMedGoogle Scholar
  15. 15.
    Griparic, L., Kanazawa, T., and Van der Bliek, A. M. (2007) Regulation of the mitochondrial dynamin-like protein Opa1 by proteolytic cleavage, J. Cell Biol., 178, 757764.CrossRefGoogle Scholar
  16. 16.
    Olichon, A., Elachouri, G., Baricault, L., Delettre, C., Belenguer, P., and Lenaers, G. (2007) OPA1 alternate splicing uncouples an evolutionary conserved function in mitochondrial fusion from a vertebrate restricted function in apoptosis, Cell Death Differ., 4, 682–692.CrossRefGoogle Scholar
  17. 17.
    Song, Z., Chen, H., Fiket, M., Alexander, C., and Chan, D. C. (2007) OPA1 processing controls mitochondrial fusion and is regulated by mRNA splicing, membrane potential, and Yme1L, J. Cell Biol., 178, 749–755.PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Baricault, L., Segui, B., Guegand, L., Olichon, A., Valette, A., Larminat, F., and Lenaers, G. (2007) OPA1 cleavage depends on decreased mitochondrial ATP level and bivalent metals, Exp. Cell Res., 313, 3800–3808.CrossRefPubMedGoogle Scholar
  19. 19.
    Merkwirth, C., Dargazanli, S., Tatsuta, T., Geimer, S., Lower, B., Wunderlich, F. T., von Kleist-Retzow, J. C., Waisman, A., Westermann, B., and Langer, T. (2008) Prohibitins control cell proliferation and apoptosis by regulating OPA1-dependent cristae morphogenesis in mitochondria, Genes Dev., 22, 476–488.PubMedCentralCrossRefPubMedGoogle Scholar
  20. 20.
    Ehses, S., Raschke, I., Mancuso, G., Bernacchia, A., Geimer, S., Tondera, D., Martinou, J. C., Westermann, B., Rugarli, E. I., and Langer, T. (2009) Regulation of OPA1 processing and mitochondrial fusion by m-AAA protease isoenzymes and OMA1, J. Cell Biol., 187, 1023–1036.PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Head, B., Griparic, L., Amiri, M., Gandre-Babbe, S., and Van der Bliek, A. M. (2009) Inducible proteolytic inactivation of OPA1 mediated by the OMA1 protease in mammalian cells, J. Cell Biol., 187, 959–966.PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Griparic, L., Van der Wel, N. N., Orozco, I. J., Peters, P. J., and Van der Bliek, A. M. (2004) Loss of the intermembrane space protein Mgm1/OPA1 induces swelling and localized constrictions along the lengths of mitochondria, J. Biol. Chem., 279, 18792–18798.CrossRefPubMedGoogle Scholar
  23. 23.
    Cipolat, S., Martins de Brito, O., Dal Zilio, B., and Scorrano, L. (2004) OPA1 requires mitofusin 1 to promote mitochondrial fusion, Proc. Natl. Acad. Sci. USA, 45, 15927–15932.CrossRefGoogle Scholar
  24. 24.
    Hales, K. G., and Fuller, M. T. (1997) Developmentally regulated mitochondrial fusion mediated by a conserved, novel, predicted GTPase, Cell, 90, 121–129.CrossRefPubMedGoogle Scholar
  25. 25.
    Rapaport, D., Brunner, M., Neupert, W., and Westermann, B. (1998) Fzo1p is a mitochondrial outer membrane protein essential for the biogenesis of functional mitochondria in Saccharomyces cerevisiae, J. Biol. Chem., 273, 2015020155.Google Scholar
  26. 26.
    Hermann, G. J., Thatcher, J. W., Mills, J. P., Hales, K. G., Fuller, M. T., Nunnari, J., and Shaw, J. M. (1998) Mitochondrial fusion in yeast requires the transmembrane GTPase Fzo1p, J. Cell Biol., 143, 359–373.PubMedCentralCrossRefPubMedGoogle Scholar
  27. 27.
    Kanazawa, T., Zappaterra, M. D., Hasegawa, A., Wright, A. P., Newman-Smith, E. D., Buttle, K. F., McDonald, K., Mannella, C. A., and Van der Bliek, A. M. (2008) The C. elegans Opa1 homologue EAT-3 is essential for resistance to free radicals, PLoS Genet., 2, e1000022.CrossRefGoogle Scholar
  28. 28.
    Fritz, S., Rapaport, D., Klanner, E., Neupert, W., and Westermann, B. (2001) Connection of the mitochondrial outer and inner membranes by Fzo1 is critical for organellar fusion, J. Cell Biol., 4, 683–692.CrossRefGoogle Scholar
  29. 29.
    Rojo, M., Legros, F., Chateau, D., and Lombes, A. (2002) Membrane topology and mitochondrial targeting of mitofusins, ubiquitous mammalian homologs of the transmembrane GTPase Fzo, J. Cell. Sci., 115, 1663–1674.PubMedGoogle Scholar
  30. 30.
    Chen, H., Detmer, S. A., Ewald, A. J., Griffin, E. E., Fraser, S. E., and Chan, D. C. (2003) Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development, J. Cell Biol., 2, 189200.Google Scholar
  31. 31.
    Wong, E. D., Wagner, J. A., Gorsich, S. W., McCaffery, J. M., Shaw, J. M., and Nunnari, J. (2000) The dynaminrelated GTPase, Mgm1p, is an intermembrane space protein required for maintenance of fusion competent mitochondria, J. Cell Biol., 2, 341–352.CrossRefGoogle Scholar
  32. 32.
    Meeusen, S., McCaffery, J. M., and Nunnari, J. (2004) Mitochondrial fusion intermediates revealed in vitro, Science, 305, 1747–1752.CrossRefPubMedGoogle Scholar
  33. 33.
    Olichon, A., Baricault, L., Gas, N., Guillou, E., Valette, A., Belenguer, P., and Lenaers, G. (2003) Loss of OPA1 perturbates the mitochondrial inner membrane structure and integrity, leading to cytochrome c release and apoptosis, J. Biol. Chem., 10, 7743–7746.CrossRefGoogle Scholar
  34. 34.
    Ramonet, D., Perier, C., Recasens, A., Dehay, B., Bove, J., Costa, V., Scorrano, L., and Vila, M. (2013) Optic atrophy 1 mediates mitochondria remodeling and dopaminergic neurodegeneration linked to complex I deficiency, Cell Death Differ., 1, 77–85.CrossRefGoogle Scholar
  35. 35.
    Chen, H., Chomyn, A., and Chan, D. C. (2005) Disruption of fusion results in mitochondrial heterogeneity and dysfunction, J. Biol. Chem., 28, 26185–26192.CrossRefGoogle Scholar
  36. 36.
    Frey, T. G., and Mannella, C. A. (2000) The internal structure of mitochondria, Trends Biochem. Sci., 7, 319–324.CrossRefGoogle Scholar
  37. 37.
    Tomasello, M. F., Guarino, F., Reina, S., Messina, A., and De Pinto, V. (2013) The voltage-dependent anion selective channel 1 (VDAC1) topography in the mitochondrial outer membrane as detected in intact cell, PLoS One, 12, e81522.CrossRefGoogle Scholar
  38. 38.
    An, H. J., Cho, G., Lee, J. O., Paik, S. G., Kim, Y. S., and Lee, H. (2013) Higd-1a interacts with Opa1 and is required for the morphological and functional integrity of mitochondria, Proc. Natl. Acad. Sci. USA, 32, 13014–13019.CrossRefGoogle Scholar
  39. 39.
    Otera, H., Ishihara, N., and Mihara, K. (2013) New insights into the function and regulation of mitochondrial fission, Biochim. Biophys. Acta, 5, 1256–1268.CrossRefGoogle Scholar
  40. 40.
    Mattenberger, Y., James, D. I., and Martinou, J. C. (2003) Fusion of mitochondria in mammalian cells is dependent on the mitochondrial inner membrane potential and independent of microtubules or actin, FEBS Lett., 3, 53–59.CrossRefGoogle Scholar
  41. 41.
    Malka, F., Guillery, O., Cifuentes-Diaz, C., Guillou, E., Belenguer, P., Lombes, A., and Rojo, M. (2005) Separate fusion of outer and inner mitochondrial membranes, EMBO Rep., 9, 853–859.CrossRefGoogle Scholar
  42. 42.
    Westermann, B. (2010) Mitochondrial fusion and fission in cell life and death, Nat. Rev. Mol. Cell Biol., 12, 872–884.CrossRefGoogle Scholar
  43. 43.
    Ingerman, E., Perkins, E. M., Marino, M., Mears, J. A., McCaffery, J. M., Hinshaw, J. E., and Nunnari, J. (2005) Dnm1 forms spirals that are structurally tailored to fit mitochondria, J. Cell Biol., 7, 1021–1027.CrossRefGoogle Scholar
  44. 44.
    Lackner, L. L., Horner, J. S., and Nunnari, J. (2009) Mechanistic analysis of a dynamin effector, Science, 5942, 874–877.CrossRefGoogle Scholar
  45. 45.
    Mears, J. A., Lackner, L. L., Fang, S., Ingerman, E., Nunnari, J., and Hinshaw, J. E. (2011) Conformational changes in Dnm1 support a contractile mechanism for mitochondrial fission, Nat. Struct. Mol. Biol., 1, 20–26.CrossRefGoogle Scholar
  46. 46.
    Otsuga, D., Keegan, B. R., Brisch, E., Thatcher, J. W., Hermann, G. J., Bleazard, W., and Shaw, J. M. (1998) The dynamin-related GTPase, Dnm1p, controls mitochondrial morphology in yeast, J. Cell Biol., 2, 333–349.CrossRefGoogle Scholar
  47. 47.
    Manczak, M., Calkins, M. J., and Reddy, P. H. (2011) Impaired mitochondrial dynamics and abnormal interaction of amyloid ß with mitochondrial protein Drp1 in neurons from patients with Alzheimer’s disease: implications for neuronal damage, Hum. Mol. Genet., 13, 2495–2509.CrossRefGoogle Scholar
  48. 48.
    Tieu, Q., and Nunnari, J. (2000) Mdv1p is a WD repeat protein that interacts with the dynamin-related GTPase, Dnm1p, to trigger mitochondrial division, J. Cell Biol., 2, 353–366.CrossRefGoogle Scholar
  49. 49.
    Westermann, B. (2014) Mitochondrial inheritance in yeast, Biochim. Biophys. Acta, 7, 1039–1046.CrossRefGoogle Scholar
  50. 50.
    Schauss, A. C., and McBride, H. M. (2007) Mitochondrial fission: a non-nuclear role for Num1p, Curr. Biol., 12, 467–470.CrossRefGoogle Scholar
  51. 51.
    Otera, H., Wang, C., Cleland, M. M., Setoguchi, K., Yokota, S., Youle, R. J., and Mihara, K. (2010) Mff is an essential factor for mitochondrial recruitment of Drp1 during mitochondrial fission in mammalian cells, J. Cell. Biol., 6, 1141–1158.CrossRefGoogle Scholar
  52. 52.
    Messerschmitt, M., Jakobs, S., Vogel, F., Fritz, S., Dimmer, K. S., Neupert, W., and Westermann, B. (2003) The inner membrane protein Mdm33 controls mitochondrial morphology in yeast, J. Cell. Biol., 4, 553–564.CrossRefGoogle Scholar
  53. 53.
    Tondera, D., Czauderna, F., Paulick, K., Schwarzer, R., Kaufmann, J., and Santel, A. (2005) The mitochondrial protein MTP18 contributes to mitochondrial fission in mammalian cells, J. Cell Sci., 14, 3049–3059.CrossRefGoogle Scholar
  54. 54.
    Mitra, K., Wunder, C., Roysam, B., Lin, G., and Lippincott-Schwartz, J. (2009) A hyperfused mitochondrial state achieved at G1-S regulates cyclin E buildup and entry into S-phase, Proc. Natl. Acad. Sci. USA, 29, 11960–11965.CrossRefGoogle Scholar
  55. 55.
    Taguchi, N., Ishihara, N., Jofuku, A., Oka, T., and Mihara, K. (2007) Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission, J. Biol. Chem., 15, 11521–11529.CrossRefGoogle Scholar
  56. 56.
    Qian, W., Choi, S., Gibson, G. A., Watkins, S. C., Bakkenist, C. J., and Van Houten, B. (2012) Mitochondrial hyperfusion induced by loss of the fission protein Drp1 causes ATM-dependent G2/M arrest and aneuploidy through DNA replication stress, J. Cell Sci., 23, 5745–5757.CrossRefGoogle Scholar
  57. 57.
    Ishihara, N., Nomura, M., Jofuku, A., Kato, H., Suzuki, S. O., Masuda, K., Otera, H., Nakanishi, Y., Nonaka, I., Goto, Y., Taguchi, N., Morinaga, H., Maeda, M., Takayanagi, R., Yokota, S., and Mihara, K. (2009) Mitochondrial fission factor Drp1 is essential for embryonic development and synapse formation in mice, Nat. Cell Biol., 8, 958–966.CrossRefGoogle Scholar
  58. 58.
    Wakabayashi, J., Zhang, Z., Wakabayashi, N., Tamura, Y., Fukaya, M., Kensler, T. W., Iijima, M., and Sesaki, H. (2009) The dynamin-related GTPase Drp1 is required for embryonic and brain development in mice, J. Cell Biol., 6, 805–816.CrossRefGoogle Scholar
  59. 59.
    Kasahara, A., Cipolat, S., Chen, Y., Dorn, G. W., and Scorrano, L. (2013) Mitochondrial fusion directs cardiomyocyte differentiation via calcineurin and Notch signaling, Science, 6159, 734–737.CrossRefGoogle Scholar
  60. 60.
    Shutt, T., Geoffrion, M., Milne, R., and McBride, H. M. (2012) The intracellular redox state is a core determinant of mitochondrial fusion, EMBO Rep., 10, 909–915.CrossRefGoogle Scholar
  61. 61.
    Tondera, D., Grandemange, S., Jourdain, A., Karbowski, M., Mattenberger, Y., Herzig, S., Da Cruz, S., Clerc, P., Raschke, I., Merkwirth, C., Ehses, S., Krause, F., Chan, D. C., Alexander, C., Bauer, C., Youle, R., Langer, T., and Martinou, J. C. (2009) SLP-2 is required for stress-induced mitochondrial hyperfusion, EMBO J., 11, 1589–1600.CrossRefGoogle Scholar
  62. 62.
    Karbowski, M., Norris, K. L., Cleland, M. M., Jeong, S. Y., and Youle, R. J. (2006) Role of Bax and Bak in mitochondrial morphogenesis, Nature, 7112, 658–662.CrossRefGoogle Scholar
  63. 63.
    Hoppins, S., Edlich, F., Cleland, M. M., Banerjee, S., McCaffery, J. M., Youle, R. J., and Nunnari, J. (2011) The soluble form of Bax regulates mitochondrial fusion via MFN2 homotypic complexes, Mol. Cell, 2, 150–160.CrossRefGoogle Scholar
  64. 64.
    Cassidy-Stone, A., Chipuk, J. E., Ingerman, E., Song, C., Yoo, C., Kuwana, T., Kurth, M. J., Shaw, J. T., Hinshaw, J. E., Green, D. R., and Nunnari, J. (2008) Chemical inhibition of the mitochondrial division dynamin reveals its role in Bax/Bak-dependent mitochondrial outer membrane permeabilization, Dev. Cell, 2, 193–204.CrossRefGoogle Scholar
  65. 65.
    Westphal, D., Kluck, R. M., and Dewson, G. (2014) Building blocks of the apoptotic pore: how Bax and Bak are activated and oligomerize during apoptosis, Cell Death Differ., 2, 196–205.CrossRefGoogle Scholar
  66. 66.
    Chang, C. R., and Blackstone, C. (2010) Dynamic regulation of mitochondrial fission through modification of the dynamin-related protein Drp1, Ann. N. Y. Acad. Sci., 1201, 34–39.CrossRefPubMedGoogle Scholar
  67. 67.
    Chou, C. H., Lin, C. C., Yang, M. C., Wei, C. C., Liao, H. D., Lin, R. C., Tu, W. Y., Kao, T. C., Hsu, C. M., Cheng, J. T., Chou, A. K., Lee, C. I., Loh, J. K., Howng, S. L., and Hong, Y. R. (2012) GSK3ß-mediated Drp1 phosphorylation induced elongated mitochondrial morphology against oxidative stress, PLoS One, 11, e49112.Google Scholar
  68. 68.
    Karbowski, M., Lee, Y. J., Gaume, B., Jeong, S. Y., Frank, S., Nechushtan, A., Santel, A., Fuller, M., Smith, C. L., and Youle, R. J. (2002) Spatial and temporal association of Bax with mitochondrial fission sites, Drp1, and Mfn2 during apoptosis, J. Cell Biol., 6, 931–938.CrossRefGoogle Scholar
  69. 69.
    Dietrich, M. O., Liu, Z. W., and Horvath, T. L. (2013) Mitochondrial dynamics controlled by mitofusins regulate Agrp neuronal activity and diet-induced obesity, Cell, 1, 188–199.CrossRefGoogle Scholar
  70. 70.
    Rambold, A. S., Kostelecky, B., Elia, N., and LippincottSchwartz, J. (2011) Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation, Proc. Natl. Acad. Sci. USA, 25, 10190–10195.CrossRefGoogle Scholar
  71. 71.
    Kim, B., Kim, J. S., Yoon, Y., Santiago, M. C., Brown, M. D., and Park, J. Y. (2013) Inhibition of Drp1-dependent mitochondrial division impairs myogenic differentiation, Am. J. Physiol. Regul. Integr. Comp. Physiol., 8, 927–938.CrossRefGoogle Scholar
  72. 72.
    Gomes, L. C., Di Benedetto, G., and Scorrano, L. (2011) Essential amino acids and glutamine regulate induction of mitochondrial elongation during autophagy, Cell Cycle, 16, 2635–2639.CrossRefGoogle Scholar
  73. 73.
    Samant, S. A., Zhang, H. J., Hong, Z., Pillai, V. B., Sundaresan, N. R., Wolfgeher, D., Archer, S. L., Chan, D. C., and Gupta, M. P. (2014) SIRT3 deacetylates and activates OPA1 to regulate mitochondrial dynamics during stress, Mol. Cell. Biol., 5, 807–819.CrossRefGoogle Scholar
  74. 74.
    Lawson, V. H., Graham, B. V., and Flanigan, K. M. (2005) Clinical and electrophysiologic features of CMT2A with mutations in the mitofusin 2 gene, Neurology, 2, 197–204.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • M. V. Patrushev
    • 1
    • 2
    Email author
  • I. O. Mazunin
    • 2
  • E. N. Vinogradova
    • 1
  • P. A. Kamenski
    • 1
    • 2
  1. 1.Faculty of BiologyLomonosov Moscow State UniversityMoscowRussia
  2. 2.Institute of Chemistry and BiologyImmanuil Kant Baltic Federal UniversityKaliningradRussia

Personalised recommendations