Advertisement

Biochemistry (Moscow)

, Volume 80, Issue 8, pp 994–1000 | Cite as

Structural and dynamic changes in mitochondria of rat myocardium under acute hypoxic hypoxia: Role of mitochondrial ATP-dependent potassium channel

  • E. V. Rozova
  • I. N. Mankovskaya
  • G. D. MironovaEmail author
Article

Abstract

The ultrastructure and spatial localization of mitochondria (MC) in the myocardium of rats exposed to a 30-min hypoxic hypoxia were investigated. The mitochondrial structure was found to undergo changes; however, marked necrotic injuries were not observed. Changes occurring in the myocardium are aimed at the intensification of energy processes. This shows up as an increase in the number of MC in the subsarcolemmal zone of the myocardium and changes in the surface of the sublemmal membrane due to its bending around mitochondria, which improves the diffusion of oxygen into MC. In addition, the division of MC is enhanced, which partially explains the increase in their total number. In structurally altered MC with intact membrane, electron dense formations with small diameter appear, which probably represent newly formed organelles (microMC). In normoxia, changes of this kind do not occur. It was found that the ATP-dependent K+ channel is involved in the regulation of the morphological state of MC under hypoxic hypoxia. The activator of the channel diazoxide increases the number of newly formed microMC, and the channel inhibitor 5HD significantly prevents their formation. Possible mechanisms of structural and dynamic changes in rat myocardial MC under acute hypoxic hypoxia are discussed.

Key words

mitochondria hypoxic hypoxia ultrastructure spatial localization ATP-dependent K+ channel channel modulators 

Abbreviations

AHH

acute hypoxic hypoxia

5HD

5-hydroxy-decanoate

IMF MC

intramyofibrillar population of mitochondria

MC

mitochondria

microMC

micromitochondria

mitoKATP

mitochondrial ATP-dependent K+ channel

Si tot

total surface of mitochondria per unit volume of tissue

SS MC

subsarcolemmal population of mitochondria.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Vasyuk, Y. A., Kulikov, K. G., Kudryashov, O. N., Krikunova, A. V., and Sadulaeva, I. A. (2007) Secondary mitochondrial dysfunction in acute coronary syndrome, Rational Pharmacol. Cardiol., 1, 41–47.Google Scholar
  2. 2.
    Lukyanova, L. D. (1997) Bioenergy hypoxia: the concept, mechanisms and methods of correction, Bull. Exp. Biol. Med., 124, 244–254.Google Scholar
  3. 3.
    Cereghetti, G. M., and Scorrano, L. (2006) The many shapes of mitochondrial death, Oncogene, 25, 4717–4724.CrossRefPubMedGoogle Scholar
  4. 4.
    Karbowski, M., and Youle, R. J. (2003) Dynamics of mitochondrial morphology in healthy cells and during apoptosis, Cell Death Different., 10, 870–880.CrossRefGoogle Scholar
  5. 5.
    Collins, T. J., Berridge, M. J., Lipp, P., and Bootman, M. D. (2002) Mitochondria are morphologically and functionally heterogeneous within cells, J. Eur. Mol. Biol. Organization, 21, 1616–1627.CrossRefGoogle Scholar
  6. 6.
    Skulachev, V. P. (2001) Oxygen and the phenomenon of programmed cell death, Russ. Biomed. J., 5, 116–126.Google Scholar
  7. 7.
    Paukov, V. S., and Khitrov, N. K. (1991) Adaptation of Heart to Hypoxia [in Russian], Meditsina, Moscow.Google Scholar
  8. 8.
    Rozova, E. V. (2008) Changes in the morphofunctional state of mitochondria in cells of the lungs and heart tissues in rats during hypoxia of different genesis, J. Acad. Med. Sci. Ukraine, 14, 752–765.Google Scholar
  9. 9.
    Nekrasova, O. E. (2007) Studying of Mechanisms of Intracellular Distributions of Mitochondria: Candidate’s dissertation [in Russian], 03.00.25 — histology, cytology, cell biology, Moscow.Google Scholar
  10. 10.
    Nekrasova, O. E., Kulik, A. V., and Minin, A. A. (2007) Protein kinase C regulates the mitochondrial motility, Biol. Membr. (Moscow), 24, 126–132.Google Scholar
  11. 11.
    Nekrasova, O. E., Kulik, A. V., and Minin, A. A. (2005) Regulation by fibronectin shapes and intracellular distribution of mitochondria, Biol. Membr. (Moscow), 22, 105–112.Google Scholar
  12. 12.
    Kulik, A. V., Nekrasova, O. E., and Minin, A. A. (2006) Fibrillar actin regulates the mitochondrial motility, Biol. Membr. (Moscow), 23, 42–51.Google Scholar
  13. 13.
    Pshenkina, N. N. (2008) Metabolic aspects of the regulation of apoptosis induced by exogenous factors, Bull. Russ. Acad. Military Med., 23, 219.Google Scholar
  14. 14.
    Milner, D. J., Mavroidis, M., Weisleder, N., and Capetanaki, Y. (2000) Desmin cytoskeleton linked to muscle mitochondrial distribution and respiratory function, J. Cell Biol., 150, 1283–1298.PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    Paulin, D., and Li, Z. (2004) Desmin: a major intermediate filament protein essential for the structural integrity and function of muscle, Exp. Cell Res., 301, 1–7.CrossRefPubMedGoogle Scholar
  16. 16.
    Tonshin, A. A., Saprunova, V. B., Bakeeva, L. E., and Yaguzhinskii, L. S. (2003) Functional activity and ultrastructure of mitochondria isolated from apoptotic heart tissue, Biochemistry (Moscow), 68, 875–881.CrossRefGoogle Scholar
  17. 17.
    Sudakova, Y. V., Bakeeva, L. E., and Tsyplenkova, V. G. (1999) Energy dependent changes in the ultrastructure of mitochondria of human cardiomyocytes in alcoholic heart disease, Arch. Pathol., 2, 15–20.Google Scholar
  18. 18.
    Solodovnikova, I. M., Saprunova, V. B., Bakeeva, L. E., and Yaguzhinskii, L. S. (2006) Dynamics of changes in mitochondrial ultrastructure of isolated myocardium cardiomyocytes in rats during prolonged incubation under anoxia conditions, Cytology, 48, 848–855.Google Scholar
  19. 19.
    Saprunova, V. B., Kazimirchuk, S. A., Tonshin, A. A., Bakeeva, L. E., and Yaguzhinskii, L. C. (2002) Induction of apoptosis in rat myocardium under conditions of anoxia, Biochemistry (Moscow), 67, 246–253.CrossRefGoogle Scholar
  20. 20.
    Saprunova, V. B., Bakeeva, L. E., and Yaguzhinskii, L. S. (2003) The ultrastructure of mitochondria at rat cardiomyocytes apoptosis induced by long action of anoxia, Cytology, 45, 1073–1082.Google Scholar
  21. 21.
    Saprunova, V. B., Solodovnikova, I. M., and Bakeeva, L. E. (2008) Identification of cytochrome c oxidase activity in mitochondria of isolated myocardial tissue cardiomyocytes during prolonged hypoxia, Cytology, 50, 268–274.Google Scholar
  22. 22.
    Garlid, K. D., Paucek, P., Yarov-Yarovoy, V., Murray, H. N., Darbenzio, R. B., D’ Alonzo, A. J., Lodge, N. J., Smith, M. A., and Grover, G. J. (1997) Cardioprotective effect of diazoxide and its interaction with mitochondrial ATP-sensitive K+ channels. Possible mechanism of cardioprotection, Circ. Res., 81, 1072–1082.CrossRefPubMedGoogle Scholar
  23. 23.
    Krylova, I. P., Kachaeva, E. V., Rodionova, O. M., Negoda, A. E., Evdokimova, N. R., Balina, M. I., Sapronov, N. S., and Mironova, G. D. (2006) The cardioprotective effect of uridine and uridine-5′-monophosphate: the role of the mitochondrial ATP-dependent potassium channel, Exp. Gerontol., 41, 697–703.CrossRefPubMedGoogle Scholar
  24. 24.
    Mironova, G. D., Shigaeva, M. I., Gritsenko, E. N., Murzaeva, S. V., Gorbacheva, O. S., Germanova, E. L., and Lukyanova, L. D. (2010) Functioning of the mitochondrial ATP-dependent potassium channel in rats varying in their resistance to hypoxia. Involvement of the channel in the process of animal’s adaptation to hypoxia, J. Bioenerg. Biomembr., 42, 473–481.CrossRefPubMedGoogle Scholar
  25. 25.
    Mironova, G. D., Kachaeva, E. V., Krylova, I. B., Rodionova, O. M., Balina, M. I., Evdokimova, N. R., and Sapronov, N. S. (2007) Mitochondrial ATP-sensitive potassium channel. II. The role of the channel in protecting the heart from ischemia, Bull. Russ. Acad. Med. Sci., 2, 44–50.Google Scholar
  26. 26.
    O’Rourke, B. (2004) Evidence for mitochondrial K+ channels and their role in cardioprotection, Circ. Res., 94, 420–432.PubMedCentralCrossRefPubMedGoogle Scholar
  27. 27.
    Das, M., Parker, J., and Halestrap, A. (2003) Matrix volume measurements challenge the existence of diazoxide/glibenclamide-sensitive KATP channels in rat mitochondria, J. Physiol., 547, 893–902.PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Foster, D. B., Ho, A. S., Rucker, J., Garlid, A. O., Chen, L., Sidor, A., Garlid, K. D., and O’Rourke, B. (2012) Mitochondrial ROMK channel is a molecular component of mitoKATP, Circ. Res., 111, 446–454.PubMedCentralCrossRefPubMedGoogle Scholar
  29. 29.
    Talanov, E. J., Pavlik, L. L., Shigaeva, M. I., Belosludtseva, N. V., Moshkov, D. A., and Mironova, G. D. (2013) Detection of protein family of KIR6 in the heart and liver mitochondria of rats by immunoelectron microcopies, Biol. Membr. (Moscow), 30, 474–478.Google Scholar
  30. 30.
    Malkin, V. B. (1977) Acute and Chronic Hypoxia [in Russian], Nauka, Moscow.Google Scholar
  31. 31.
    Mironova, G. D., Kachaeva, E. V., and Kopylov, A. T. (2007) Mitochondrial ATP-dependent potassium channel. I. Structure of the channel arrangements for its functioning and regulation, Bull. Russ. Acad. Med. Sci., 2, 34–43.Google Scholar
  32. 32.
    Karupu, V. J. (1984) Electron Microscopy [in Russian], Vysshaya Shkola, Kiev.Google Scholar
  33. 33.
    Weekly, B. (1975) Electron Microscopy for Beginners [Russian translation], Mir, Moscow.Google Scholar
  34. 34.
    Zaleski, V. N., and Velikaya, N. V. (2003) Mechanisms of cytotoxic effects of active oxygen molecules and the development of apoptosis, Modern Probl. Toxicol., 1, 11–17.Google Scholar
  35. 35.
    Tashke, K. (1980) Introduction to Quantitative Cyto-histological Morphology, Publishing House of the Academy of SRR, Bucharest.Google Scholar
  36. 36.
    Ushakova, T. A., Globa, A. G., and Karelin, A. A. (2007) Cytokine profile and modulation of apoptosis under thermal injury, Immunology, 28, 226–230.Google Scholar
  37. 37.
    Appaix, F., Kuznetsov, A. V., Usson, Y., Kay, L., Adrienko, T., Olivares, J., Kaambre, T., Sikk, P., Margreiter, R., and Saks, V. (2003) Adaptation of mitochondria, Exp. Physiol., 88, 175–190.CrossRefPubMedGoogle Scholar
  38. 38.
    Reipert, S., Steinbock, F., and Fischer, I. (1999) Association of mitochondria with plectin and desmin intermediate filaments in striated muscle, Exp. Cell Res., 252, 479–491.CrossRefPubMedGoogle Scholar
  39. 39.
    Polyakov, V. Yu., Soukhomlinova, M. Yu., and Fais, D. (2003) Fusion, fragmentation, and fission of mitochondria, Biochemistry (Moscow), 68, 838–849.PubMedGoogle Scholar
  40. 40.
    Skulachev, V. P., Bakeeva, L. E., Chernyak, B. V., Domnina, L. V., Minin, A. A., Pletjushkina, O. Y., Saprunova, V. B., Skulachev, I. V., Tsyplenkova, V. G., Vasiliev, J. M., Yaguzhinsky, L. S., and Zorov, D. B. (2004) Thread-grain transition of mitochondrial reticulum as a step of mitoptosis and apoptosis, Mol. Cell. Biochem., 256/257, 341–358.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • E. V. Rozova
    • 1
  • I. N. Mankovskaya
    • 1
  • G. D. Mironova
    • 2
    • 3
    Email author
  1. 1.Bogomolets Institute of PhysiologyNational Academy of Sciences of UkraineKievUkraine
  2. 2.Institute of Theoretical and Experimental BiophysicsRussian Academy of SciencesPushchinoRussia
  3. 3.Pushchino State Institute of Natural SciencesPushchinoRussia

Personalised recommendations