Advertisement

Biochemistry (Moscow)

, Volume 80, Issue 11, pp 1393–1405 | Cite as

Mechanisms of apoptosis

  • M. A. SavitskayaEmail author
  • G. E. Onishchenko
Review

Abstract

Nearly 15 types of programmed cell death (PCD) have been identified to date. Among them, apoptosis is the most common and well-studied type of PCD. In this review, we discuss different apoptotic pathways in which plasma membrane and membrane organelles, such as mitochondria, endoplasmic reticulum, Golgi apparatus, lysosomes, and nucleus play the pivotal role. Data concerning caspase cascades involved in these mechanisms are described. Various apoptosis induction mechanisms are analyzed and compared. The close relations between them and the possibility of switching from one pathway to another are demonstrated. In most cases, the result of these pathways is mitochondrial membrane permeabilization and/or caspase activation. These two events are closely linked and serve as the central point of integration of the apoptotic cell death pathways.

Keywords

apoptosis necrosis caspase pathways membrane organelles 

Abbreviations

ER

endoplasmic reticulum

GA

Golgi apparatus

PCD

programmed cell death

PTP

permeability transition pore

ROS

reactive oxygen species

UPR

unfolded protein response

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Labi, V., and Erlacher, M. (2015) How cell death shapes cancer, Cell Death Dis., 6, e1675.PubMedCentralCrossRefPubMedGoogle Scholar
  2. 2.
    Galluzzi, L., Vitale, I., Abrams, J. M., Alnemri, E. S., Baehrecke, E. H., Blagosklonny, M. V., Dawson, T. M., Dawson, V. L., El-Deiry, W. S., Fulda, S., Gottlieb, E., Green, D. R., Hengartner, M. O., Kepp, O., Knight, R. A., Kumar, S., Lipton, S. A., Lu, X., Madeo, F., Malorni, W., Mehlen, P., Nunez, G., Peter, M. E., Piacentini, M., Rubinsztein, D. C., Shi, Y., Simon, H. U., Vandenabeele, P., White, E., Yuan, J., Zhivotovsky, B., Melino, G., and Kroemer, G. (2012) Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012, Cell Death Differ., 19, 107120.CrossRefGoogle Scholar
  3. 3.
    Eckhart, L., Lippens, S., Tschachler, E., and Declercq, W. (2013) Cell death by cornification, Biochim. Biophys. Acta, 1833, 3471–3480.CrossRefPubMedGoogle Scholar
  4. 4.
    Lang, E., and Lang, F. (2015) Triggers, inhibitors, mechanisms, and significance of eryptosis: the suicidal erythrocyte death, Biomed. Res. Int., doi: 10.1155/2015/513518.Google Scholar
  5. 5.
    Gilbertson, R. J. (2014) Driving glioblastoma to drink, Cell, 157, 289–290.CrossRefPubMedGoogle Scholar
  6. 6.
    Castedo, M., Perfettini, J. L., Roumier, T., Andreau, K., Medema, R., and Kroemer, G. (2004) Cell death by mitotic catastrophe: a molecular definition, Oncogene, 23, 825837.Google Scholar
  7. 7.
    Roninson, I. B., Broude, E. V., and Chang, B. D. (2001) If not apoptosis, then what? Treatment-induced senescence and mitotic catastrophe in tumor cells, Drug Resist. Updat., 4, 303–313.CrossRefPubMedGoogle Scholar
  8. 8.
    Nigg, E. A. (2002) Centrosome aberrations: cause or consequence of cancer progression? Nat. Rev. Cancer, 2, 815825.CrossRefGoogle Scholar
  9. 9.
    Edinger, A. L., and Thompson, C. B. (2004) Death by design: apoptosis, necrosis and autophagy, Curr. Opin. Cell Biol., 16, 663–669.CrossRefPubMedGoogle Scholar
  10. 10.
    Bras, M., Queenan, B., and Susin, S. A. (2005) Programmed cell death via mitochondria: different modes of dying, Biochemistry (Moscow), 70, 231–239.CrossRefGoogle Scholar
  11. 11.
    Kroemer, G., Tolkovsky, A. M., and Zakeri, Z. (2008) Elan vital, elan letal: one life but multiple deaths, Cell Death Differ., 15, 1089–1090.CrossRefPubMedGoogle Scholar
  12. 12.
    Nakagawa, T., and Yuan, J. (2000) Cross-talk between two cysteine protease families. Activation of caspase-12 by calpain in apoptosis, J. Cell Biol., 150, 887–894.PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Rosati, E., Sabatini, R., Rampino, G., De Falco, F., Di Ianni, M., Falzetti, F., Fettucciari, K., Bartoli, A., Screpanti, I., and Marconi, P. (2010) Novel targets for endoplasmic reticulum stress-induced apoptosis in B-CLL, Blood, 116, 2713–2723.CrossRefPubMedGoogle Scholar
  14. 14.
    Yamamuro, A., Kishino, T., Ohshima, Y., Yoshioka, Y., Kimura, T., Kasai, A., and Maeda, S. (2011) Caspase-4 directly activates caspase-9 in endoplasmic reticulum stress-induced apoptosis in SH-SY5Y cells, J. Pharmacol. Sci., 115, 239–243.CrossRefPubMedGoogle Scholar
  15. 15.
    Mancini, M., Machamer, C. E., Roy, S., Nicholson, D. W., Thornberry, N. A., Casciola-Rosen, L. A., and Rosen, A. (2000) Caspase-2 is localized at the Golgi complex and cleaves golgin-160 during apoptosis, J. Cell Biol., 149, 603612.CrossRefGoogle Scholar
  16. 16.
    Ferri, K. F., and Kroemer, G. (2001) Organelle-specific initiation of cell death pathways, Nat. Cell Biol., 3, 255–263.CrossRefGoogle Scholar
  17. 17.
    Kurz, T., Terman, A., Gustafsson, B., and Brunk, U. T. (2008) Lysosomes in iron metabolism, ageing and apoptosis, Histochem. Cell Biol., 129, 389–406.CrossRefGoogle Scholar
  18. 18.
    Loughery, J., and Meek, D. (2013) Switching on p53: an essential role for protein phosphorylation? BioDiscovery, 8, 1.Google Scholar
  19. 19.
    Valente, L., and Strasser, A. (2013) Distinct target genes and effector processes appear to be critical for p53-activated responses to acute DNA damage versus p53-mediated tumor suppression, BioDiscovery, 8, 3.CrossRefGoogle Scholar
  20. 20.
    Sakamaki, K., and Satou, Y. (2009) Caspases: evolutionary aspects of their functions in vertebrates, J. Fish Biol., 74, 727–753.PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    McLuskey, K., and Mottram, J. C. (2015) Comparative structural analysis of the caspase family with other clan CD cysteine peptidases, Biochem. J., 466, 219–232.PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Boehm, D., Mazurier, C., Giarratana, M. C., Darghouth, D., Faussat, A. M., Harmand, L., and Douay, L. (2013) Caspase-3 is involved in the signaling in erythroid differentiation by targeting late progenitors, PLoS One, 8, e62303.PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Shalini, S., Dorstyn, L., Dawar, S., and Kumar, S. (2015) Old, new and emerging functions of caspases, Cell Death Differ., 22, 526–539.CrossRefPubMedGoogle Scholar
  24. 24.
    Creagh, E. M. (2014) Caspase crosstalk: integration of apoptotic and innate immune signaling pathways, Trends Immunol., 35, 631–640.CrossRefPubMedGoogle Scholar
  25. 25.
    Galluzzi, L., Joza, N., Tasdemir, E., Maiuri, M. C., Hengartner, M., Abrams, J. M., Tavernarakis, N., Penninger, J., Madeo, F., and Kroemer, G. (2008) No death without life: vital functions of apoptotic effectors, Cell Death Differ., 15, 1113–1123.PubMedCentralCrossRefPubMedGoogle Scholar
  26. 26.
    Poon, I. K., Lucas, C. D., Rossi, A. G., and Ravichandran, K. S. (2014) Apoptotic cell clearance: basic biology and therapeutic potential, Nat. Rev. Immunol., 14, 166–180.PubMedCentralCrossRefPubMedGoogle Scholar
  27. 27.
    Ware, C. F. (2003) The TNF superfamily, Cytokine Growth Factor Rev., 14, 181–184.CrossRefPubMedGoogle Scholar
  28. 28.
    Bhardway, A., and Aggarwal, B. B. (2003) Receptor-mediated choreography of life and death, J. Clin. Immunol., 23, 317–332.CrossRefGoogle Scholar
  29. 29.
    Kischkel, F. C., Lawrence, D. A., Tinel, A., LeBlanc, H., Virmani, A., Schow, P., Gazdar, A., Blenis, J., Arnott, D., and Ashkenazi, A. (2001) Death receptor recruitment of endogenous caspase-10 and apoptosis initiation in the absence of caspase-8, J. Biol. Chem., 76, 46639–46646.CrossRefGoogle Scholar
  30. 30.
    Ashkenazi, A. (2002) Targeting death and decoy receptors of the tumor-necrosis factor superfamily, Nat. Cancer Rev., 2, 420–430.CrossRefGoogle Scholar
  31. 31.
    Ott, M., Norberg, E., Zhivotovsky, B., and Orrenius, S. (2009) Mitochondrial targeting of tBid/Bax: a role for the TOM complex? Cell Death Differ., 16, 1075–1082.CrossRefPubMedGoogle Scholar
  32. 32.
    Micheau, O., and Tschopp, J. (2003) Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes, Cell, 114, 181–190.CrossRefPubMedGoogle Scholar
  33. 33.
    Silke, J. (2011) The regulation of TNF signaling: what a tangled web we weave, Curr. Opin. Immunol., 23, 620626.CrossRefGoogle Scholar
  34. 34.
    Kischkel, F. C., Hellbardt, S., Behrmann, I., Germer M., Pawlita, M., Krammer, P. H., and Peter, M. E. (1995) Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins forma death-inducing signaling complex (DISC) with the receptor, EMBO J., 14, 5579–5588.PubMedCentralPubMedGoogle Scholar
  35. 35.
    Muzio, M., Chinnaiyan, A. M., Kischkel, F. C., O’ Rourke, K., Shevchenko, A., Ni, J., Scaffidi, C., Bretz, J. D., Zhang, M., Gentz, R., Mann, M., Krammer, P. H., Peter, M. E., and Dixit, V. M. (1996) FLICE, a novel FADDhomologous ICE/CED-3-like protease, is recruited to theCD95 (Fas/APO-1) death-inducing signaling complex, Cell, 85, 817–827.CrossRefPubMedGoogle Scholar
  36. 36.
    Medema, J. P., Scaffidi, C., Kischkel, F. C., Shevchenko, A., Mann, M., Krammer, P. H., and Peter, M. E. (1997) FLICE is activated by association with the CD95 deathinducing signaling complex (DISC), EMBO J., 16, 27942804.CrossRefGoogle Scholar
  37. 37.
    Chen, Z. J. (2012) Ubiquitination in signaling to and activation of IKK, Immunol. Rev., 246, 95–106.PubMedCentralCrossRefPubMedGoogle Scholar
  38. 38.
    Shim, J. H., Xiao, C., Paschal, A. E., Bailey, S. T., Rao, P., Hayden, M. S., Lee, K. Y., Bussey, C., Steckel, M., Tanaka, N., Yamada, G., Akira, S., Matsumoto, K., and Ghosh, S. (2005) TAK1, but not TAB1 or TAB2, plays an essential role in multiple signaling pathways in vivo, Genes Dev., 19, 2668–2681.PubMedCentralCrossRefPubMedGoogle Scholar
  39. 39.
    Haas, T. L., Emmerich, C. H., Gerlach, B., Schmukle, A. C., Cordier, S. M., Rieser, E., Feltham, R., Vince, J., Warnken, U., Weniger, T., Koschny, R., Komander, D., Silke, J., and Walczak, H. (2009) Recruitment of the linear ubiquitin chain assembly complex stabilizes the TNF-R1 signaling complex and is required for TNF-mediated gene induction, Mol. Cell, 36, 831–844.CrossRefPubMedGoogle Scholar
  40. 40.
    Scheidereit, C. (2006) IκB kinase complexes: gateways to NF-κB activation and transcription, Oncogene, 25, 66856705.CrossRefGoogle Scholar
  41. 41.
    Bertrand, M. J. M., Milutinovic, S., Dickson, K. M., Ho, W. C., Boudreault, A., Durkin, J., Gillard, J. W., Jaquith, J. B., Morris, S. J., and Barker, P. A. (2008) cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination, Mol. Cell, 30, 689–700.CrossRefPubMedGoogle Scholar
  42. 42.
    Silke, J., and Brink, R. (2010) Regulation of TNFRSF and innate immune signaling complexes by TRAFs and cIAPs, Cell Death Differ., 17, 35–45.CrossRefPubMedGoogle Scholar
  43. 43.
    Wang, L., Du, F., and Wang, X. (2008) TNF-a induces two distinct caspase-8 activation pathways, Cell, 133, 693–703.CrossRefPubMedGoogle Scholar
  44. 44.
    Dempsey, P. W., Doyle, S. E., He, J. Q., and Cheng, G. (2003) The signaling adaptors and pathways activated by TNF superfamily, Cytokine Growth Factor Rev., 14, 193209.CrossRefGoogle Scholar
  45. 45.
    Testa, U. (2004) Apoptotic mechanisms in the control of erythropoiesis, Leukemia, 18, 1176–1199.CrossRefPubMedGoogle Scholar
  46. 46.
    Lalaoui, N., Lindqvist, L. M., Sandow, J. J., and Ekert, P. G. (2015) The molecular relationships between apoptosis, autophagy, and necroptosis, Semin. Cell Dev. Biol., 39, 6369.CrossRefGoogle Scholar
  47. 47.
    Van den Berghe, T., Linkermann, A., Jouan-Lanhouet, S., Walczak, H., and Van den Abeele, P. (2014) Regulated necrosis: the expanding network of non-apoptotic cell death pathways, Nat. Rev. Mol. Cell Biol., 15, 135–147.CrossRefGoogle Scholar
  48. 48.
    De Almagro, M. C., and Vucic, D. (2015) Necroptosis: pathway diversity and characteristics, Semin. Cell Dev. Biol., 39, 56–62.CrossRefPubMedGoogle Scholar
  49. 49.
    Szewczyk, A., and Wojtcak, L. (2002) Mitochondria as a pharmacological target, Pharm Rev., 54, 101–127.CrossRefPubMedGoogle Scholar
  50. 50.
    Jiang, A. J., Jiang, G., Li, L. T., and Zheng, J. N. (2014) Curcumin induces apoptosis through mitochondrial pathway and caspases activation in human melanoma cells, Mol. Biol. Rep., 42, 267–275.CrossRefPubMedGoogle Scholar
  51. 51.
    Jiang, G. B., Zheng, X., Yao, J. H., Han, B. J., Li, W., Wang, J., Huang, H. L., and Liu, Y. J. (2014) Ruthenium(II) polypyridyl complexes induce BEL-7402 cell apoptosis by ROS-mediated mitochondrial pathway, J. Inorg. Biochem., 141, 170–179.CrossRefPubMedGoogle Scholar
  52. 52.
    Huang, L., Zhang, T., Li, S., Duan, J., Ye, F., Li, H., She, Z., Gao, G., and Yang, X. (2014) Anthraquinone G503 induces apoptosis in gastric cancer cells through the mitochondrial pathway, PLoS One, 9, e108286.PubMedCentralCrossRefPubMedGoogle Scholar
  53. 53.
    Gogvadze, V., and Zhivotovsky, B. (2014) Mitochondria–a bullseye in cancer therapy, Mitochondrion, 19, Pt. A, 1–2.CrossRefPubMedGoogle Scholar
  54. 54.
    Zou, H., Li, Y., Liu, X., and Wang, X. (1999) An APAF1–cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9, J. Biol. Chem., 274, 11549–11556.CrossRefPubMedGoogle Scholar
  55. 55.
    Scorrano, L. (2009) Opening the doors to cytochrome c: changes in mitochondrial shape and apoptosis, Int. J. Biochem. Cell Biol., 41, 1875–1883.CrossRefPubMedGoogle Scholar
  56. 56.
    Ferreira, P., Villanueva, R., Cabon, L., Susin, S. A., and Medina, M. (2013) The oxido-reductase activity of the apoptosis inducing factor: a promising pharmacological tool? Curr. Pharm. Des., 19, 2628–2636.CrossRefPubMedGoogle Scholar
  57. 57.
    Polster, B. M. (2013) AIF, reactive oxygen species, and neurodegeneration: a “complex” problem, Neurochem. Int., 62, 695–702.PubMedCentralCrossRefPubMedGoogle Scholar
  58. 58.
    Yadav, N., and Chandra, D. (2014) Mitochondrial and postmitochondrial survival signaling in cancer, Mitochondrion, 16, 18–25.CrossRefPubMedGoogle Scholar
  59. 59.
    Renault, T. T., and Manon, S. (2011) Bax: addressed to kill, Biochimie, 93, 1379–1391.CrossRefPubMedGoogle Scholar
  60. 60.
    Lithgow, T., Van Driel, R., Bertram, J. F., and Strasser, A. (1994) The protein product of the oncogene bcl-2 is a component of the nuclear envelope, the endoplasmic reticulum, and the outer mitochondrial membrane, Cell Growth Differ., 5, 411–417.PubMedGoogle Scholar
  61. 61.
    Westphal, D., Dewson, G., Czabotar, P. E., and Kluck, R. M. (2011) Molecular biology of Bax and Bak activation and action, Biochim. Biophys. Acta, 1813, 521–531.CrossRefPubMedGoogle Scholar
  62. 62.
    Morciano, G., Giorgi, C., Bonora, M., Punzetti, S., Pavasini, R., Wieckowski, M. R., Campo, G., and Pinton, P. (2015) Molecular identity of the mitochondrial permeability transition pore and its role in ischemia-reperfusion injury, J. Mol. Cell. Cardiol., 78, 142–153.CrossRefPubMedGoogle Scholar
  63. 63.
    Elkholi, R., Renault, T. T., Serasinghe, M. N., and Chipuk, J. E. (2014) Putting the pieces together: how is the mitochondrial pathway of apoptosis regulated in cancer and chemotherapy? Cancer Metab., 2, 16.PubMedCentralCrossRefPubMedGoogle Scholar
  64. 64.
    Kokoszka, J. E., Waymire, K. G., Levy, S. E., Sligh, J. E., Cai, J., Jones, D. P., MacGregor, G. R., and Wallace, D. C. (2004) The ADP/ATP translocator is not essential for the mitochondrial permeability transition pore, Nature, 427, 461–465.PubMedCentralCrossRefPubMedGoogle Scholar
  65. 65.
    Brenner, C., and Grimm, S. (2006) The permeability transition pore complex in cancer cell death, Oncogene, 25, 4744–4756.CrossRefPubMedGoogle Scholar
  66. 66.
    Chinopoulos, C., and Szabadkai, G. (2014) What makes you can also break you. Part III: mitochondrial permeability transition pore formation by an uncoupling channel within the C-subunit ring of the F1FO ATP synthase? Front. Oncol., 4, 235.PubMedCentralCrossRefPubMedGoogle Scholar
  67. 67.
    Nakagawa, T., Shimizu, S., Watanabe, T., Yamaguchi, O., Otsu, K., Yamagata, H., Inohara, H., Kubo, T., and Tsujimoto, Y. (2005) Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death, Nature, 434, 652–658.CrossRefPubMedGoogle Scholar
  68. 68.
    Kadowaki, H., Nishitoh, H., and Ichijo, H. (2004) Survival and apoptosis signals in ER stress: the role of protein kinases, J. Chem. Neuroanat., 28, 93–100.CrossRefPubMedGoogle Scholar
  69. 69.
    Wang, T., Yang, D., Li, X., Zhang, H., Zhao, P., Fu, J., Yao, B., and Zhou, Z. (2015) ER stress and ER stressmediated apoptosis are involved in manganese-induced neurotoxicity in the rat striatum in vivo, Neurotoxicology, 48, 109–119.CrossRefPubMedGoogle Scholar
  70. 70.
    Delaunay-Moisan, A., and Appenzeller-Herzog, C. (2015) The antioxidant machinery of the endoplasmic reticulum: protection and signaling, Free Radic. Biol. Med., 83, 341351.CrossRefGoogle Scholar
  71. 71.
    Zong, W. X., Li, C., Hatzivassiliou, G., Lindsten, T., Yu, Q. C., Yuan, J., and Thompson, C. B. (2003) Bax and Bak can localize to the endoplasmic reticulum to initiate apoptosis, J. Cell Biol., 162, 59–69.PubMedCentralCrossRefPubMedGoogle Scholar
  72. 72.
    Rao, R. V., Ellerby, H. M., and Bredesen, D. E. (2004) Coupling endoplasmic reticulum stress to the cell death program, Cell Death Differ., 11, 372–380.CrossRefPubMedGoogle Scholar
  73. 73.
    Namba, T., Tian, F., Chu, K., Hwang, S. Y., Yoon, K. W., Byun, S., Hiraki, M., Mandinova, A., and Lee, S. W. (2013) CDIP1–BAP31 complex transduces apoptotic signals from endoplasmic reticulum to mitochondria under endoplasmic reticulum stress, Cell Rep., 5, 331–339.CrossRefPubMedGoogle Scholar
  74. 74.
    Yoneda, T., Imaizumi, K., Oono, K., Yui, D., Gomi, F., Katayama, T., and Tohyama, M. (2001) Activation of caspase-12, an endoplasmic reticulum (ER) resident caspase, through tumor necrosis factor receptor-associated factor 2dependent mechanism in response to the ER stress, J. Biol. Chem., 276, 13935–13940.PubMedGoogle Scholar
  75. 75.
    Momoi, T. (2004) Caspases involved in ER stress-mediated cell death, J. Chem. Neuroanat., 28, 101–105.CrossRefPubMedGoogle Scholar
  76. 76.
    Hetz, C. (2012) The unfolded protein response: controlling cell fate decisions under ER stress and beyond, Nat. Rev. Mol. Cell Biol., 13, 89–102.PubMedGoogle Scholar
  77. 77.
    Dufey, E., Sepulveda, D., Rojas-Rivera, D., and Hetz, C. (2014) Cellular mechanisms of endoplasmic reticulum stress signaling in health and disease. 1. An overview, Am. J. Physiol. Cell Physiol., 307, 582–594.CrossRefGoogle Scholar
  78. 78.
    Morishima, N., Nakanishi, K., Tsuchiya, K., Shibata, T., and Seiwa, E. (2004) Translocation of Bim to the endoplasmic reticulum (ER) mediates ER stress signaling for activation of caspase-12 during ER stress-induced apoptosis, J. Biol. Chem., 279, 50375–50381.CrossRefPubMedGoogle Scholar
  79. 79.
    Hetz, C. A. (2007) ER stress signaling and the BCL-2 family of proteins: from adaptation to irreversible cellular damage, Antioxid. Redox Signal., 9, 2345–2355.CrossRefPubMedGoogle Scholar
  80. 80.
    Li, C., Wei, J., Li, Y., He, X., Zhou, Q., Yan, J., Zhang, J., Liu, Y., Liu, Y., and Shu, H. B. (2013) Transmembrane protein 214 (TMEM214) mediates endoplasmic reticulum stress-induced caspase 4 enzyme activation and apoptosis, J. Biol. Chem., 288, 17908–17917.PubMedCentralCrossRefPubMedGoogle Scholar
  81. 81.
    Matsuzaki, S., Hiratsuka, T., Kuwahara, R., Katayama, T., and Tohyama, M. (2010) Caspase-4 is partially cleaved by calpain via the impairment of Ca2+ homeostasis under the ER stress, Neurochem. Int., 56, 352–356.CrossRefPubMedGoogle Scholar
  82. 82.
    Maag, R. S., Hicks, S. W., and Machamer, C. E. (2003) Death from within: apoptosis and the secretory pathway, Curr. Opin. Cell Biol., 15, 456–461.CrossRefPubMedGoogle Scholar
  83. 83.
    Chandran, S., and Machamer, C. E. (2012) Inactivation of ceramide transfer protein during pro-apoptotic stress by Golgi disassembly and caspase cleavage, Biochem. J., 442, 391–401.PubMedCentralCrossRefPubMedGoogle Scholar
  84. 84.
    De Duve, C., and Wattiaux, R. (1966) Functions of lysosomes, Annu. Rev. Physiol., 28, 435–492.CrossRefPubMedGoogle Scholar
  85. 85.
    Aits, S., and Jaattela, M. (2013) Lysosomal cell death at a glance, J. Cell Sci., 126 (Pt. 9), 1905–1912.CrossRefPubMedGoogle Scholar
  86. 86.
    Cesen, M. H., Pegan, K., Spes, A., and Turk, B. (2012) Lysosomal pathways to cell death and their therapeutic applications, Exp. Cell Res., 318, 1245–1251.CrossRefPubMedGoogle Scholar
  87. 87.
    Galaris, D., Skiada, V., and Barbouti, A. (2008) Redox signaling and cancer: the role of “labile” iron, Cancer Lett., 266, 21–29.CrossRefPubMedGoogle Scholar
  88. 88.
    Agarwal, M. L., Taylor, W. R., Chernov, M. V., Chernova, O. B., and Stark, G. R. (1998) The p53 network, J. Biol. Chem., 273, 1–4.CrossRefPubMedGoogle Scholar
  89. 89.
    Zamaraev, A. V., Kopeina, G. S., Zhivotovsky, B., and Lavrik, I. N. (2015) Cell death controlling complexes and their potential therapeutic role, Cell Mol. Life Sci., 72, 505–517.CrossRefPubMedGoogle Scholar
  90. 90.
    Imre, G., Heering, J., Takeda, A. N., Husmann, M., Thiede, B., zu Heringdorf, D. M., Green, D. R., Van der Goot, F. G., Sinha, B., Dotsch, V., and Rajalingam, K. (2012) Caspase-2 is an initiator caspase responsible for pore-forming toxin-mediated apoptosis, EMBO J., 31, 2615–2628.PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations