Biochemistry (Moscow)

, Volume 80, Issue 8, pp 1039–1046 | Cite as

Double subgenomic promoter control for a target gene superexpression by a plant viral vector

  • E. V. PutlyaevEmail author
  • A. A. Smirnov
  • O. V. Karpova
  • J. G. Atabekov


Several new deconstructed vectors based on a potexvirus genome sequence for efficient expression of heterologous proteins in plants were designed. The first obtained vector (AltMV-single), based on the Alternanthera mosaic virus (AltMV) strain MU genome, bears a typical architecture for deconstructed plant viral vectors, i.e. a triple gene block was deleted from the viral genome and the model gene of interest was placed under control of the first viral subgenomic promoter. To enhance the efficiency of expression, maintained by the AltMV-single, another vector (AltMV-double) was designed. In AltMV-double, the gene of interest was controlled by two viral subgenomic promoters located sequentially without a gap upstream of the target gene. It was found that AltMV-double provided a significantly higher level of accumulation of the target protein in plants than AltMV-single. Moreover, our data clearly show the requirement of the presence and functioning of both the subgenomic promoters for demonstrated high level of target protein expression by AltMV-double. Taken together, our results describe an additional possible way to enhance the efficiency of transient protein expression maintained in plants by a plant viral vector.

Key words

Alternanthera mosaic virus viral vector protein overexpression subgenomic promoter 



Alternanthera mosaic virus


capsid protein


days post-injection


fresh leaf tissue


human granulocyte colony-stimulating factor


open reading frame


subgenomic promoter


subgenomic RNA


triple gene block


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Boehm, R. (2007) Bioproduction of therapeutic proteins in the 21st century and the role of plants and plant cells as production platforms, Ann. NY Acad. Sci., 1102, 121–134.CrossRefPubMedGoogle Scholar
  2. 2.
    Larrick, J. W., and Thomas, D. W. (2001) Producing proteins in transgenic plants and animals, Curr. Opin. Biotechnol., 12, 411–418.CrossRefPubMedGoogle Scholar
  3. 3.
    Mett, V., Farrance, C. E., Green, B. J., and Yusibov, V. (2008) Plants as biofactories, Biologicals, 36, 354–358.CrossRefPubMedGoogle Scholar
  4. 4.
    Gleba, Y. Y., Klimyuk, V., and Marillonnet, S. (2007) Viral vectors for the expression of proteins in plants, Curr. Opin. Biotechnol., 18, 134–141.CrossRefPubMedGoogle Scholar
  5. 5.
    Gleba, Y. Y., Tuse, D., and Giritch, A. (2014) Plant viral vectors for delivery by Agrobacterium, Curr. Top. Microbiol. Immunol., 375, 155–192.PubMedGoogle Scholar
  6. 6.
    Verchot-Lubicz, J., Ye, C. M., and Bamunusinghe, D. (2007) Molecular biology of potexviruses: recent advances, J. Gen. Virol., 88, 1643–1655.CrossRefPubMedGoogle Scholar
  7. 7.
    Park, M. R., Seo, J. K., and Kim, K. H. (2013) Viral and nonviral elements in potexvirus replication and movement and in antiviral responses, Adv. Virus Res., 87, 75–112.CrossRefPubMedGoogle Scholar
  8. 8.
    Morozov, S. Y., and Solovyev, A. G. (2003) Triple gene block: modular design of a multifunctional machine for plant virus movement, J. Gen. Virol., 84, 1351–1366.CrossRefPubMedGoogle Scholar
  9. 9.
    Tilsner, J., Linnik, O., Wright, K. M., Bell, K., Roberts, A. G., Lacomme, C., Santa Cruz, S., and Oparka, K. J. (2012) The TGB1 movement protein of potato virus X reorganizes actin and endomembranes into the X-body, a viral replication factory, Plant Physiol., 158, 1359–1370.PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Bayne, E. H., Rakitina, D. V., Morozov, S. Y., and Baulcombe, D. C. (2005) Cell-to-cell movement of potato potexvirus X is dependent on suppression of RNA silencing, Plant J., 44, 471–482.CrossRefPubMedGoogle Scholar
  11. 11.
    Geering, A. D., and Thomas, J. E. (1999) Characterization of a virus from Australia that is closely related to papaya mosaic potexvirus, Arch. Virol., 144, 577–592.CrossRefPubMedGoogle Scholar
  12. 12.
    Hammond, J., Reinsel, M. D., and Maroon-Lango, C. J. (2006) Identification and full sequence of an isolate of Alternanthera mosaic potexvirus infecting Phlox stolonifera, Arch. Virol., 151, 477–493.CrossRefPubMedGoogle Scholar
  13. 13.
    Ivanov, P. A., Mukhamedzhanova, A. A., Smirnov, A. A., Rodionova, N. P., Karpova, O. V., and Atabekov, J. G. (2010) The complete nucleotide sequence of Alternanthera mosaic virus infecting Portulaca grandiflora represents a new strain distinct from phlox isolates, Virus Genes, 42, 268–271.CrossRefPubMedGoogle Scholar
  14. 14.
    Lim, H. S., Vaira, A. M., Reinsel, M. D., Bae, H., Bailey, B. A., Domier, L. L., and Hammond, J. (2010) Pathogenicity of Alternanthera mosaic virus is affected by determinants in RNA-dependent RNA polymerase and by reduced efficacy of silencing suppression in a movement-competent TGB1, J. Gen. Virol., 91, 277–287.CrossRefPubMedGoogle Scholar
  15. 15.
    Baulcombe, D. C., Chapman, S., and Santa-Cruz, S. (1995) Jellyfish green fluorescent protein as a reporter for virus infections, Plant J., 7, 1045–1053.CrossRefPubMedGoogle Scholar
  16. 16.
    Zvereva, A. S., Petrovskaya, L. E., Rodina, A. V., Frolova, O. Y., Ivanov, P. A., Shingarova, L. N., Komarova, T. V., Dorokhov, Y. L., Dolgikh, D. A., Kirpichnikov, M. P., and Atabekov, J. G. (2009) Production of biologically active human myelocytokines in plants, Biochemistry (Moscow), 74, 1187–1194.PubMedGoogle Scholar
  17. 17.
    Komarova, T. V., Skulachev, M. V., Zvereva, A. S., Schwartz, A. M., Dorokhov, Yu. L., and Atabekov, J. G. (2006) New viral vector for efficient production of target proteins in plants, Biochemistry (Moscow), 71, 846–850.PubMedGoogle Scholar
  18. 18.
    Voinnet, O., Rivas, S., Mestre, P., and Baulcombe, D. (2003) An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus, Plant J., 33, 949–956.CrossRefPubMedGoogle Scholar
  19. 19.
    Marillonnet, S., Thoeringer, C., Kandzia, R., Klimyuk, V., and Gleba, Y. (2005) Systemic Agrobacterium tumefaciens-mediated transfection of viral replicons for efficient transient expression in plants, Nature Biotechnol., 23, 718–723.CrossRefGoogle Scholar
  20. 20.
    Mukhamedzhanova, A. A., Smirnov, A. A., Arkhipenko, M. V., Ivanov, P. A., Chirkov, S. N., Rodionova, N. P., Karpova, O. V., and Atabekov, J. G. (2011) Characterization of Alternanthera mosaic virus and its coat protein, Open Virol. J., 5, 136–140.PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Lim, H. S., Vaira, A. M., Domier, L. L., Lee, S. C., Kim, H. G., and Hammond, J. (2010) Efficiency of VIGS and gene expression in a novel bipartite potexvirus vector delivery system as a function of strength of TGB1 silencing suppression, Virology, 402, 149–163.CrossRefPubMedGoogle Scholar
  22. 22.
    Wang, Y., Cong, Q. Q., Lan, Y. F., Geng, C., Li, X. D., Liang, Y. C., Yang, Z. Y., Zhu, X. P., and Li, X. D. (2014) Development of new potato virus X-based vectors for gene over-expression and gene silencing assay, Virus Res., 191, 62–69.CrossRefPubMedGoogle Scholar
  23. 23.
    Kim, K.-H., and Hemenway, C. L. (1999) Long-distance RNA–RNA interactions and conserved sequence elements affect potato virus X plus-strand RNA accumulation, RNA, 5, 636–645.PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Kim, K.-H., and Hemenway, C. (1997) Mutations that alter a conserved element upstream of the potato virus X triple block and coat protein genes affect subgenomic RNA accumulation, Virology, 232, 187–197.CrossRefPubMedGoogle Scholar
  25. 25.
    Zhou, F., Wang, M. L., Albert, H. H., Moore, P. H., and Zhu, Y. J. (2006) Efficient transient expression of human GM-CSF protein in Nicotiana benthamiana using potato virus X vector, Appl. Microbiol. Biotechnol., 72, 756–762.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • E. V. Putlyaev
    • 1
    Email author
  • A. A. Smirnov
    • 1
  • O. V. Karpova
    • 1
  • J. G. Atabekov
    • 1
    • 2
  1. 1.Faculty of BiologyLomonosov Moscow State UniversityMoscowRussia
  2. 2.Belozersky Institute of Physico-Chemical BiologyLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations