Biochemistry (Moscow)

, Volume 80, Issue 10, pp 1373–1386 | Cite as

Role of restriction-modification systems in prokaryotic evolution and ecology

  • A. S. Ershova
  • I. S. Rusinov
  • S. A. Spirin
  • A. S. Karyagina
  • A. V. Alexeevski


Restriction–modification (R-M) systems are able to methylate or cleave DNA depending on methylation status of their recognition site. It allows them to protect bacterial cells from invasion by foreign DNA. Comparative analysis of a large number of available bacterial genomes and methylomes clearly demonstrates that the role of R-M systems in bacteria is wider than only defense. R-M systems maintain heterogeneity of a bacterial population and are involved in adaptation of bacteria to change in their environmental conditions. R-M systems can be essential for host colonization by pathogenic bacteria. Phase variation and intragenomic recombinations are sources of the fast evolution of the specificity of R-M systems. This review focuses on the influence of R-M systems on evolution and ecology of prokaryotes.


restriction-modification systems DNA methyltransferase restriction endonuclease horizontal gene transfer epigenetics bacteria DNA methylation 



base pairs




restriction endonuclease

R-M system

restriction–modification system


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bickle, T. A. (2004) Restricting restriction, Mol. Microbiol., 51, 3–5.PubMedCrossRefGoogle Scholar
  2. 2.
    Loenen, W. A. (2003) Tracking EcoKI and DNA fifty years on: a golden story full of surprises, Nucleic Acids Res., 31, 7059–7069.PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Vasu, K., and Nagaraja, V. (2013) Diverse functions of restriction–modification systems in addition to cellular defense, Microbiol. Mol. Biol. Rev., 77, 53–72.PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Roberts, R. J., Belfort, M., Bestor, T., Bhagwat, A. S., Bickle, T. A., Bitinaite, J., Blumenthal, R. M., Degtyarev, S. Kh., Dryden, D. T., Dybvig, K., Firman, K., Gromova, E. S., Gumport, R. I., Halford, S. E., Hattman, S., Heitman, J., Hornby, D. P., Janulaitis, A., Jeltsch, A., Josephsen, J., Kiss, A., Klaenhammer, T. R., Kobayashi, I., Kong, H., Kruger, D. H., Lacks, S., Marinus, M. G., Miyahara, M., Morgan, R. D., Murray, N. E., Nagaraja, V., Piekarowicz, A., Pingoud, A., Raleigh, E., Rao, D. N., Reich, N., Repin, V. E., Selker, E. U., Shaw, P. C., Stein, D. C., Stoddard, B. L., Szybalski, W., Trautner, T. A., Van Etten, J. L., Vitor, J. M., Wilson, G. G., and Xu, S. Y. (2003) A nomenclature for restriction enzymes, DNA methyltransferases, homing endonucleases, and their genes, Nucleic Acids Res., 31, 1805–1812.PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Waldron, D. E., and Lindsay, J. A. (2006) Sau1: a novel lin-eage-specific Type I restriction–modification system that blocks horizontal gene transfer into Staphylococcus aureus and between S. aureus isolates of different lineages, J. Bacteriol., 188, 5578–5585.PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Sitaraman, R., and Dybvig, K. (1997) The hsd loci of Mycoplasma pulmonis: organization, rearrangements, and expression of genes, Mol. Microbiol., 26, 109–120.PubMedCrossRefGoogle Scholar
  7. 7.
    Dybvig, K., Sitaraman, R., and French, C. T. (1998) A family of phase-variable restriction enzymes with differing specificities generated by high-frequency gene rearrange-ments, Proc. Natl. Acad. Sci. US., 95, 13923–13928.CrossRefGoogle Scholar
  8. 8.
    Mruk, I., Rajesh, P., and Blumenthal, R. M. (2007) Regulatory circuit based on autogenous activation-repres-sion: roles of C-boxes and spacer sequences in control of the PvuII restriction–modification system, Nucleic Acids Res., 35, 6935–6952.PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Pingoud, A., Wilson, G. G., and Wende, W. (2014) Type II restriction endonucleases–a historical perspective and more, Nucleic Acids Res., 42, 7489–7527.PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Dryden, D. T., Murray, N. E., and Rao, D. N. (2001) Nucleoside triphosphate-dependent restriction enzymes, Nucleic Acids Res., 29, 3728–3741.PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Mucke, M., Reich, S., Moncke-Buchner, E., Reuter, M., and Kruger, D. H. (2001) DNA cleavage by Type III restriction–modification enzyme EcoP15I is independent of spacer distance between two head to head oriented recognition sites, J. Mol. Biol., 312, 687–698.PubMedCrossRefGoogle Scholar
  12. 12.
    Janscak, P., Sandmeier, U., Szczelkun, M. D., and Bickle, T. A. (2001) Subunit assembly and mode of DNA cleavage of the Type III restriction endonucleases EcoP1I and EcoP15I, J. Mol. Biol., 306, 417–431.PubMedCrossRefGoogle Scholar
  13. 13.
    Butterer, A., Pernstich, C., Smith, R. M., Sobott, F., Szczelkun, M. D., and Toth, J. (2014) Type III restriction endonucleases are heterotrimeric: comprising one helicase-nuclease subunit and a dimeric methyltransferase that binds only one specific DNA, Nucleic Acids Res., 42, 5139–5150.PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Wyszomirski, K. H., Curth, U., Alves, J., Mackeldanz, P., Moncke-Buchner, E., Schutkowski, M., Kruger, D. H., and Reuter, M. (2012) Type III restriction endonuclease EcoP15I is a heterotrimeric complex containing one Res subunit with several DNA-binding regions and ATPase activity, Nucleic Acids Res., 40, 3610–3622.PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Loenen, W. A., and Raleigh, E. A. (2014) The other face of restriction: modification-dependent enzymes, Nucleic Acids Res., 42, 56–69.PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Croucher, N. J., Coupland, P. G., Stevenson, A. E., Callendrello, A., Bentley, S. D., and Hanage, W. P. (2014) Diversification of bacterial genome content through distinct mechanisms over different timescales, Nat. Commun., 5, 5471.PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Oliveira, P. H., Touchon, M., and Rocha, E. P. (2014) The interplay of restriction–modification systems with mobile genetic elements and their prokaryotic hosts, Nucleic Acids Res., 42, 10618–10631.PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Kobayashi, I. (2001) Behavior of restriction–modification systems as selfish mobile elements and their impact on genome evolution, Nucleic Acids Res., 29, 3742–3756.PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Furuta, Y., Abe, K., and Kobayashi, I. (2010) Genome comparison and context analysis reveals putative mobile forms of restriction–modification systems and related rearrangements, Nucleic Acids Res., 38, 2428–2443.PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Raleigh, E. A. (1992) Organization and function of the mcrBC genes of Escherichia coli K-12, Mol. Microbiol., 6, 1079–1086.PubMedCrossRefGoogle Scholar
  21. 21.
    Sibley, M. H., and Raleigh, E. A. (2004) Cassette-like vari-ation of restriction enzyme genes in Escherichia coli C and relatives, Nucleic Acids Res., 32, 522–534.PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Lindsay, J. A. (2010) Genomic variation and evolution of Staphylococcus aureus, Int. J. Med. Microbiol., 300, 98–103.PubMedCrossRefGoogle Scholar
  23. 23.
    Corvaglia, A. R., Francois, P., Hernandez, D., Perron, K., Linder, P., and Schrenzel, J. (2010) A type III-like restric-tion endonuclease functions as a major barrier to horizon-tal gene transfer in clinical Staphylococcus aureus strains, Proc. Natl. Acad. Sci. US., 107, 11954–11958.CrossRefGoogle Scholar
  24. 24.
    Xu, S. Y., Corvaglia, A. R., Chan, S. H., Zheng, Y., and Linder, P. (2011) A Type IV modification-dependent restriction enzyme SauUSI from Staphylococcus aureus subsp. aureus USA300, Nucleic Acids Res., 39, 5597–5610.PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Alm, R. A., Ling, L. S., Moir, D. T., King, B. L., Brown, E. D., Doig, P. C., Smith, D. R., Noonan, B., Guild, B. C., deJonge, B. L., Carmel, G., Tummino, P. J., Caruso, A., Uria-Nickelsen, M., Mills, D. M., Ives, C., Gibson, R., Merberg, D., Mills, S. D., Jiang, Q., Taylor, D. E., Vovis, G. F., and Trust, T. J. (1999) Genomic-sequence compari-son of two unrelated isolates of the human gastric pathogen Helicobacter pylori, Natur., 397, 176–180.CrossRefGoogle Scholar
  26. 26.
    Makarova, K. S., Wolf, Y. I., Snir, S., and Koonin, E. V. (2011) Defense islands in bacterial and archaeal genomes and prediction of novel defense systems, J. Bacteriol., 193, 6039–6056.PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Seshasayee, A. S., Singh, P., and Krishna, S. (2012) Context-dependent conservation of DNA methyltrans-ferases in bacteria, Nucleic Acids Res., 40, 7066–7073.PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Ershova, A. S., Karyagina, A. S., Vasiliev, M. O., Lyashchuk, A. M., Lunin, V. G., Spirin, S. A., and Alexeevski, A. V. (2012) Solitary restriction endonucleases in prokaryotic genomes, Nucleic Acids Res., 40, 10107–10115.PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Furuta, Y., Namba-Fukuyo, H., Shibata, T. F., Nishiyama, T., Shigenobu, S., Suzuki, Y., Sugano, S., Hasebe, M., and Kobayashi, I. (2014) Methylome diversification through changes in DNA methyltransferase sequence specificity, PLoS Genet., 10, e1004272.PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Sanchez-Romero, M. A., Cota, I., and Casadesus, J. (2015) DNA methylation in bacteria: from the methyl group to the methylome, Curr. Opin. Microbiol., 25, 9–16.PubMedCrossRefGoogle Scholar
  31. 31.
    Krebes, J., Morgan, R. D., Bunk, B., Sproer, C., Luong, K., Parusel, R., Anton, B. P., Konig, C., Josenhans, C., Overmann, J., Roberts, R. J., Korlach, J., and Suerbaum, S. (2014) The complex methylome of the human gastric pathogen Helicobacter pylori, Nucleic Acids Res., 42, 2415–2432.PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Furuta, Y., Kawai, M., Uchiyama, I., and Kobayashi, I. (2011) Domain movement within a gene: a novel evolution-ary mechanism for protein diversification, PLoS One, 6, e18819.Google Scholar
  33. 33.
    Kumar, N., Mariappan, V., Baddam, R., Lankapalli, A. K., Shaik, S., Goh, K. L., Loke, M. F., Perkins, T., Benghezal, M., Hasnain, S. E., Vadivelu, J., Marshall, B. J., and Ahmed, N. (2015) Comparative genomic analysis of Helicobacter pylori from Malaysia identifies three distinct lineages sugges-tive of differential evolution, Nucleic Acids Res., 43, 324–335.PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Roberts, R. J., Vincze, T., Posfai, J., and Macelis, D. (2015) REBASE–a database for DNA restriction and modification: enzymes, genes, and genomes, Nucleic Acids Res., 43, 298–299.CrossRefGoogle Scholar
  35. 35.
    Naito, T., Kusano, K., and Kobayashi, I. (1995) Selfish behavior of restriction–modification systems, Scienc., 267, 897–899.CrossRefGoogle Scholar
  36. 36.
    O’Neill, M., Chen, A., and Murray, N. E. (1997) The restriction–modification genes of Escherichia coli K-12 may not be selfish: they do not resist loss and are readily replaced by alleles conferring different specificities, Proc. Natl. Acad. Sci. US., 94, 14596–14601.CrossRefGoogle Scholar
  37. 37.
    Redaschi, N., and Bickle, T. A. (1996) Posttranscriptional regulation of EcoP1I and EcoP15I restriction activity, J. Mol. Biol., 257, 790–803.PubMedCrossRefGoogle Scholar
  38. 38.
    Dussoix, D., and Arber, W. (1962) Host specificity of DNA produced by Escherichia coli. II. Control over acceptance of DNA from infecting phage ?, J. Mol. Biol., 5, 37–49.PubMedCrossRefGoogle Scholar
  39. 39.
    Arber, W., and Dussoix, D. (1962) Host specificity of DNA produced by Escherichia coli. I. Host controlled modifica-tion of bacteriophage ?, J. Mol. Biol., 5, 18–36.PubMedCrossRefGoogle Scholar
  40. 40.
    Arber, W., and Linn, S. (1969) DNA modification and restriction, Annu. Rev. Biochem., 38, 467–500.PubMedCrossRefGoogle Scholar
  41. 41.
    Bickle, T. A., and Kruger, D. H. (1993) Biology of DNA restriction, Microbiol. Rev., 57, 434–450.PubMedCentralPubMedGoogle Scholar
  42. 42.
    Samson, J. E., Magadan, A. H., Sabri, M., and Moineau, S. (2013) Revenge of the phages: defeating bacterial defens-es, Nat. Rev. Microbiol., 11, 675–687.PubMedCrossRefGoogle Scholar
  43. 43.
    Tock, M. R., and Dryden, D. T. (2005) The biology of restriction and anti-restriction, Curr. Opin. Microbiol., 8, 466–472.PubMedCrossRefGoogle Scholar
  44. 44.
    Loenen, W. A., Dryden, D. T., Raleigh, E. A., and Wilson, G. G. (2014) Type I restriction enzymes and their relatives, Nucleic Acids Res., 42, 20–44.PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Korona, R., and Levin, B. R. (1993) Phage-mediated selection and the evolution and maintenance of restric-tion–modification, Evolutio., 47, 556–575.CrossRefGoogle Scholar
  46. 46.
    Buckling, A., and Brockhurst, M. (2012) Bacteria–virus coevolution, Adv. Exp. Med. Biol., 751, 347–370.PubMedCrossRefGoogle Scholar
  47. 47.
    Levin, B. R. (1988) Frequency-dependent selection in bac-terial populations, Phil. Trans. R. Soc., 319, 459–472.CrossRefGoogle Scholar
  48. 48.
    Muckerman, C. C., Springhorn, S. S., Greenberg, B., and Lacks, S. A. (1982) Transformation of restriction endonu-clease phenotype in Streptococcus pneumoniae, J. Bacteriol., 152, 183–190.PubMedCentralPubMedGoogle Scholar
  49. 49.
    Tettelin, H., Nelson, K. E., Paulsen, I. T., Eisen, J. A., Read, T. D., Peterson, S., Heidelberg, J., DeBoy, R. T., Haft, D. H., Dodson, R. J., Durkin, A. S., Gwinn, M., Kolonay, J. F., Nelson, W. C., Peterson, J. D., Umayam, L. A., White, O., Salzberg, S. L., Lewis, M. R., Radune, D., Holtzapple, E., Khouri, H., Wolf, A. M., Utterback, T. R., Hansen, C. L., McDonald, L. A., Feldblyum, T. V., Angiuoli, S., Dickinson, T., Hickey, E. K., Holt, I. E., Loftus, B. J., Yang, F., Smith, H. O., Venter, J. C., Dougherty, B. A., Morrison, D. A., Hollingshead, S. K., and Fraser, C. M. (2001) Complete genome sequence of a virulent isolate of Streptococcus pneu-moniae, Scienc., 293, 498–506.CrossRefGoogle Scholar
  50. 50.
    Sneppen, K., Semsey, S., Seshasayee, A. S., and Krishna, S. (2015) Restriction–modification systems as engines of diversity, Front. Microbiol., 6, 528.PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Nandi, T., Holden, M. T., Didelot, X., Mehershahi, K., Boddey, J. A., Beacham, I., Peak, I., Harting, J., Baybayan, P., Guo, Y., Wang, S., How, L. C., Sim, B., Essex-Lopresti, A., Sarkar-Tyson, M., Nelson, M., Smither, S., Ong, C., Aw, L. T., Hoon, C. H., Michell, S., Studholme, D. J., Titball, R., Chen, S. L., Parkhill, J., and Tan, P. (2015) Burkholderia pseudomallei sequencing identifies genomic clades with distinct recombina-tion, accessory, and epigenetic profiles, Genome Res., 25, 608.PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Croucher, N. J., Finkelstein, J. A., Pelton, S. I., Mitchell, P. K., Lee, G. M., Parkhill, J., Bentley, S. D., Hanage, W. P., and Lipsitch, M. (2013) Population genomics of post-vaccine changes in pneumococcal epidemiology, Nat. Genet., 45, 656–663.PubMedCrossRefGoogle Scholar
  53. 53.
    Manso, A. S., Chai, M. H., Atack, J. M., Furi, L., De Ste Croix, M., Haigh, R., Trappetti, C., Ogunniyi, A. D., Shewell, L. K., Boitano, M., Clark, T. A., Korlach, J., Blades, M., Mirkes, E., Gorban, A. N., Paton, J. C., Jennings, M. P., and Oggioni, M. R. (2014) A random six-phase switch regulates pneumococcal virulence via global epigenetic changes, Nat. Commun., 5, 5055.PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Cerdeno-Tarraga, A. M., Patrick, S., Crossman, L. C., Blakely, G., Abratt, V., Lennard, N., Poxton, I., Duerden, B., Harris, B., Quail, M. A., Barron, A., Clark, L., Corton, C., Doggett, J., Holden, M. T., Larke, N., Line, A., Lord, A., Norbertczak, H., Ormond, D., Price, C., Rabbinowitsch, E., Woodward, J., Barrell, B., and Parkhill, J. (2005) Extensive DNA inversions in the B. fragilis genome control variable gene expression, Scienc., 307, 1463–1465.CrossRefGoogle Scholar
  55. 55.
    Budroni, S., Siena, E., Dunning Hotopp, J. C., Seib, K. L., Serruto, D., Nofroni, C., Comanducci, M., Riley, D. R., Daugherty, S. C., Angiuoli, S. V., Covacci, A., Pizza, M., Rappuoli, R., Moxon, E. R., Tettelin, H., and Medini, D. (2011) Neisseria meningitidis is structured in clades associ-ated with restriction–modification systems that modulate homologous recombination, Proc. Natl. Acad. Sci. US., 108, 4494–4499.CrossRefGoogle Scholar
  56. 56.
    Heuer, H., and Smalla, K. (2007) Horizontal gene transfer between bacteria, Environ. Biosafety Res., 6, 3–13.PubMedCrossRefGoogle Scholar
  57. 57.
    Johnston, C., Martin, B., Fichant, G., Polard, P., and Claverys, J. P. (2014) Bacterial transformation: distribu-tion, shared mechanisms, and divergent control, Nat. Rev. Microbiol., 12, 181–196.PubMedCrossRefGoogle Scholar
  58. 58.
    Roer, L., Aarestrup, F. M., and Hasman, H. (2015) The EcoKI type I restriction–modification system in Escherichia coli affects but is not an absolute barrier for conjugation, J. Bacteriol., 197, 337–342.PubMedCentralPubMedCrossRefGoogle Scholar
  59. 59.
    Srikhanta, Y. N., Fox, K. L., and Jennings, M. P. (2010) The phasevarion: phase variation of Type III DNA methyl-transferases controls coordinated switching in multiple genes, Nat. Rev. Microbiol., 8, 196–206.PubMedCrossRefGoogle Scholar
  60. 60.
    Casadesus, J., and Low, D. (2006) Epigenetic gene regulation in the bacterial world, Microbiol. Mol. Biol. Rev., 70, 830–856.PubMedCentralPubMedCrossRefGoogle Scholar
  61. 61.
    Casadesus, J., and Low, D. A. (2013) Programmed hetero-geneity: epigenetic mechanisms in bacteria, J. Biol. Chem., 288, 13929–13935.PubMedCentralPubMedCrossRefGoogle Scholar
  62. 62.
    Jeltsch, A. (2003) Maintenance of species identity and con-trolling speciation of bacteria: a new function for restric-tion/modification systems? Gen., 317, 13–16.CrossRefGoogle Scholar
  63. 63.
    Marinus, M. G., and Casadesus, J. (2009) Roles of DNA adenine methylation in host-pathogen interactions: mis-match repair, transcriptional regulation, and more, FEMS Microbiol. Rev., 33, 488–503.PubMedCentralPubMedCrossRefGoogle Scholar
  64. 64.
    Wion, D., and Casadesus, J. (2006) N6-methyl-adenine: an epigenetic signal for DNA–protein interactions, Nat. Rev. Microbiol., 4, 183–192.PubMedCentralPubMedCrossRefGoogle Scholar
  65. 65.
    Low, D. A., Weyand, N. J., and Mahan, M. J. (2001) Roles of DNA adenine methylation in regulating bacterial gene expression and virulence, Infect. Immun., 69, 7197–7204.PubMedCentralPubMedCrossRefGoogle Scholar
  66. 66.
    Collier, J. (2009) Epigenetic regulation of the bacterial cell cycle, Curr. Opin. Microbiol., 12, 722–729.PubMedCrossRefGoogle Scholar
  67. 67.
    Collier, J., Murray, S. R., and Shapiro, L. (2006) DnaA couples DNA replication and the expression of two cell cycle master regulators, EMBO J., 25, 346–356.PubMedCentralPubMedCrossRefGoogle Scholar
  68. 68.
    Gonzalez, D., Kozdon, J. B., McAdams, H. H., Shapiro, L., and Collier, J. (2014) The functions of DNA methyla-tion by CcrM in Caulobacter crescentus: a global approach, Nucleic Acids Res., 42, 3720–3735.PubMedCentralPubMedCrossRefGoogle Scholar
  69. 69.
    Reisenauer, A., Kahng, L. S., McCollum, S., and Shapiro, L. (1999) Bacterial DNA methylation: a cell cycle regula-tor? J. Bacteriol., 181, 5135–5139.PubMedCentralPubMedGoogle Scholar
  70. 70.
    Boye, E., Lobner-Olesen, A., and Skarstad, K. (2000) Limiting DNA replication to once and only once, Eur. Mol. Biol. Org. Rep., 1, 479–483.Google Scholar
  71. 71.
    Calmann, M. A., and Marinus, M. G. (2004) MutS inhibits RecA-mediated strand exchange with platinated DNA sub-strates, Proc. Natl. Acad. Sci. US., 101, 14174–14179.CrossRefGoogle Scholar
  72. 72.
    Han, J. S., Kang, S., Lee, H., Kim, H. K., and Hwang, D. S. (2003) Sequential binding of SeqA to paired hemi-methylated GATC sequences mediates formation of higher order complexes, J. Biol. Chem., 278, 34983–34989.PubMedCrossRefGoogle Scholar
  73. 73.
    Lobner-Olesen, A., Skovgaard, O., and Marinus, M. G. (2005) Dam methylation: coordinating cellular processes, Curr. Opin. Microbiol., 8, 154–160.PubMedCrossRefGoogle Scholar
  74. 74.
    Oshima, T., Wada, C., Kawagoe, Y., Ara, T., Maeda, M., Masuda, Y., Hiraga, S., and Mori, H. (2002) Genome-wide analysis of deoxyadenosine methyltransferase-mediated control of gene expression in Escherichia coli, Mol. Microbiol., 45, 673–695.PubMedCrossRefGoogle Scholar
  75. 75.
    Lobner-Olesen, A., Marinus, M. G., and Hansen, F. G. (2003) Role of SeqA and Dam in Escherichia coli gene expression: a global/microarray analysis, Proc. Natl. Acad. Sci. US., 100, 4672–4677.CrossRefGoogle Scholar
  76. 76.
    Marinus, M. G., and Lobner-Olesen, A. (2014) DNA Methylation, EcoSal Plus, doi: 10.1128/ecosalplus.ESP-0003-2013.Google Scholar
  77. 77.
    Kaack, M. B., Martin, L. N., Svenson, S. B., Baskin, G., Steele, R. H., and Roberts, J. A. (1993) Protective anti-idiotype antibodies in the primate model of pyelonephritis, Infect. Immun., 61, 2289–2295.PubMedCentralPubMedGoogle Scholar
  78. 78.
    Hernday, A., Braaten, B., and Low, D. (2004) The intricate workings of a bacterial epigenetic switch, Adv. Exp. Med. Biol., 547, 83–89.PubMedCrossRefGoogle Scholar
  79. 79.
    Watson, M. E., Jr., Jarisch, J., and Smith, A. L. (2004) Inactivation of deoxyadenosine methyltransferase (dam) attenuates Haemophilus influenzae virulence, Mol. Microbiol., 53, 651–664.PubMedCrossRefGoogle Scholar
  80. 80.
    Webster, L. T., and Clow, A. D. (1933) Intranasal virulence of pneumococci for mice, J. Exp. Med., 58, 465–483.PubMedCentralPubMedCrossRefGoogle Scholar
  81. 81.
    Avery, O. T., and Dubos, R. (1931) The protective action of a specific enzyme against Type III pneumococcus infection in mice, J. Exp. Med., 54, 73–89.PubMedCentralPubMedCrossRefGoogle Scholar
  82. 82.
    De Bolle, X., Bayliss, C. D., Field, D., van de Ven, T., Saunders, N. J., Hood, D. W., and Moxon, E. R. (2000) The length of a tetranucleotide repeat tract in Haemophilus influenzae determines the phase variation rate of a gene with homology to Type III DNA methyltransferases, Mol. Microbiol., 35, 211–222.PubMedCrossRefGoogle Scholar
  83. 83.
    Srikhanta, Y. N., Maguire, T. L., Stacey, K. J., Grimmond, S. M., and Jennings, M. P. (2005) The phasevarion: a genetic system controlling coordinated, random switching of expression of multiple genes, Proc. Natl. Acad. Sci. US., 102, 5547–5551.CrossRefGoogle Scholar
  84. 84.
    Srikhanta, Y. N., Dowideit, S. J., Edwards, J. L., Falsetta, M. L., Wu, H. J., Harrison, O. B., Fox, K. L., Seib, K. L., Maguire, T. L., Wang, A. H., Maiden, M. C., Grimmond, S. M., Apicella, M. A., and Jennings, M. P. (2009) Phasevarions mediate random switching of gene expression in pathogenic Neisseria, PLoS Pathog., 5, e1000400.Google Scholar
  85. 85.
    Gauntlett, J. C., Nilsson, H. O., Fulurija, A., Marshall, B. J., and Benghezal, M. (2014) Phase-variable restriction/modification systems are required for Helicobacter pylori colonization, Gut Pathog., 6, 35.PubMedCentralPubMedGoogle Scholar
  86. 86.
    Burrough, E. R., Sahin, O., Plummer, P. J., Zhang, Q., and Yaeger, M. J. (2009) Pathogenicity of an emergent, ovine abortifacient Campylobacter jejuni clone orally inoculated into pregnant guinea pigs, Am. J. Vet. Res., 70, 1269–1276.PubMedCrossRefGoogle Scholar
  87. 87.
    Wu, Z., Sahin, O., Shen, Z., Liu, P., Miller, W. G., and Zhang, Q. (2013) Multi-omics approaches to deciphering a hypervirulent strain of Campylobacter jejuni, Genome Biol. Evol., 5, 2217–2230.PubMedCentralPubMedCrossRefGoogle Scholar
  88. 88.
    Mou, K. T., Muppirala, U. K., Severin, A. J., Clark, T. A., Boitano, M., and Plummer, P. J. (2015) A comparative analysis of methylome profiles of Campylobacter jejuni sheep abortion isolate and gastroenteric strains using PacBio data, Front. Microbiol., 5, 782.PubMedCentralPubMedCrossRefGoogle Scholar
  89. 89.
    Weyler, L., Engelbrecht, M., Mata Forsberg, M., Brehwens, K., Vare, D., Vielfort, K., Wojcik, A., and Aro, H. (2014) Restriction endonucleases from invasive Neisseria gonorrhoeae cause double-strand breaks and dis-tort mitosis in epithelial cells during infection, PLoS One, 9, e114208.PubMedCentralPubMedCrossRefGoogle Scholar
  90. 90.
    Agarkova, I. V., Dunigan, D. D., and Van Etten, J. L. (2006) Virion-associated restriction endonucleases of chloroviruses, J. Virol., 80, 8114–8123.PubMedCentralPubMedCrossRefGoogle Scholar
  91. 91.
    Handa, N., and Kobayashi, I. (1999) Post-segregational killing by restriction–modification gene complexes: obser-vations of individual cell deaths, Biochimi., 81, 931–938.CrossRefGoogle Scholar
  92. 92.
    Handa, N., Nakayama, Y., Sadykov, M., and Kobayashi, I. (2001) Experimental genome evolution: large-scale genome rearrangements associated with resistance to replacement of a chromosomal restriction–modification gene complex, Mol. Microbiol., 40, 932–940.PubMedCrossRefGoogle Scholar
  93. 93.
    Sadykov, M., Asami, Y., Niki, H., Handa, N., Itaya, M., Tanokura, M., and Kobayashi, I. (2003) Multiplication of a restriction–modification gene complex, Mol. Microbiol., 48, 417–427.PubMedCrossRefGoogle Scholar
  94. 94.
    Szekeres, S., Dauti, M., Wilde, C., Mazel, D., and Rowe-Magnus, D. A. (2007) Chromosomal toxin–antitoxin loci can diminish large-scale genome reductions in the absence of selection, Mol. Microbiol., 63, 1588–1605.PubMedCrossRefGoogle Scholar
  95. 95.
    Asakura, Y., Kojima, H., and Kobayashi, I. (2011) Evolutionary genome engineering using a restriction-mod-ification system, Nucleic Acids Res., 39, 9034–9046.PubMedCentralPubMedCrossRefGoogle Scholar
  96. 96.
    Rocha, E. P. (2004) Order and disorder in bacterial genomes, Curr. Opin. Microbiol., 7, 519–527.PubMedCrossRefGoogle Scholar
  97. 97.
    Karlin, S., Burge, C., and Campbell, A. M. (1992) Statistical analyses of counts and distributions of restric-tion sites in DNA sequences, Nucleic Acids Res., 20, 1363–1370.PubMedCentralPubMedCrossRefGoogle Scholar
  98. 98.
    Karlin, S., and Cardon, L. R. (1994) Computational DNA sequence analysis, Annu. Rev. Microbiol., 48, 619–654.PubMedCrossRefGoogle Scholar
  99. 99.
    Karlin, S., Mrazek, J., and Campbell, A. M. (1997) Compositional biases of bacterial genomes and evolution-ary implications, J. Bacteriol., 179, 3899–3913.PubMedCentralPubMedGoogle Scholar
  100. 100.
    Gelfand, M. S., and Koonin, E. V. (1997) Avoidance of palindromic words in bacterial and archaeal genomes: a close connection with restriction enzymes, Nucleic Acids Res., 25, 2430–2439.PubMedCentralPubMedCrossRefGoogle Scholar
  101. 101.
    Rocha, E. P., Danchin, A., and Viari, A. (2001) Evolutionary role of restriction/modification systems as revealed by comparative genome analysis, Genome Res., 11, 946–958.PubMedCrossRefGoogle Scholar
  102. 102.
    Fuglsang, A. (2003) Distribution of potential Type II restriction sites (palindromes) in prokaryotes, Biochem. Biophys. Res. Commun., 310, 280–285.PubMedCrossRefGoogle Scholar
  103. 103.
    Lamprea-Burgunder, E., Ludin, P., and Maser, P. (2011) Species-specific typing of DNA based on palindrome fre-quency patterns, DNA Res., 18, 117–124.PubMedCentralPubMedCrossRefGoogle Scholar
  104. 104.
    Fukuda, E., Kaminska, K. H., Bujnicki, J. M., and Kobayashi, I. (2008) Cell death upon epigenetic genome methylation: a novel function of methyl-specific deoxyri-bonucleases, Genome Biol., 9, 163.CrossRefGoogle Scholar
  105. 105.
    Kunz, A., Mackeldanz, P., Mucke, M., Meisel, A., Reuter, M., Schroeder, C., and Kruger, D. H. (1998) Mutual acti-vation of two restriction endonucleases: interaction of EcoP1 and EcoP15, Biol. Chem., 379, 617–620.PubMedGoogle Scholar
  106. 106.
    Belogurov, A. A., Efimova, E. P., Delver, E. P., and Zavilgelskii, G. B. (1987) Weakening of Type I restriction in E. coli: the effect of dam mutation, Mol. Gen. Mikrobiol. Virusol., 9, 10–16.PubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • A. S. Ershova
    • 1
    • 2
    • 3
  • I. S. Rusinov
    • 1
    • 4
  • S. A. Spirin
    • 1
    • 4
    • 5
  • A. S. Karyagina
    • 1
    • 2
    • 3
  • A. V. Alexeevski
    • 1
    • 4
    • 5
  1. 1.Belozerksy Institute of Physico-Chemical BiologyLomonosov Moscow State UniversityMoscowRussia
  2. 2.Gamaleya Center of Epidemiology and MicrobiologyMoscowRussia
  3. 3.Institute of Agricultural BiotechnologyMoscowRussia
  4. 4.Faculty of Bioengineering and BioinformaticsLomonosov Moscow State UniversityMoscowRussia
  5. 5.Institute of System StudiesMoscowRussia

Personalised recommendations