Advertisement

Biochemistry (Moscow)

, Volume 80, Issue 11, pp 1418–1428 | Cite as

Mitochondrial matrix processes

  • I. O. MazuninEmail author
  • S. A. Levitskii
  • M. V. Patrushev
  • P. A. Kamenski
Review
  • 142 Downloads

Abstract

Mitochondria possess their own genome that, despite its small size, is critically important for their functioning, as it encodes several dozens of RNAs and proteins. All biochemical processes typical for bacterial and nuclear DNA are described in mitochondrial matrix: replication, repair, recombination, and transcription. Commonly, their mechanisms are similar to those found in bacteria, but they are characterized by several unique features. In this review, we provide an overall description of mitochondrial matrix processes paying special attention to the typical features of such mechanisms.

Keywords

mitochondria mtDNA nucleoid transcription replication repair recombination 

Abbreviations

BER

base excision repair

MMR

mismatch repair

mtDNA

mitochondrial DNA

mTERF

mitochondrial transcription termination factor

mtSSB

mitochondrial protein binding to single-stranded DNA

POLG

mitochondrial DNA polymerase

POLRMT

mitochondrial RNA polymerase

TFAM,TFB1M and TFB2M

mitochondrial transcription factors A, B1 and B2

Twinkle

mitochondrial DNA helicase

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Spelbrink, J. N. (2010) Functional organization of mammalian mitochondrial DNA in nucleoids: history, recent developments, and future challenges, IUBMB Life, 1, 19–32.Google Scholar
  2. 2.
    Bogenhagen, D. F. (2012) Mitochondrial DNA nucleoid structure, Biochim. Biophys. Acta, 1819, 914–920.PubMedCrossRefGoogle Scholar
  3. 3.
    Bogenhagen, D. F., Rousseau, D., and Burke, S. (2008) The layered structure of human mitochondrial DNA nucleoids, J. Biol. Chem., 6, 3665–3675.CrossRefGoogle Scholar
  4. 4.
    Satoh, M., and Kuroiwa, T. (1991) Organization of multiple nucleoids and DNA molecules in mitochondria of a human cell, Exp. Cell Res., 1, 137–140.CrossRefGoogle Scholar
  5. 5.
    Iborra, F. J., Kimura, H., and Cook, P. R. (2004) The functional organization of mitochondrial genomes in human cells, BMC Biol., 2, 9.PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Legros, F., Malka, F., Frachon, P., Lombes, A., and Rojo, M. (2004) Organization and dynamics of human mitochondrial DNA, J. Cell Sci., 117, 2653–2662.PubMedCrossRefGoogle Scholar
  7. 7.
    Gilkerson, R. W., Schon, E. A., Hernandez, E., and Davidson, M. M. (2008) Mitochondrial nucleoids maintain genetic autonomy but allow for functional complementation, J. Cell Biol., 7, 1117–1128.CrossRefGoogle Scholar
  8. 8.
    Kukat, C., Wurm, C. A., Spahr, H., Falkenberg, M., Larsson, N. G., and Jakobs, S. (2011) Super-resolution microscopy reveals that mammalian mitochondrial nucleoids have a uniform size and frequently contain a single copy of mtDNA, Proc. Natl. Acad. Sci. USA, 33, 1353413539.Google Scholar
  9. 9.
    Van Blerkom, J. (2009) Mitochondria in early mammalian development, Semin. Cell Dev. Biol., 3, 354–364.CrossRefGoogle Scholar
  10. 10.
    Bogenhagen, D. F. (2010) Does mtDNA nucleoid organization impact aging? Exp. Gerontol., 45, 473–477.PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Goldman, S. J., Taylor, R., Zhang, Y., and Jin, S. (2010) Autophagy and the degradation of mitochondria, Mitochondrion, 4, 309–315.CrossRefGoogle Scholar
  12. 12.
    Holt, I. J., He, J., Mao, C. C., Boyd-Kirkup, J. D., Martinsson, P., Sembongi, H., Reyes, A., and Spelbrink, J. N. (2007) Mammalian mitochondrial nucleoids: organizing an independently minded genome, Mitochondrion, 5, 311–321.CrossRefGoogle Scholar
  13. 13.
    Jacobs, H. T., Lehtinen, S. K., and Spelbrink, J. N. (2000) No sex please, we’re mitochondria: a hypothesis on the somatic unit of inheritance of mammalian mtDNA, Bioessays, 6, 564–572.CrossRefGoogle Scholar
  14. 14.
    D’Aurelio, M., Gajewski, C. D., Lin, M. T., Mauck, W. M., Shao, L. Z., Lenaz, G., Moraes, C. T., and Manfredi, G. (2004) Heterologous mitochondrial DNA recombination in human cells, Hum. Mol. Genet., 24, 3171–3179.CrossRefGoogle Scholar
  15. 15.
    Elson, J. L., Andrews, R. M., Chinnery, P. F., Lightowlers, R. N., Turnbull, D. M., and Howell, N. (2001) Analysis of European mtDNAs for recombination, Am. J. Hum. Genet., 1, 145–153.CrossRefGoogle Scholar
  16. 16.
    Clayton, D. A., and Vinograd, J. (1967) Circular dimer and catenate forms of mitochondrial DNA in human leukemic leucocytes, Nature, 5116, 652–657.CrossRefGoogle Scholar
  17. 17.
    Clayton, D. A., and Vinograd, J. (1967) Complex mitochondrial DNA in leukemic and normal human myeloid cells, Proc. Natl. Acad. Sci. USA, 4, 1077–1084.Google Scholar
  18. 18.
    Holt, I. J., Dunbar, D. R., and Jacobs, H. T. (1997) Behavior of a population of partially duplicated mitochondrial DNA molecules in cell culture: segregation, maintenance and recombination dependent upon nuclear background, Hum. Mol. Genet., 8, 1251–1260.CrossRefGoogle Scholar
  19. 19.
    Tang, Y., Manfredi, G., Hirano, M., and Schon, E. A. (2000) Maintenance of human rearranged mitochondrial DNAs in long-term cultured transmitochondrial cell lines, Mol. Biol. Cell, 7, 2349–2358.CrossRefGoogle Scholar
  20. 20.
    Mita, S., Rizzuto, R., Moraes, C. T., Shanske, S., Arnaudo, E., Fabrizi, G. M., Koga, Y., DiMauro, S., and Schon, E. A. (1990) Recombination via flanking direct repeats is a major cause of large-scale deletions of human mitochondrial DNA, Nucleic Acids Res., 3, 561–567.CrossRefGoogle Scholar
  21. 21.
    Pohjoismaki, J. L., Goffart, S., Tyynismaa, H., Willcox, S., Ide, T., Kang, D., Suomalainen, A., Karhunen, P. J., Griffith, J. D., Holt, I. J., and Jacobs, H. T. (2009) Human heart mitochondrial DNA is organized in complex catenated networks containing abundant four-way junctions and replication forks, J. Biol. Chem., 32, 21446–21457.CrossRefGoogle Scholar
  22. 22.
    Fan, W., Lin, C. S., Potluri, P., Procaccio, V., and Wallace, D. C. (2012) mtDNA lineage analysis of mouse L-cell lines reveals the accumulation of multiple mtDNA mutants and intermolecular recombination, Genes Dev., 4, 384–394.CrossRefGoogle Scholar
  23. 23.
    Kraytsberg, Y., Schwartz, M., Brown, T. A., Ebralidse, K., Kunz, W. S., Clayton, D. A., Vissing, J., and Khrapko, K. (2004) Recombination of human mitochondrial DNA, Science, 5673, 981.CrossRefGoogle Scholar
  24. 24.
    Zsurka, G., Kraytsberg, Y., Kudina, T., Kornblum, C., Elger, C. E., Khrapko, K., and Kunz, W. S. (2005) Recombination of mitochondrial DNA in skeletal muscle of individuals with multiple mitochondrial DNA heteroplasmy, Nat. Genet., 8, 873–877.CrossRefGoogle Scholar
  25. 25.
    Bacman, S. R., Williams, S. L., and Moraes, C. T. (2009) Intraand inter-molecular recombination of mitochondrial DNA after in vivo induction of multiple double-strand breaks, Nucleic Acids Res., 13, 4218–4226.CrossRefGoogle Scholar
  26. 26.
    Chen, X. J. (2013) Mechanism of homologous recombination and implications for aging-related deletions in mitochondrial DNA, Microbiol. Mol. Biol. Rev., 3, 476–496.CrossRefGoogle Scholar
  27. 27.
    Yang, C., Curth, U., Urbanke, C., and Kang, C. (1997) Crystal structure of human mitochondrial single-stranded DNA binding protein at 2.4 Å resolution, Nat. Struct. Biol., 2, 153–157.CrossRefGoogle Scholar
  28. 28.
    White, M. F., and Lilley, D. M. (1996) The structure-selectivity and sequence-preference of the junction-resolving enzyme CCE1 of Saccharomyces cerevisiae, J. Mol. Biol., 2, 330–341.CrossRefGoogle Scholar
  29. 29.
    Fogg, J. M., Schofield, M. J., Declais, A. C., and Lilley, D. M. (2000) Yeast resolving enzyme CCE1 makes sequential cleavages in DNA junctions within the lifetime of the complex, Biochemistry, 14, 4082–4089.CrossRefGoogle Scholar
  30. 30.
    Ohno, T., Umeda, S., Hamasaki, N., and Kang, D. (2000) Binding of human mitochondrial transcription factor A, an HMG box protein, to a four-way DNA junction, Biochem. Biophys. Res. Commun., 2, 492–498.CrossRefGoogle Scholar
  31. 31.
    Wang, J., Schmitt, E. S., Landsverk, M. L., Zhang, V. W., Li, F. Y., Graham, B. H., Craigen, W. J., and Wong, L. J. (2012) An integrated approach for classifying mitochondrial DNA variants: one clinical diagnostic laboratory’s experience, Genet. Med., 6, 620–626.CrossRefGoogle Scholar
  32. 32.
    He, Y., Wu, J., Dressman, D. C., Iacobuzio-Donahue, C., Markowitz, S. D., Velculescu, V. E., Diaz, L. A., Jr., Kinzler, K. W., Vogelstein, B., and Papadopoulos, N. (2010) Heteroplasmic mitochondrial DNA mutations in normal and tumor cells, Nature, 7288, 610–614.CrossRefGoogle Scholar
  33. 33.
    Payne, B. A., Wilson, I. J., Yu- Wai-Man, P., Coxhead, J., Deehan, D., Horvath, R., Taylor, R. W., Samuels, D. C., Santibanez-Koref, M., and Chinnery, P. F. (2013) Universal heteroplasmy of human mitochondrial DNA, Hum. Mol. Genet., 2, 384–390.CrossRefGoogle Scholar
  34. 34.
    Wonnapinij, P., Chinnery, P. F., and Samuels, D. C. (2008) The distribution of mitochondrial DNA heteroplasmy due to random genetic drift, Am. J. Hum. Genet., 5, 582–593.CrossRefGoogle Scholar
  35. 35.
    Gilkerson, R. W., and Schon, E. A. (2008) Nucleoid autonomy: an underlying mechanism of mitochondrial genetics with therapeutic potential, Commun. Integr. Biol., 1, 34–36.PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Gilkerson, R. W. (2009) Mitochondrial DNA nucleoids determine mitochondrial genetics and dysfunction, Int. J. Biochem. Cell Biol., 10, 1899–1906.CrossRefGoogle Scholar
  37. 37.
    De Grey, A. D. (2009) How is mutant mitochondrial DNA clonally amplified? Much new evidence, still no answers, Rejuv. Res., 3, 217–219.CrossRefGoogle Scholar
  38. 38.
    Holt, I. J., and Reyes, A. (2013) Human mitochondrial DNA replication, Cold Spring Harbor. Perspect. Biol., 4, 12.Google Scholar
  39. 39.
    Dean, N. L., Battersby, B. J., Ao, A., Gosden, R. G., Tan, S. L., Shoubridge, E. A., and Molnar, M. J. (2003) Prospect of preimplantation genetic diagnosis for heritable mitochondrial DNA diseases, Mol. Hum. Reprod., 10, 631638.Google Scholar
  40. 40.
    St. John, J. C., Facucho-Oliveira, J., Jiang, Y., Kelly, R., and Salah, R. (2010) Mitochondrial DNA transmission, replication and inheritance: a journey from the gamete through the embryo and into offspring and embryonic stem cells, Hum. Reprod. Update, 5, 488–509.CrossRefGoogle Scholar
  41. 41.
    Cermakian, N., Ikeda, T. M., Miramontes, P., Lang, B. F., Gray, M. W., and Cedergren, R. (1997) On the evolution of the single-subunit RNA polymerases, J. Mol. Evol., 6, 671–681.CrossRefGoogle Scholar
  42. 42.
    Ringel, R., Sologub, M., Morozov, Y. I., Litonin, D., Cramer, P., and Temiakov, D. (2011) Structure of human mitochondrial RNA polymerase, Nature, 7368, 269–273.CrossRefGoogle Scholar
  43. 43.
    Sousa, R. (2001) T7 RNA polymerase, Uirusu, 1, 81–94.CrossRefGoogle Scholar
  44. 44.
    Arnold, J. J., Sharma, S. D., Feng, J. Y., Ray, A. S., Smidansky, E. D., Kireeva, M. L., Cho, A., Perry, J., Vela, J. E., Park, Y., Xu, Y., Tian, Y., Babusis, D., Barauskus, O., Peterson, B. R., Gnatt, A., Kashlev, M., Zhong, W., and Cameron, C. E. (2012) Sensitivity of mitochondrial transcription and resistance of RNA polymerase II dependent nuclear transcription to antiviral ribonucleosides, PLoS Pathog., 11, e1003030.CrossRefGoogle Scholar
  45. 45.
    Lightowlers, R. N., and Chrzanowska-Lightowlers, Z. M. (2008) PPR (pentatricopeptide repeat) proteins in mammals: important aids to mitochondrial gene expression, Biochem. J., 1, 5–6.CrossRefGoogle Scholar
  46. 46.
    Shadel, G. S. (2004) Coupling the mitochondrial transcription machinery to human disease, Trends Genet., 10, 513519.Google Scholar
  47. 47.
    Steitz, T. A., and Steitz, J. A. (1993) A general two-metalion mechanism for catalytic RNA, Proc. Natl. Acad. Sci. USA, 14, 6498–6502.CrossRefGoogle Scholar
  48. 48.
    Shutt, T. E., Lodeiro, M. F., Cotney, J., Cameron, C. E., and Shadel, G. S. (2010) Core human mitochondrial transcription apparatus is a regulated two-component system in vitro, Proc. Natl. Acad. Sci. USA, 27, 12133–12138.CrossRefGoogle Scholar
  49. 49.
    Garstka, H. L., Schmitt, W. E., Schultz, J., Sogl, B., Silakowski, B., Perez-Martos, A., Montoya, J., and Wiesner, R. J. (2003) Import of mitochondrial transcription factor A (TFAM) into rat liver mitochondria stimulates transcription of mitochondrial DNA, Nucleic Acids Res., 17, 5039–5047.CrossRefGoogle Scholar
  50. 50.
    Ngo, H. B., Kaiser, J. T., and Chan, D. C. (2011) The mitochondrial transcription and packaging factor Tfam imposes a U-turn on mitochondrial DNA, Nat. Struct. Mol. Biol., 11, 1290–1296.CrossRefGoogle Scholar
  51. 51.
    Rubio-Cosials, A., Sidow, J. F., Jimenez-Menendez, N., Fernandez-Millan, P., Montoya, J., Jacobs, H. T., Coll, M., Bernado, P., and Sola, M. (2011) Human mitochondrial transcription factor A induces a U-turn structure in the light strand promoter, Nat. Struct. Mol. Biol., 11, 12811289.Google Scholar
  52. 52.
    Fisher, R. P., Lisowsky, T., Parisi, M. A., and Clayton, D. A. (1992) DNA wrapping and bending by a mitochondrial high mobility group-like transcriptional activator protein, J. Biol. Chem., 5, 3358–3367.Google Scholar
  53. 53.
    Campbell, C. T., Kolesar, J. E., and Kaufman, B. A. (2012) Mitochondrial transcription factor A regulates mitochondrial transcription initiation, DNA packaging, and genome copy number, Biochim. Biophys. Acta, 10, 921–929.CrossRefGoogle Scholar
  54. 54.
    Matsushima, Y., Goto, Y., and Kaguni, L. S. (2010) Mitochondrial Lon protease regulates mitochondrial DNA copy number and transcription by selective degradation of mitochondrial transcription factor A (TFAM), Proc. Natl. Acad. Sci. USA, 43, 18410–18415.CrossRefGoogle Scholar
  55. 55.
    Shutt, T. E., Bestwick, M., and Shadel, G. S. (2011) The core human mitochondrial transcription initiation complex: it only takes two to tango, Transcription, 2, 55–59.PubMedCentralPubMedCrossRefGoogle Scholar
  56. 56.
    Ekstrand, M. I., Falkenberg, M., Rantanen, A., Park, C. B., Gaspari, M., Hultenby, K., Rustin, P., Gustafsson, C. M., and Larsson, N. G. (2004) Mitochondrial transcription factor A regulates mtDNA copy number in mammals, Hum. Mol. Genet., 9, 935–944.CrossRefGoogle Scholar
  57. 57.
    Alam, T. I., Kanki, T., Muta, T., Ukaji, K., Abe, Y., Nakayama, H., Takio, K., Hamasaki, N., and Kang, D. (2003) Human mitochondrial DNA is packaged with TFAM, Nucleic Acids Res., 6, 1640–1645.CrossRefGoogle Scholar
  58. 58.
    Kaufman, B. A., Durisic, N., Mativetsky, J. M., Costantino, S., Hancock, M. A., Grutter, P., and Shoubridge, E. A. (2007) The mitochondrial transcription factor TFAM coordinates the assembly of multiple DNA molecules into nucleoid-like structures, Mol. Biol. Cell, 9, 3225–3236.CrossRefGoogle Scholar
  59. 59.
    McCulloch, V., Seidel-Rogol, B. L., and Shadel, G. S. (2002) A human mitochondrial transcription factor is related to RNA adenine methyltransferases and binds S-adenosylmethionine, Mol. Cell. Biol., 4, 1116–1125.CrossRefGoogle Scholar
  60. 60.
    Falkenberg, M., Gaspari, M., Rantanen, A., Trifunovic, A., Larsson, N. G., and Gustafsson, C. M. (2002) Mitochondrial transcription factors B1 and B2 activate transcription of human mtDNA, Nat. Genet., 3, 289–294.CrossRefGoogle Scholar
  61. 61.
    Metodiev, M. D., Lesko, N., Park, C. B., Camara, Y., Shi, Y., Wibom, R., Hultenby, K., Gustafsson, C. M., and Larsson, N. G. (2009) Methylation of 12S rRNA is necessary for in vivo stability of the small subunit of the mammalian mitochondrial ribosome, Cell Metab., 4, 386–397.CrossRefGoogle Scholar
  62. 62.
    Seidel-Rogol, B. L., McCulloch, V., and Shadel, G. S. (2003) Human mitochondrial transcription factor B1 methylates ribosomal RNA at a conserved stem-loop, Nat. Genet., 1, 23–24.Google Scholar
  63. 63.
    McCulloch, V., and Shadel, G. S. (2003) Human mitochondrial transcription factor B1 interacts with the C-terminal activation region of h-mtTFA and stimulates transcription independently of its RNA methyltransferase activity, Mol. Cell. Biol., 16, 5816–5824.CrossRefGoogle Scholar
  64. 64.
    Cotney, J., McKay, S. E., and Shadel, G. S. (2009) Elucidation of separate, but collaborative functions of the rRNA methyltransferase-related human mitochondrial transcription factors B1 and B2 in mitochondrial biogenesis reveals new insight into maternally inherited deafness, Hum. Mol. Genet., 14, 2670–2682.CrossRefGoogle Scholar
  65. 65.
    Cotney, J., Wang, Z., and Shadel, G. S. (2007) Relative abundance of the human mitochondrial transcription system and distinct roles for h-mtTFB1 and h-mtTFB2 in mitochondrial biogenesis and gene expression, Nucleic Acids Res., 12, 4042–4054.CrossRefGoogle Scholar
  66. 66.
    Rantanen, A., Gaspari, M., Falkenberg, M., Gustafsson, C. M., and Larsson, N. G. (2003) Characterization of the mouse genes for mitochondrial transcription factors B1 and B2, Mamm. Genome, 1, 1–6.CrossRefGoogle Scholar
  67. 67.
    Matsushima, Y., Adan, C., Garesse, R., and Kaguni, L. S. (2005) Drosophila mitochondrial transcription factor B1 modulates mitochondrial translation but not transcription or DNA copy number in Schneider cells, J. Biol. Chem., 17, 16815–16820.CrossRefGoogle Scholar
  68. 68.
    Hensen, F., Cansiz, S., Gerhold, J. M., and Spelbrink, J. N. (2014) To be or not to be a nucleoid protein: a comparison of mass-spectrometry based approaches in the identification of potential mtDNA-nucleoid associated proteins, Biochimie, 100, 219–226.PubMedCrossRefGoogle Scholar
  69. 69.
    Micol, V., Fernandez-Silva, P., and Attardi, G. (1997) Functional analysis of in vivo and in organello footprinting of HeLa cell mitochondrial DNA in relationship to ATP and ethidium bromide effects on transcription, J. Biol. Chem., 30, 18896–18904.CrossRefGoogle Scholar
  70. 70.
    Martin, M., Cho, J., Cesare, A. J., Griffith, J. D., and Attardi, G. (2005) Termination factor-mediated DNA loop between termination and initiation sites drives mitochondrial rRNA synthesis, Cell, 7, 1227–1240.CrossRefGoogle Scholar
  71. 71.
    Ojala, D., Montoya, J., and Attardi, G. (1981) tRNA punctuation model of RNA processing in human mitochondria, Nature, 5806, 470–474.CrossRefGoogle Scholar
  72. 72.
    Anderson, S., Bankier, A. T., Barrell, B. G., de Bruijn, M. H., Coulson, A. R., Drouin, J., Eperon, I. C., Nierlich, D. P., Roe, B. A., Sanger, F., Schreier, P. H., Smith, A. J., Staden, R., and Young, I. G. (1981) Sequence and organization of the human mitochondrial genome, Nature, 5806, 457–465.CrossRefGoogle Scholar
  73. 73.
    Gangelhoff, T. A., Mungalachetty, P. S., Nix, J. C., and Churchill, M. E. (2009) Structural analysis and DNA binding of the HMG domains of the human mitochondrial transcription factor A, Nucleic Acids Res., 10, 3153–3164.CrossRefGoogle Scholar
  74. 74.
    Malarkey, C. S., Bestwick, M., Kuhlwilm, J. E., Shadel, G. S., and Churchill, M. E. (2012) Transcriptional activation by mitochondrial transcription factor A involves preferential distortion of promoter DNA, Nucleic Acids Res., 2, 614624.Google Scholar
  75. 75.
    Larsson, N. G., Wang, J., Wilhelmsson, H., Oldfors, A., Rustin, P., Lewandoski, M., Barsh, G. S., and Clayton, D. A. (1998) Mitochondrial transcription factor A is necessary for mtDNA maintenance and embryogenesis in mice, Nat. Genet., 3, 231–236.CrossRefGoogle Scholar
  76. 76.
    Bonawitz, N. D., Clayton, D. A., and Shadel, G. S. (2006) Initiation and beyond: multiple functions of the human mitochondrial transcription machinery, Mol. Cell, 6, 813825.Google Scholar
  77. 77.
    Gaspari, M., Falkenberg, M., Larsson, N. G., and Gustafsson, C. M. (2004) The mitochondrial RNA polymerase contributes critically to promoter specificity in mammalian cells, EMBO J., 23, 4606–4614.PubMedCentralPubMedCrossRefGoogle Scholar
  78. 78.
    Yoh, S. M., Cho, H., Pickle, L., Evans, R. M., and Jones, K. A. (2007) The Spt6 SH2 domain binds Ser2-P RNAPII to direct Iws1-dependent mRNA splicing and export, Genes Dev., 2, 160–174.CrossRefGoogle Scholar
  79. 79.
    Minczuk, M., He, J., Duch, A. M., Ettema, T. J., Chlebowski, A., Dzionek, K., Nijtmans, L. G., Huynen, M. A., and Holt, I. J. (2011) TEFM (c17orf42) is necessary for transcription of human mtDNA, Nucleic Acids Res., 10, 4284–4299.CrossRefGoogle Scholar
  80. 80.
    Steitz, T. A. (2009) The structural changes of T7 RNA polymerase from transcription initiation to elongation, Curr. Opin. Struct. Biol., 6, 683–690.CrossRefGoogle Scholar
  81. 81.
    Wang, Z., Cotney, J., and Shadel, G. S. (2007) Human mitochondrial ribosomal protein MRPL12 interacts directly with mitochondrial RNA polymerase to modulate mitochondrial gene expression, J. Biol. Chem., 17, 12610–12618.CrossRefGoogle Scholar
  82. 82.
    Gohil, V. M., Nilsson, R., Belcher-Timme, C. A., Luo, B., Root, D. E., and Mootha, V. K. (2010) Mitochondrial and nuclear genomic responses to loss of LRPPRC expression, J. Biol. Chem., 18, 13742–13747.CrossRefGoogle Scholar
  83. 83.
    Spahr, H., Samuelsson, T., Hallberg, B. M., and Gustafsson, C. M. (2010) Structure of mitochondrial transcription termination factor 3 reveals a novel nucleic acidbinding domain, Biochem. Biophys. Res. Commun., 3, 386390.Google Scholar
  84. 84.
    Hyvarinen, A. K., Pohjoismaki, J. L., Reyes, A., Wanrooij, S., Yasukawa, T., Karhunen, P. J., Spelbrink, J. N., Holt, I. J., and Jacobs, H. T. (2007) The mitochondrial transcription termination factor mTERF modulates replication pausing in human mitochondrial DNA, Nucleic Acids Res., 19, 6458–6474.CrossRefGoogle Scholar
  85. 85.
    Camasamudram, V., Fang, J. K., and Avadhani, N. G. (2003) Transcription termination at the mouse mitochondrial H-strand promoter distal site requires an A/T rich sequence motif and sequence specific DNA binding proteins, Eur. J. Biochem., 6, 1128–1140.CrossRefGoogle Scholar
  86. 86.
    McKinney, E. A., and Oliveira, M. T. (2013) Replicating animal mitochondrial DNA, Genet. Mol. Biol., 3, 308–315.CrossRefGoogle Scholar
  87. 87.
    Xu, B., and Clayton, D. A. (1995) A persistent RNA-DNA hybrid is formed during transcription at a phylogenetically conserved mitochondrial DNA sequence, Mol. Cell. Biol., 1, 580–589.CrossRefGoogle Scholar
  88. 88.
    Pham, X. H., Farge, G., Shi, Y., Gaspari, M., Gustafsson, C. M., and Falkenberg, M. (2006) Conserved sequence box II directs transcription termination and primer formation in mitochondria, J. Biol. Chem., 34, 24647–24652.CrossRefGoogle Scholar
  89. 89.
    Korhonen, J. A., Pham, X. H., Pellegrini, M., and Falkenberg, M. (2004) Reconstitution of a minimal mtDNA replisome in vitro, EMBO J., 12, 2423–2429.CrossRefGoogle Scholar
  90. 90.
    Robberson, D. L., and Clayton, D. A. (1972) Replication of mitochondrial DNA in mouse L cells and their thymidine kinase-derivatives: displacement replication on a covalently-closed circular template, Proc. Natl. Acad. Sci. USA, 12, 3810–3814.CrossRefGoogle Scholar
  91. 91.
    Clayton, D. A. (2003) Mitochondrial DNA replication: what we know, IUBMB Life, 5, 213–217.CrossRefGoogle Scholar
  92. 92.
    Falkenberg, M., Larsson, N. G., and Gustafsson, C. M. (2007) DNA replication and transcription in mammalian mitochondria, Annu. Rev. Biochem., 76, 679–699.PubMedCrossRefGoogle Scholar
  93. 93.
    Pomerantz, R. T., and O’Donnell, M. (2008) The replisome uses mRNA as a primer after colliding with RNA polymerase, Nature, 7223, 762–766.CrossRefGoogle Scholar
  94. 94.
    Fuste, J. M., Wanrooij, S., Jemt, E., Granycome, C. E., Cluett, T. J., Shi, Y., Atanassova, N., Holt, I. J., Gustafsson, C. M., and Falkenberg, M. (2010) Mitochondrial RNA polymerase is needed for activation of the origin of lightstrand DNA replication, Mol. Cell, 1, 67–78.CrossRefGoogle Scholar
  95. 95.
    Yang, M. Y., Bowmaker, M., Reyes, A., Vergani, L., Angeli, P., Gringeri, E., Jacobs, H. T., and Holt, I. J. (2002) Biased incorporation of ribonucleotides on the mitochondrial L-strand accounts for apparent strandasymmetric DNA replication, Cell, 4, 495–505.CrossRefGoogle Scholar
  96. 96.
    Yasukawa, T., Reyes, A., Cluett, T. J., Yang, M. Y., Bowmaker, M., Jacobs, H. T., and Holt, I. J. (2006) Replication of vertebrate mitochondrial DNA entails transient ribonucleotide incorporation throughout the lagging strand, EMBO J., 22, 5358–5371.CrossRefGoogle Scholar
  97. 97.
    Pohjoismaki, J. L., Holmes, J. B., Wood, S. R., Yang, M. Y., Yasukawa, T., Reyes, A., Bailey, L. J., Cluett, T. J., Goffart, S., Willcox, S., Rigby, R. E., Jackson, A. P., Spelbrink, J. N., Griffith, J. D., Crouch, R. J., Jacobs, H. T., and Holt, I. J. (2010) Mammalian mitochondrial DNA replication intermediates are essentially duplex but contain extensive tracts of RNA/DNA hybrid, J. Mol. Biol., 5, 1144–1155.CrossRefGoogle Scholar
  98. 98.
    Reyes, A., Kazak, L., Wood, S. R., Yasukawa, T., Jacobs, H. T., and Holt, I. J. (2013) Mitochondrial DNA replication proceeds via a “bootlace” mechanism involving the incorporation of processed transcripts, Nucleic Acids Res., 11, 5837–5850.CrossRefGoogle Scholar
  99. 99.
    Bogenhagen, D. F., and Clayton, D. A. (2003) The mitochondrial DNA replication bubble has not burst, Trends Biochem. Sci., 7, 357–360.CrossRefGoogle Scholar
  100. 100.
    Holt, I. J., and Jacobs, H. T. (2003) Response: the mitochondrial DNA replication bubble has not burst, Trends Biochem. Sci., 7, 355–356.CrossRefGoogle Scholar
  101. 101.
    Bogenhagen, D. F., and Clayton, D. A. (2003) Concluding remarks: the mitochondrial DNA replication bubble has not burst, Trends Biochem. Sci., 8, 404–405.CrossRefGoogle Scholar
  102. 102.
    Joers, P., and Jacobs, H. T. (2013) Analysis of replication intermediates indicates that Drosophila melanogaster mitochondrial DNA replicates by a strand-coupled θ mechanism, PLoS One, 1, e53249.CrossRefGoogle Scholar
  103. 103.
    Holt, I. J., Lorimer, H. E., and Jacobs, H. T. (2000) Coupled leadingand lagging-strand synthesis of mammalian mitochondrial DNA, Cell, 5, 515–524.CrossRefGoogle Scholar
  104. 104.
    Holt, I. J. (2009) Mitochondrial DNA replication and repair: all a flap, Trends Biochem. Sci., 7, 358–365.CrossRefGoogle Scholar
  105. 105.
    Bowmaker, M., Yang, M. Y., Yasukawa, T., Reyes, A., Jacobs, H. T., Huberman, J. A., and Holt, I. J. (2003) Mammalian mitochondrial DNA replicates bidirectionally from an initiation zone, J. Biol. Chem., 51, 5096150969.Google Scholar
  106. 106.
    Fish, J., Raule, N., and Attardi, G. (2004) Discovery of a major D-loop replication origin reveals two modes of human mtDNA synthesis, Science, 5704, 2098–2101.CrossRefGoogle Scholar
  107. 107.
    St. John, J. C. (2012) Transmission, inheritance and replication of mitochondrial DNA in mammals: implications for reproductive processes and infertility, Cell Tissue Res., 3, 795–808.CrossRefGoogle Scholar
  108. 108.
    Howell, N. (1996) Mutational analysis of the human mitochondrial genome branches into the realm of bacterial genetics, Am. J. Hum. Genet., 4, 749–755.Google Scholar
  109. 109.
    Slupphaug, G., Markussen, F. H., Olsen, L. C., Aasland, R., Aarsaether, N., Bakke, O., Krokan, H. E., and Helland, D. E. (1993) Nuclear and mitochondrial forms of human uracil-DNA glycosylase are encoded by the same gene, Nucleic Acids Res., 11, 2579–2584.CrossRefGoogle Scholar
  110. 110.
    Nilsen, H., Otterlei, M., Haug, T., Solum, K., Nagelhus, T. A., Skorpen, F., and Krokan, H. E. (1997) Nuclear and mitochondrial uracil-DNA glycosylases are generated by alternative splicing and transcription from different positions in the UNG gene, Nucleic Acids Res., 4, 750755.Google Scholar
  111. 111.
    Nakabeppu, Y. (2001) Regulation of intracellular localization of human MTH1, OGG1, and MYH proteins for repair of oxidative DNA damage, Prog. Nucleic Acid Res. Mol. Biol., 68, 75–94.PubMedCrossRefGoogle Scholar
  112. 112.
    Demple, B., and Sung, J. S. (2005) Molecular and biological roles of Ape1 protein in mammalian base excision repair, DNA Repair (Amsterdam), 12, 1442–1449.CrossRefGoogle Scholar
  113. 113.
    Ikeda, S., Kohmoto, T., Tabata, R., and Seki, Y. (2002) Differential intracellular localization of the human and mouse endonuclease III homologs and analysis of the sorting signals, DNA Repair (Amsterdam), 10, 847–854.CrossRefGoogle Scholar
  114. 114.
    Demple, B., and Harrison, L. (1994) Repair of oxidative damage to DNA: enzymology and biology, Annu. Rev. Biochem., 63, 915–948.PubMedCrossRefGoogle Scholar
  115. 115.
    Dou, H., Theriot, C. A., Das, A., Hegde, M. L., Matsumoto, Y., Boldogh, I., Hazra, T. K., Bhakat, K. K., and Mitra, S. (2008) Interaction of the human DNA glycosylase NEIL1 with proliferating cell nuclear antigen. The potential for replication-associated repair of oxidized bases in mammalian genomes, J. Biol. Chem., 6, 31303140.Google Scholar
  116. 116.
    Tahbaz, N., Subedi, S., and Weinfeld, M. (2012) Role of polynucleotide kinase/phosphatase in mitochondrial DNA repair, Nucleic Acids Res., 8, 3484–3495.CrossRefGoogle Scholar
  117. 117.
    Longley, M. J., Prasad, R., Srivastava, D. K., Wilson, S. H., and Copeland, W. C. (1998) Identification of 5'deoxyribose phosphate lyase activity in human DNA polymerase ? and its role in mitochondrial base excision repair in vitro, Proc. Natl. Acad. Sci. USA, 21, 12244–12248.CrossRefGoogle Scholar
  118. 118.
    Pinz, K. G., and Bogenhagen, D. F. (2006) The influence of the DNA polymerase γ accessory subunit on base excision repair by the catalytic subunit, DNA Repair (Amsterdam), 1, 121–128.CrossRefGoogle Scholar
  119. 119.
    Kazak, L., Reyes, A., and Holt, I. J. (2012) Minimizing the damage: repair pathways keep mitochondrial DNA intact, Nat. Rev. Mol. Cell Biol., 10, 659–671.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • I. O. Mazunin
    • 1
    Email author
  • S. A. Levitskii
    • 2
  • M. V. Patrushev
    • 1
    • 2
  • P. A. Kamenski
    • 1
    • 2
  1. 1.Institute of Chemistry and BiologyImmanuil Kant Baltic Federal UniversityKaliningradRussia
  2. 2.Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations