Biochemistry (Moscow)

, Volume 80, Issue 8, pp 1047–1056 | Cite as

Molecular dynamics investigation of a mechanism of allosteric signal transmission in ribosomes

  • G. I. Makarov
  • A. V. Golovin
  • N. V. Sumbatyan
  • A. A. Bogdanov
Article

Abstract

The ribosome is a molecular machine that synthesizes all cellular proteins via translation of genetic information encoded in polynucleotide chain of messenger RNA. Transition between different stages of the ribosome working cycle is strictly coordinated by changes in structure and mutual position both of subunits of the ribosome and its ligands. Therein, information regarding structural transformations is transmitted between functional centers of the ribosome through specific signals. Usually, functional centers of ribosomes are located at a distance reaching up to several tens of angstroms, and it is believed that such signals are transduced allosterically. In our study, we attempted to answer the question of how allosteric signal can be transmitted from one of the so-called sensory elements of ribosomal tunnel (RT) to the peptidyl transferase center (PTC). A segment of RT wall from the E. coli ribosome composed of nucleotide residues A2058, A2059, m2A2503, G2061, A2062, and C2063 of its 23S rRNA was examined by molecular dynamics simulations. It was found that a potential signal transduction pathway A2058-C2063 acted as a dynamic ensemble of interdependent conformational states, wherein cascade-like changes can occur. It was assumed that structural rearrangement in the A2058-C2063 RT segment results in reversible inactivation of PTC due to a strong stacking contact between functionally important U2585 residue of the PTC and nucleotide residue C2063. A potential role for the observed conformational transition in the A2058-C2063 segment for regulating ribosome activity is discussed.

Key words

ribosome ribosomal tunnel allostery molecular dynamics simulations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Polacek, N., Patzke, S., Nierhaus, K. H., and Barta, A. (2000) Periodic conformational changes in rRNA: moni-toring the dynamics of translating ribosomes, Mol. Cell, 6, 159–171.PubMedGoogle Scholar
  2. 2.
    Zhou, J., Lancaster, L., Donohue, J. P., and Noller, H. F. (2013) Crystal structures of EF-G–ribosome complexes trapped in intermediate states of translocation, Science, 340, 1236086.PubMedCentralCrossRefPubMedGoogle Scholar
  3. 3.
    Pulk, A., and Cate, J. H. D. (2013) Control of ribosomal subunit rotation by elongation factor G, Science, 340, 1235970.Google Scholar
  4. 4.
    Ogle, J. M., Brodersen, D. E., Clemons, W. M., Tarry, M. J., Carter, A. P., and Ramakrishnan, V. (2001) Recognition of cognate transfer RNA by the 30S ribosomal subunit, Science, 292, 897–902.CrossRefPubMedGoogle Scholar
  5. 5.
    Munro, J. B., Sanbonmatsu, K. Y., Spahn, C. M., and Blanchard, S. C. (2009) Navigating the ribosome’s metastable energy landscape, Trends Biochem. Sci., 34, 390–400.PubMedCentralCrossRefPubMedGoogle Scholar
  6. 6.
    Steitz, T. A. (2008) A structural understanding of the dynamic ribosome machine, Nat. Rev. Mol. Cell Biol., 9, 242–253.CrossRefPubMedGoogle Scholar
  7. 7.
    Rheinberger, H.-J., and Nierhaus, K. H. (1986) Allosteric interactions between the ribosomal transfer RNA-binding sites A and E, J. Biol. Chem., 261, 9133–9139.PubMedGoogle Scholar
  8. 8.
    Bogdanov, A. A., Dontsova, O. A., Dokudovskaya, S. S., and Lavrik, I. N. (1995) Structure and function of 5S rRNA in the ribosome, Biochem. Cell Biol., 73, 869–876.CrossRefPubMedGoogle Scholar
  9. 9.
    Chan, Y.-L., Dresios, J., and Wool, I. G. (2006) A pathway for the transmission of allosteric signals in the ribosome through a network of RNA tertiary interactions, J. Mol. Biol., 355, 1014–1025.CrossRefPubMedGoogle Scholar
  10. 10.
    Blaha, G., Gurel, G., Schroeder, S. J., Moore, P. B., and Steitz, T. A. (2008) Mutations outside the anisomycin-binding site can make ribosomes drug-resistant, J. Mol. Biol., 379, 505–519.PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Davidovich, C., Bashan, A., Auerbach-Nevo, T., Yaggie, R. D., Gontarek, R., and Yonath, A. (2007) Induced-fit tightens pleuromutilins binding to ribosomes and remote interactions enable their selectivity, Proc. Natl. Acad. Sci. USA, 104, 4291–4296.PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Wang, L., Pulk, A., Wasserman, M. R., Feldman, M. B., Altman, R. B., Cate J. H., and Blanchard, S. C. (2012) Allosteric control of the ribosome by small-molecule antibiotics, Nat. Struct. Mol. Biol., 19, 957–963.PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Sothiselvam, S., Liu, B., Han, W., Ramu, H., Klepacki, D., Atkinson, G. C., Brauer, A., Remm, M., Tenson, T., Schulten, K., Vazquez-Laslop, N., and Mankin, A. S. (2014) Macrolide antibiotics allosterically predispose the ribosome for translation arrest, Proc. Natl. Acad. Sci. USA, 111, 9804–9809.PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Sergiev, P. V., Bogdanov, A. A., Dahlberg, A. E., and Dontsova, O. (2000) Mutations at position A960 of E. coli 23S ribosomal RNA influence the structure of 5S ribosomal RNA and the peptidyltransferase region of 23S ribosomal RNA, J. Mol. Biol., 299, 379–389.CrossRefPubMedGoogle Scholar
  15. 15.
    Sergiev, P. V., Lesnyak, D. V., Burakovsky, D. E., Kiparisov, S. V., Leonov, A. A., Bogdanov, A. A., Brimacombe, R., and Dontsova, O. A. (2005) Alteration in location of a conserved GTPase-associated center of the ribosome induced by mutagenesis influences the structure of peptidyltrans-ferase center and activity of elongation factor G, J. Biol. Chem., 280, 31882–31889.CrossRefPubMedGoogle Scholar
  16. 16.
    Sergiev, P. V., Kiparisov, S. V., Burakovsky, D. E., Lesnyak, D. V., Leonov, A. A., Bogdanov, A. A., and Dontsova, O. A. (2005) The conserved A-site finger of the 23S rRNA: just one of the intersubunit bridges or a part of the allosteric communication pathway? J. Mol. Biol., 353, 116–123.CrossRefPubMedGoogle Scholar
  17. 17.
    Burakovsky, D. E., Sergiev, P. V., Steblyanko, M. A., Konevega, A. L., Bogdanov, A. A., and Dontsova, O. A. (2011) The structure of helix 89 of 23S rRNA is important for peptidyl transferase function of Escherichia coli ribosome, FEBS Lett., 585, 3073–3078.CrossRefPubMedGoogle Scholar
  18. 18.
    Monod, J., Wyman, J., and Changeux, J.-P. (1965) On the nature of allosteric transitions: a plausible model, J. Mol. Biol., 12, 88–118.CrossRefPubMedGoogle Scholar
  19. 19.
    Goodey, N. M., and Benkovic, S. J. (2008) Allosteric regulation and catalysis emerge via a common route, Nat. Chem. Biol., 4, 474–482.CrossRefPubMedGoogle Scholar
  20. 20.
    Sethi, A., Eargle, J., Black, A. A., and Luthey-Schulten, Z. (2009) Dynamical networks in tRNA:protein complexes, Proc. Natl. Acad. Sci. USA, 106, 6620–6625.PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Williams, S. G., and Hall, K. B. (2014) Linkage and allostery in snRNP protein/RNA complexes, Biochemistry, 53, 3529–3539.PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Wilson, D. N. (2009) The A-Z of bacterial translation inhibitors, Crit. Rev. Biochem. Mol. Biol., 44, 393–433.CrossRefPubMedGoogle Scholar
  23. 23.
    Ban, N., Nissen, P., Hansen, J., Moore, P. B., and Steitz, T. A. (2000) The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution, Science, 289, 905–920.CrossRefPubMedGoogle Scholar
  24. 24.
    Ito, K., and Chiba, S. (2013) Arrest peptides: cis-acting modulators of translation, Annu. Rev. Biochem., 82, 171–202.CrossRefPubMedGoogle Scholar
  25. 25.
    Vazquez-Laslop, N., Ramu, H., and Mankin, A. S. (2011) Nascent peptide mediated ribosome stalling promoted by antibiotics, in Ribosomes Structure, Function and Dynamics (Rodnina, M. V., Wintermeyer, W., and Green, R., eds.) Springer, Vienna, pp. 377–392.Google Scholar
  26. 26.
    Seidelt, B., Innis, C. A., Wilson, D. N., Gartmann, M., Armache, J.-P., Villa, E., Trabuco, L. G., Becker, T., Mielke, T., Schulten, K., Steitz, T. A., and Beckmann, R. (2009) Structural insight into nascent polypeptide chainmediated translational stalling, Science, 326, 1412–1415.PubMedCentralCrossRefPubMedGoogle Scholar
  27. 27.
    Arenz, S., Ramu, H., Gupta, P., Berninghausen, O., Beckmann, R., Vazquez-Laslop, N., Mankin, A. S., and Wilson, D. N. (2014) Molecular basis for erythromycin-dependent ribosome stalling during translation of the ErmBL leader peptide, Nat. Commun., 5, 3501.PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Kannan, K., and Mankin, A. S. (2011) Macrolide antibiotics in the ribosomal tunnel: species-specific binding and action, Ann. N.Y. Acad. Sci., 1241, 33–47.CrossRefPubMedGoogle Scholar
  29. 29.
    Weisblum, B. (1995) Erythromycin resistance by ribosome modification, Antimicrob. Agents Chemother., 39, 577–585.PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Sanbonmatsu, K. Y. (2012) Computational studies of molecular machines: the ribosome, Curr. Opin. Struct. Biol., 22, 168–174.PubMedCentralCrossRefPubMedGoogle Scholar
  31. 31.
    Trabuco, L. G., Harrison, C. B., Schreiner, E., and Schulten, K. (2010) Recognition of the regulatory nascent chain TnaC by the ribosome, Structure, 18, 627–637.PubMedCentralCrossRefPubMedGoogle Scholar
  32. 32.
    Gumbart, J., Schreiner, E., Wilson, D., Beckmann, R., and Schulten, K. (2012) Mechanism of SecM-mediated stalling in the ribosome, Biophys. J., 103, 331–341.PubMedCentralCrossRefPubMedGoogle Scholar
  33. 33.
    Shishkina, A., Makarov, G., Tereshchenkov, A., Korshunova, G., Sumbatyan, N., Golovin, A., Svetlov, M., and Bogdanov, A. (2013) Conjugates of amino acids and peptides with 5-O-mycaminosyltylonolide and their interaction with the ribosomal exit tunnel, Bioconj. Chem., 24, 1861–1869.CrossRefGoogle Scholar
  34. 34.
    Jack, A., Dunkle, J. A., Xiong, L., Mankin A. S., and Cate, J. H. (2010) Structures of the Escherichia coli ribosome with antibiotics bound near the peptidyl transferase center explain spectra of drug action, Proc. Natl. Acad. Sci. USA, 107, 17152–17157.Google Scholar
  35. 35.
    Cannone, J. J., Subramanian, S., Schnare, M. N., Collett, J. R., D’Souza, L. M., Du, Y., Feng, B., Lin, N., Madabusi, L. V., Muller, K. M., Pande, N., Shang, Z., Yu, N., and Gutell, R. R. (2002) The comparative RNA web (CRW) site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs, BMC Bioinformatics, 3, 2.PubMedCentralCrossRefPubMedGoogle Scholar
  36. 36.
    Byrd, R. H., Lu, P., and Nocedal, J. (1995) A limited memory algorithm for bound constrained optimization, SIAM J. Sci. Comput., 16, 1190–1208.CrossRefGoogle Scholar
  37. 37.
    Bussi, G., Donadio, D., and Parrinello, M. (2007) Canonical sampling through velocity rescaling, J. Chem. Phys., 126, 014101.CrossRefPubMedGoogle Scholar
  38. 38.
    Van der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., and Berendsen, H. J. C. (2005) GROMACS: fast, flexible, free, J. Comput. Chem., 26, 1701–1718.CrossRefGoogle Scholar
  39. 39.
    Hess, B., Kutzner, C., van der Spoel, D., and Lindahl, E. (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation, J. Chem. Theory Comput., 4, 435–447.CrossRefGoogle Scholar
  40. 40.
    Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., Di Nola, A., and Haak, J. R. (1984) Molecular dynamics with coupling to an external bath, J. Chem. Phys., 81, 3684–3690.CrossRefGoogle Scholar
  41. 41.
    Darden, T., York, D., and Pedersen, L. (1993) Particle mesh Ewald: an N log(N) method for Ewald sums in large systems, J. Chem. Phys., 98, 10089–10092.CrossRefGoogle Scholar
  42. 42.
    Jorgensen, W. L., Chandrasekhar, J., and Madura, J. D. (1983) Comparison of simple potential functions for simulating liquid water, J. Chem. Phys., 79, 926–935.CrossRefGoogle Scholar
  43. 43.
    Reshetnikov, R. V., Sponer, J., Rassokhina, O. I., Kopylov, A. M., Tsvetkov, P. O., Makarov, A. A., and Golovin, A. V. (2011) Cation binding to 15-TBA quadruplex DNA is a multiple-pathway cation-dependent process, Nucleic Acids Res., 39, 9789–9802.PubMedCentralCrossRefPubMedGoogle Scholar
  44. 44.
    Athavale, S. S., Petrov, A. S., Hsiao, C., Watkins, D., Prickett, C. D., Gossett, J. J., Lie, L., Bowman, J. C., O’ Neill, E., Bernier, C. R., Hud, N. V., Wartell, R. M., Harvey, S. C., and Williams, L. D. (2012) RNA folding and catalysis mediated by iron(II), PloS One, 7, e38024.Google Scholar
  45. 45.
    Bonomi, M., Branduardi, D., Bussi, G., Camilloni, C., Provasi, D., Raiteri, P., Donadio, D., Marinelli, F., Pietrucci, F., Broglia, R. A., and Parrinello, M. (2009) PLUMED: a portable plugin for free-energy calculations with molecular dynamics, Comput. Phys. Commun., 180, 1961–1972.CrossRefGoogle Scholar
  46. 46.
    Arenz, S., Meydan, S., Starosta, A. L., Berninghausen, O., Beckmann, R., Vazquez-Laslop, N., and Wilson, D. N. (2014) Drug sensing by the ribosome induces translational arrest via active site perturbation, Mol. Cell, 56, 446–452.CrossRefPubMedGoogle Scholar
  47. 47.
    Hashem, Y., and Auffinger, P. (2009) A short guide for molecular dynamic simulation of RNA systems, Methods, 47, 187–197.CrossRefPubMedGoogle Scholar
  48. 48.
    Laio, A., and Parrinello, M. (2002) Escaping free energy minima, Proc. Natl. Acad. Sci. USA, 99, 12562–12566.CrossRefGoogle Scholar
  49. 49.
    Hansen, J., Ippolito, J., Ban, N., Nissen, P., Moore, P., and Steitz, T. (2002) The structures of four macrolide antibiotics bound to the large ribosomal subunit, Mol. Cell, 10, 117–128.CrossRefPubMedGoogle Scholar
  50. 50.
    Hansen, J. L., Moore, P. B., and Steitz, T. A. (2003) Structures of five antibiotics bound at the peptidyl transferase center of the large ribosomal subunit, J. Mol. Biol., 330, 1061–1075.CrossRefPubMedGoogle Scholar
  51. 51.
    Vazquez-Laslop, N., Ramu, H., Klepacki, D., Kannan, K., and Mankin, A. S. (2010) The key function of a conserved and modified rRNA residue in the ribosomal response to the nascent peptide, EMBO J., 29, 3108–3117.PubMedCentralCrossRefPubMedGoogle Scholar
  52. 52.
    Leontis, N. B., Stombaugh, J., and Westhof, E. (2000) The non-Watson–Crick base pairs and their associated isostericity matrices, Nucleic Acids Res., 30, 3497–3531.CrossRefGoogle Scholar
  53. 53.
    Hansen, J. L., Schmeing, T. M., Moore, P. B., and Steitz, T. A. (2002) Structural insights into peptide bond formation, Proc. Natl. Acad. Sci. USA, 99, 11670–11765.Google Scholar
  54. 54.
    Vazquez-Laslop, N., Thum, C., and Mankin, A. S. (2008) Molecular mechanism of drug-dependent ribosome stalling, Mol. Cell, 30, 190–202.CrossRefPubMedGoogle Scholar
  55. 55.
    Youngman, E. M., Brunelle, J. L., Kochaniak, A. B., and Green, R. (2004) The active site of the ribosome is composed of two layers of conserved nucleotides with distinct roles in peptide bond formation and peptide release, Cell, 117, 589–599.CrossRefPubMedGoogle Scholar
  56. 56.
    Nissen, P., Hansen, J., Ban, N., Moore, P. B., and Steitz, T. A. (2000) The structural basis of ribosome activity in peptide bond synthesis, Science, 289, 920–930.CrossRefPubMedGoogle Scholar
  57. 57.
    Polikanov, Y. S., Steitz, T. A., and Innis, C. A. (2014) A proton wire to couple aminoacyl-tRNA accommodation and peptide-bond formation on the ribosome, Nat. Struct. Mol. Biol., 21, 787–793.PubMedCentralCrossRefPubMedGoogle Scholar
  58. 58.
    Sergiev, P. V., Lesnyak, D. V., Burakovsky, D. E., Svetlov, M., Kolb, V. A., Serebryakova, M. V., Demina, I. A., Govorun, V. M., Dontsova, O. A., and Bogdanov, A. A. (2012) Non-stressful death of 23S rRNA mutant G2061C defective in puromycin reaction, J. Mol. Biol., 416, 656–667.CrossRefPubMedGoogle Scholar
  59. 59.
    Chirkova, A., Erlacher, M. D., Clementi, N., Zywicki, M., Aigner, M., and Polacek, N. (2010) The role of the universally conserved A2450–C2063 base pair in the ribosomal peptidyl transferase center, Nucleic Acids Res., 38, 4844–4855.PubMedCentralCrossRefPubMedGoogle Scholar
  60. 60.
    Leung, E. K., Suslov, N., Tuttle, N., Sengupta, R., and Piccirilli, J. A. (2011) The mechanism of peptidyl transfer catalysis by the ribosome, Annu. Rev. Biochem., 80, 527–555.CrossRefPubMedGoogle Scholar
  61. 61.
    Schmeing, T. M., Huang, K. S., Strobel, S. A., and Steitz, T. A. (2005) An induced-fit mechanism to promote peptide bond formation and exclude hydrolysis of peptidyl-tRNA, Nature, 438, 520–524.CrossRefPubMedGoogle Scholar
  62. 62.
    Bhushan, S., Hoffmann, T., Seidelt, B., Frauenfeld, J., Mielke, T., Berninghausen, O., Wilson, D. N., and Beckmann, R. (2011) SecM-stalled ribosomes adopt an altered geometry at the peptidyl transferase center, PLoS Biol., 18, e1000581.CrossRefGoogle Scholar
  63. 63.
    Tsai, A., Kornberg, G., Johansson, M., Chen, J., and Puglisi, J. D. (2014) The dynamics of SecM-induced translational stalling, Cell Rep., 7, 1521–1533.PubMedCentralCrossRefPubMedGoogle Scholar
  64. 64.
    Sothiselvam, S., Liu, B., Han, W., Ramu, H., Klepacki, D., Atkinson, G. C., Brauer, A., Remm, M., Tenson, T., Schulten, K., Vazquez-Laslop, N., and Mankin, A. S. (2014) Macrolide antibiotics allosterically predispose the ribosome for translation arrest, Proc. Natl. Acad. Sci. USA, 111, 9804–9809.PubMedCentralCrossRefPubMedGoogle Scholar
  65. 65.
    Bischoff, L., Berninghausen, O., and Beckmann, R. (2014) Molecular basis for the ribosome functioning as an L-tryptophan sensor, Cell Rep., 9, 469–475.CrossRefPubMedGoogle Scholar
  66. 66.
    Kannan, K., Kanabar, P., Schryerm, D., Florin, T., Oh, E., Bahroos, N., Tenson, T., Weissman, J. S., and Mankin, A. S. (2014) The general mode of translation inhibition by macrolide antibiotics, Proc. Natl. Acad. Sci. USA, 111, 15958–15963.PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • G. I. Makarov
    • 1
  • A. V. Golovin
    • 2
  • N. V. Sumbatyan
    • 1
  • A. A. Bogdanov
    • 1
    • 3
  1. 1.Lomonosov Moscow State UniversityFaculty of ChemistryMoscowRussia
  2. 2.Lomonosov Moscow State UniversityFaculty of Bioengineering and BioinformaticsMoscowRussia
  3. 3.Belozersky Institute of Physical-Chemical BiologyLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations