Biochemistry (Moscow)

, Volume 80, Issue 7, pp 943–956 | Cite as

X-ray reflectivity and grazing incidence diffraction studies of interaction between human adhesion/growth-regulatory galectin-1 and DPPE—GM1 lipid monolayer at an air/water interface

  • J. Majewski
  • S. André
  • E. Jones
  • E. Chi
  • H.-J. GabiusEmail author


The specific interaction of ganglioside GM1 with the homodimeric (prototype) endogenous lectin galectin-1 triggers growth regulation in tumor and activated effector T cells. This proven biorelevance directed interest to studying association of the lectin to a model surface, i.e. a 1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine/ganglioside GM1 (80: 20 mol%) monolayer, at a bioeffective concentration. Surface expansion by the lectin insertion was detected at a surface pressure of 20 mN/m. On combining the methods of grazing incidence X-ray diffraction and X-ray reflectivity, a transient decrease in lipid-ordered phase of the monolayer was observed. The measured electron density distribution indicated that galectin-1 is oriented with its long axis in the surface plane, ideal for cis-crosslinking. The data reveal a conspicuous difference to the way the pentameric lectin part of the cholera toxin, another GM1-specific lectin, is bound to the monolayer. They also encourage further efforts to monitor effects of structurally different members of the galectin family such as the functionally antagonistic chimera-type galectin-3.


agglutinin Bragg peaks ganglioside lectin X-ray diffraction/reflectivity 



cholera toxin pentamer






grazing incidence X-ray diffraction

LC phase

lipid-condensed phase


position-sensitive detector


X-ray reflectivity


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kopitz, J. (2009) in The Sugar Code. Fundamentals of Glycosciences (Gabius, H.-J., ed.) Wiley-VCH, Weinheim, pp. 177–198.Google Scholar
  2. 2.
    Ledeen, R. W, and Wu, G. (2009) in The Sugar Code. Fundamentals of Glycosciences (Gabius, H.-J., ed.) Wiley- VCH, Weinheim, pp. 495–516.Google Scholar
  3. 3.
    Wennekes, T, van den Berg, R. J., Boot, R. G., van der Marel, G. A., Overkleeft, H. S., and Aerts, J. M. (2009) Glycosphingolipids: nature, function, and pharmacological modulation, Angew. Chem. Int. Ed., 48, 848–869.CrossRefGoogle Scholar
  4. 4.
    Pontier, S. M., and Schweisguth, F. (2012) Glycosphingolipids in signaling and development: from liposomes to model organisms, Dev. Dyn., 241, 92–106.PubMedCrossRefGoogle Scholar
  5. 5.
    Gabius, H.-J. (2001) Probing the cons and pros of lectininduced immunomodulation: case studies for the mistletoe lectin and galectin-1, Biochimie, 83, 659–666.PubMedCrossRefGoogle Scholar
  6. 6.
    Rapoport, E. M., Kurmyshkina, O. V., and Bovin, N. V. (2008) Mammalian galectins: structure, carbohydrate specificity, and functions, Biochemistry (Moscow), 73, 393–405.CrossRefGoogle Scholar
  7. 7.
    Kaltner, H., and Gabius, H.-J. (2012) A toolbox of lectins for translating the sugar code: the galectin network in phylogenesis and tumors, Histol. Histopathol., 27, 397–416.PubMedGoogle Scholar
  8. 8.
    Solis, D., Bovin, N. V., Davis, A. P., Jimenez-Barbero, J., Romero, A., Roy, R., Smetana, K., Jr., and Gabius, H.-J. (2015) A guide into glycosciences: how chemistry, biochemistry and biology cooperate to crack the sugar code, Biochim. Biophys. Acta, 1850, 186–235.PubMedCrossRefGoogle Scholar
  9. 9.
    Siebert, H.-C., Andre, S., Lu, S.-Y., Frank, M., Kaltner, H., van Kuik, J. A., Korchagina, E. Y., Bovin, N. V., Tajkhorshid, E., Kaptein, R., Vliegenthart, J. F. G., von der Lieth, C.-W., Jimenez-Barbero, J., Kopitz, J., and Gabius, H.-J. (2003) Unique conformer selection of human growth-regulatory lectin galectin-1 for ganglioside GM1 versus bacterial toxins, Biochemistry, 42, 14762–14773.PubMedCrossRefGoogle Scholar
  10. 10.
    Andre, S., Kaltner, H., Lensch, M., Russwurm, R., Siebert, H.-C., Fallsehr, C., Tajkhorshid, E., Heck, A. J. R., von Knebel Doeberitz, M., Gabius, H.-J., and Kopitz, J. (2005) Determination of structural and functional overlap/ divergence of five proto-type galectins by analysis of the growth-regulatory interaction with ganglioside GM1 in silico and in vitro on human neuroblastoma cells, Int. J. Cancer, 114, 46–57.PubMedCrossRefGoogle Scholar
  11. 11.
    Dettmann, W, Grandbois, M., Andre, S., Benoit, M., Wehle, A. K., Kaltner, H., Gabius, H.-J., and Gaub, H. E. (2000) Differences in zero-force and force-driven kinetics of ligand dissociation from ß-galactoside-specific proteins (plant and animal lectins, immunoglobulin G) monitored by plasmon resonance and dynamic single molecule force microscopy, Arch. Biochem. Biophys., 383, 157–170.PubMedCrossRefGoogle Scholar
  12. 12.
    Kopitz, J., von Reitzenstein, C., Andre, S., Kaltner, H., Uhl, J., Ehemann, V., Cantz, M., and Gabius, H.-J. (2001) Negative regulation of neuroblastoma cell growth by carbohydrate- dependent surface binding of galectin-1 and functional divergence from galectin-3, J. Biol. Chem., 276, 35917–35923.PubMedCrossRefGoogle Scholar
  13. 13.
    Wang, J., Lu, Z.-H., Gabius, H.-J., Rohowsky-Kochan, C., Ledeen, R. W, and Wu, G. (2009) Cross-linking of GM1 ganglioside by galectin-1 mediates regulatory T cell activity involving TRPC5 channel activation: possible role in suppressing experimental autoimmune encephalomyelitis, J. Immunol., 182, 4036–4045.PubMedCrossRefGoogle Scholar
  14. 14.
    Kopitz, J., Bergmann, M., and Gabius, H.-J. (2010) How adhesion/growth-regulatory galectins-1 and-3 attain cell specificity: case study defining their target on neuroblastoma cells (SK-N-MC) and marked affinity regulation by affecting microdomain organization of the membrane, IUBMB Life, 62, 624–628.PubMedCrossRefGoogle Scholar
  15. 15.
    Wu, G., Lu, Z.-H., Gabius, H.-J., Ledeen, R. W., and Bleich, D. (2011) Ganglioside GM1 deficiency in effector T cells from NOD mice induces resistance to regulatory Tcell suppression, Diabetes, 60, 2341–2349.PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Ledeen, R. W., Wu, G., Andre, S., Bleich, D., Huet, G., Kaltner, H., Kopitz, J., and Gabius, H.-J. (2012) Beyond glycoproteins as galectin counter-receptors: tumor/effector T cell growth control via ganglioside GM1, Ann. N. Y. Acad. Sci., 1253, 206–221.PubMedCrossRefGoogle Scholar
  17. 17.
    Lencer, W I., and Saslowsky, D. (2005) Raft trafficking of AB5 subunit bacterial toxins, Biochim, Biophys, Acta, 1746, 314–321.CrossRefGoogle Scholar
  18. 18.
    Beddoe, T, Paton, A. W., Le Nours, J., Rossjohn, J., and Paton, J. C. (2010) Structure, biological functions and applications of the AB5 toxins, Trends Biochem, Sci., 35, 411–418.CrossRefGoogle Scholar
  19. 19.
    Fajka-Boja, R., Blasko, A., Kovacs-Solyom, F., Szebeni, G. J., Toth, G. K., and Monostori, E. (2008) Co-localization of galectin-1 with GM1 ganglioside in the course of its clathrin- and raft-dependent endocytosis, Cell, Mol, Life Sci., 65, 2586–2593.CrossRefGoogle Scholar
  20. 20.
    Sobel, D. O., Yankelevich, B., Goyal, D., Nelson, D., and Mazumder, A. (1998) The B-subunit of cholera toxin induces immunoregulatory cells and prevents diabetes in the NOD mouse, Diabetes, 47, 186–191.PubMedCrossRefGoogle Scholar
  21. 21.
    Williams, N. A., Hirst, T R., and Nashar, T. O. (1999) Immune modulation by the cholera-like enterotoxins: from adjuvant to therapeutic, Immunol, Today, 20, 95–101.CrossRefGoogle Scholar
  22. 22.
    Salmond, R. J., Luross, J. A., and Williams, N. A. (2002) Immune modulation by the cholera-like enterotoxins, Expert Rev. Mol, Med., 4, 1–16.CrossRefGoogle Scholar
  23. 23.
    Kopitz, J., Ballikaya, S., Andre, S., and Gabius, H.-J. (2012) Ganglioside GM1/galectin-dependent growth regulation in human neuroblastoma cells: special properties of bivalent galectin-4 and significance of linker length for ligand selection, Neurochem, Res, 37, 1267–1276.CrossRefGoogle Scholar
  24. 24.
    Gupta, R. K., Pande, A. H., Gulla, K. C., Gabius, H.-J., and Hajela, K. (2006) Carbohydrate-induced modulation of cell membrane. VIII. Agglutination with mammalian lectin galectin-1 increases osmofragility and membrane fluidity of trypsinized erythrocytes, FEBS Lett., 580, 16911695.PubMedCrossRefGoogle Scholar
  25. 25.
    He, L., Andre, S., Siebert, H.-C., Helmholz, H., Niemeyer, B., and Gabius, H.-J. (2003) Detection of ligand- and solvent-induced shape alterations of cell-growthregulatory human lectin galectin-1 in solution by small angle neutron and X-ray scattering, Biophys, J., 85, 511–524.CrossRefGoogle Scholar
  26. 26.
    Purkrabkova, T, Smetana, K., Jr., Dvorankova, B., Holikova, Z., Bock, C., Lensch, M., Andre, S., Pytlik, R., Liu, F.-T, Klima, J., Smetana, K., Motlik, J., and Gabius, H.-J. (2003) New aspects of galectin functionality in nuclei of cultured bone marrow stromal and epidermal cells: biotinylated galectins as tool to detect specific binding sites, Biol, Cell, 95, 535–545.CrossRefGoogle Scholar
  27. 27.
    Andre, S., Sanchez-Ruderisch, H., Nakagawa, H., Buchholz, M., Kopitz, J., Forberich, P., Kemmner, W, Bock, C., Deguchi, K., Detjen, K. M., Wiedenmann, B., von Knebel Doeberitz, M., Gress, T M., Nishimura, S.-I., Rosewicz, S., and Gabius, H.-J. (2007) Tumor suppressor p16INK4a: modulator of glycomic profile and galectin-1 expression to increase susceptibility to carbohydratedependent induction of anoikis in pancreatic carcinoma cells, FEBS J., 274, 3233–3256.PubMedCrossRefGoogle Scholar
  28. 28.
    Amano, M., Eriksson, H., Manning, J. C., Detjen, K. M., Andre, S., Nishimura, S.-I., Lehtio, J., and Gabius, H.-J. (2012) Tumor suppressor p16INK4a: anoikis-favoring decrease in N/O-glycan/cell surface sialylation by downregulation of enzymes in sialic acid biosynthesis in tandem in a pancreatic carcinoma model, FEBS J., 279, 4062–4080.PubMedCrossRefGoogle Scholar
  29. 29.
    Majewski, J., Popovitz-Biro, R., Bouwman, W. G., Kjaer, K., Als-Nielsen, J., Lahav, M., and Leiserowitz, L. (1995) The structural properties of uncompressed crystalline monolayers of alcohols CnH2n+1OH (n = 13-31) on water and their role as ice nucleators, Chem, Eur. J., 1, 304–311.CrossRefGoogle Scholar
  30. 30.
    Als-Nielsen, J., and Kjsr, K. (1999) in Phase Transitions in Soft Condensed Matter (Riste, T, and Sherrington, D., eds.) Springer, pp. 113–138.Google Scholar
  31. 31.
    Kjffir, K. (1994) Some simple ideas on X-ray reflection and grazing-incidence diffraction from thin surfactant films, Physica B: Condensed Matter, 198, 100–109.Google Scholar
  32. 32.
    Eisenberger, P., and Marra, W C. (1981) X-Ray diffraction study of the Ge(001) reconstructed surface, Phys, Rev, Lett., 46, 1081–1084.CrossRefGoogle Scholar
  33. 33.
    Als-Nielsen, J., Jacquemain, D., Kjaer, K., Leveiller, F., Lahav, M., and Leiserowitz, L. (1994) Principles and applications of grazing incidence X-ray and neutron scattering from ordered molecular monolayers at the air-water interface, Phys, Rep., 246, 251–313.CrossRefGoogle Scholar
  34. 34.
    Jensen, T R., Balashev, K., Bjornholm, T, and Kjaer, K. (2001) Novel methods for studying lipids and lipases and their mutual interaction at interfaces. Part II. Surface sensitive synchrotron X-ray scattering, Biochimie, 83, 399–408.PubMedCrossRefGoogle Scholar
  35. 35.
    Seelig, A. (1987) Local anesthetics and pressure: a comparison of dibucaine binding to lipid monolayers and bilayers, Biochim, Biophys, Acta, 899, 196–204.CrossRefGoogle Scholar
  36. 36.
    Guinier, A. (1963) X-Ray Diffraction in Crystals, Imperfect Crystals, and Amorphous Bodies, W. H. Freeman, San Francisco.Google Scholar
  37. 37.
    Danauskas, S. M., Li, D., Meron, M., Lin, B., and Lee, K. Y. C. (2008) Stochastic fitting of specular X-ray reflectivity data using StochFit, J, Appl, Crystallogr., 41, 1187–1193.CrossRefGoogle Scholar
  38. 38.
    Miller, C. E., Majewski, J., Watkins, E. B., and Kuhl, T L. (2008) An X-ray scattering study of cholera toxin penetration and induced phase transformations in lipid membranes, Biophys, J., 95, 629–640.CrossRefGoogle Scholar
  39. 39.
    Miller, C. E., Majewski, J., Watkins, E. B., Weygand, M., and Kuhl, T. L. (2008) Diffraction from two-dimensional cholera toxin crystals bound to their receptors in a lipid monolayer, Biophys, J., 95, 641–647.CrossRefGoogle Scholar
  40. 40.
    Watkins, E. B., Miller, C. E., Majewski, J., and Kuhl, T L. (2011) Membrane texture induced by specific protein binding and receptor clustering: active roles for lipids in cellular function, Proc, Natl, Acad, Sci. USA, 108, 6975–6980.CrossRefGoogle Scholar
  41. 41.
    Majewski, J., Kuhl, T L., Kjaer, K., and Smith, G. S. (2001) Packing of ganglioside-phospholipid monolayers: an X-ray diffraction and reflectivity study, Biophys J., 81, 2707–2715.PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Smetana, K., Jr., Andre, S., Kaltner, H., Kopitz, J., and Gabius, H.-J. (2013) Context-dependent multifunctionality of galectin-1: a challenge for defining the lectin as therapeutic target, Expert Opin, Ther. Targets, 17, 379–392.CrossRefGoogle Scholar
  43. 43.
    Martinez-Bosch, N., Fernandez-Barrena, M. G., Moreno, M., Ortiz-Zapater, E., Munne-Collado, J., Iglesias, M., Andre, S., Gabius, H.-J., Hwang, R. F., Poirier, F., Navas, C., Guerra, C., Fernandez-Zapico, M. E., and Navarro, P. (2014) Galectin-1 drives pancreatic carcinogenesis through stroma remodeling and hedgehog signaling activation, Cancer Res., 74, 3512–3524.PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Patel, R. Y, and Balaji, P. V. (2007) Characterization of the conformational and orientational dynamics of ganglioside GM1 in a dipalmitoylphosphatidylcholine bilayer by molecular dynamics simulations, Biochim. Biophys. Acta, 1768, 1628–1640.PubMedCrossRefGoogle Scholar
  45. 45.
    Jedlovszky, P., Sega, M., and Vallauri, R. (2009) GM1 ganglioside embedded in a hydrated DOPC membrane: a molecular dynamics simulation study, J. Phys. Chem. B, 113, 4876–4886.PubMedCrossRefGoogle Scholar
  46. 46.
    Kaltner, H., Solis, D., Kopitz, J., Lensch, M., Lohr, M., Manning, J. C., Mürnseer, M., Schnolzer, M., Andre, S., Saiz, J. L., and Gabius, H.-J. (2008) Prototype chicken galectins revisited: characterization of a third protein with distinctive hydrodynamic behaviour and expression pattern in organs of adult animals, Biochem. J., 409, 591–599.PubMedCrossRefGoogle Scholar
  47. 47.
    Lopez-Lucendo, M. F., Solis, D., Andre, S., Hirabayashi, J., Kasai, K.-I., Kaltner, H., Gabius, H.-J., and Romero, A. (2004) Growth-regulatory human galectin-1: crystallographic characterisation of the structural changes induced by single-site mutations and their impact on the thermodynamics of ligand binding, J. Mol. Biol., 343, 957–970.PubMedCrossRefGoogle Scholar
  48. 48.
    Zeng, F.-Y., Gerke, V., and Gabius, H.-J. (1993) Identification of annexin II, annexin VI and glyceraldehyde- 3-phosphate dehydrogenase as calcyclin-binding proteins in bovine heart, Int. J. Biochem., 25, 1019–1027.PubMedCrossRefGoogle Scholar
  49. 49.
    Gerke, V., and Moss, S. E. (2002) Annexins: from structure to function, Physiol. Rev., 82, 331–371.PubMedCrossRefGoogle Scholar
  50. 50.
    Lukyanov, P., Furtak, V., and Ochieng, J. (2005) Galectin- 3 interacts with membrane lipids and penetrates the lipid bilayer, Biochem. Biophys. Res. Commun., 338, 1031–1036.PubMedCrossRefGoogle Scholar
  51. 51.
    Wilson, T. J. G., Firth, M. N., Powell, J. T, and Harrison, F. L. (1989) The sequence of the mouse 14 kDa ß-galactoside- binding lectin and evidence for its synthesis on free cytoplasmic ribosomes, Biochem. J., 261, 847–852.PubMedCentralPubMedGoogle Scholar
  52. 52.
    Hughes, R. C. (1999) Secretion of the galectin family of mammalian carbohydrate-binding proteins, Biochim. Biophys. Acta, 1473, 172–185.PubMedCrossRefGoogle Scholar
  53. 53.
    Ledeen, R. W, and Wu, G. (2006) Sphingolipids of the nucleus and their role in nuclear signaling, Biochim. Biophys. Acta, 1761, 588–598.PubMedCrossRefGoogle Scholar
  54. 54.
    Ledeen, R., and Wu, G. (2011) New findings on nuclear gangliosides: overview on metabolism and function, J. Neurochem., 116, 714–720.PubMedCrossRefGoogle Scholar
  55. 55.
    Saussez, S., Decaestecker, C., Lorfevre, F., Chevalier, D., Mortuaire, G., Kaltner, H., Andre, S., Toubeau, G., Gabius, H.-J., and Leroy, X. (2008) Increased expression and altered intracellular distribution of adhesion/growthregulatory lectins galectins-1 and during tumour progression in hypopharyngeal and laryngeal squamous cell carcinomas, Histopathology, 52, 483–493.PubMedCrossRefGoogle Scholar
  56. 56.
    Nasrabadi, D., Larijani, M. R., Fathi, A., Gourabi, H., Dizaj, A. V., Baharvand, H., and Salekdeh, G. H. (2010) Nuclear proteome analysis of monkey embryonic stem cells during differentiation, Stem Cell Rev., 6, 50–61.PubMedCrossRefGoogle Scholar
  57. 57.
    Kodet, O., Dvorankova, B., Lacina, L., Andre, S., Kaltner, H., Gabius, H.-J., and Smetana, K., Jr. (2011) Comparative analysis of the nuclear presence of adhesion/ growth-regulatory galectins and reactivity in the nuclei of interphasic and mitotic cells, Folia Biol., 57, 125–132.Google Scholar
  58. 58.
    Remmelink, M., de Leval, L., Decaestecker, C., Duray, A., Crompot, E., Sirtaine, N., Andre, S., Kaltner, H., Leroy, X., Gabius, H.-J., and Saussez, S. (2011) Quantitative immunohistochemical fingerprinting of adhesion/growthregulatory galectins in salivary gland tumours: divergent profiles with diagnostic potential, Histopathology, 58, 543–556.PubMedCrossRefGoogle Scholar
  59. 59.
    Villalobo, A., Nogales-Gonzalez, A., and Gabius, H.-J. (2006) A guide to signaling pathways connecting protein- glycan interaction with the emerging versatile effector functionality of mammalian lectins, Trends Glycosci. Glycotechnol., 99, 1–37.CrossRefGoogle Scholar
  60. 60.
    Rapoport, E. M., Andre, S., Kurmyshkina, O. V., Pochechueva, T. V., Severov, V. V., Pazynina, G. V., Gabius, H.-J., and Bovin, N. V. (2008) Galectin-loaded cells as a platform for the profiling of lectin specificity by fluorescent neoglycoconjugates: a case study on galectins-1 and-3 and the impact of assay setting, Glycobiology, 18, 315–324.PubMedCrossRefGoogle Scholar
  61. 61.
    Chernyy, E. S., Rapoport, E. M., Andre, S., Kaltner, H., Gabius, H.-J., and Bovin, N. V. (2011) Galectins promote the interaction of influenza virus with its target cell, Biochemistry (Moscow), 76, 958–967.CrossRefGoogle Scholar
  62. 62.
    Dvorankova, B., Szabo, P., Lacina, L., Gal, P., Uhrova, J., Zima, T., Kaltner, H., Andre, S., Gabius, H.-J., Sykova, E., and Smetana, K., Jr. (2011) Human galectins induce conversion of dermal fibroblasts into myofibroblasts and production of extracellular matrix: potential application in tissue engineering and wound repair, Cells Tissues Organs, 194, 469–480.PubMedCrossRefGoogle Scholar
  63. 63.
    Vokhmyanina, O. A., Rapoport, E. M., Ryzhov, I. M., Korchagina, E. Y, Pazynina, G. V., Severov, V. V., Kaltner, H., Andre, S., Gabius, H.-J., and Bovin, N. V. (2011) Carbohydrate specificity of chicken and human tandemrepeat- type galectins-8 in composition of cells, Biochemistry (Moscow), 76, 1185–1192.CrossRefGoogle Scholar
  64. 64.
    Vokhmyanina, O. A., Rapoport, E. M., Andre, S., Severov, V. V., Ryzhov, I., Pazynina, G. V., Korchagina, E., Gabius, H.-J., and Bovin, N. V. (2012) Comparative study of the glycan specificities of cell-bound human tandem-repeattype galectins-4,-8 and-9, Glycobiology, 22, 1207–1217.PubMedCrossRefGoogle Scholar
  65. 65.
    Murphy, P. V., Andre, S., and Gabius, H.-J. (2013) The third dimension of reading the sugar code by lectins: design of glycoclusters with cyclic scaffolds as tools with the aim to define correlations between spatial presentation and activity, Molecules, 18, 4026–4053.PubMedCrossRefGoogle Scholar
  66. 66.
    Andre, S., Wang, G. N., Gabius, H.-J., and Murphy, P. V. (2014) Combining glycocluster synthesis with protein engineering: an approach to probe into the significance of linker length in a tandem-repeat-type lectin (galectin-4), Carbohydr. Res., 389, 25–38.PubMedCrossRefGoogle Scholar
  67. 67.
    Ruiz, F. M., Scholz, B. A., Buzamet, E., Kopitz, J., Andre, S., Menendez, M., Romero, A., Solis, D., and Gabius, H.- J. (2014) Natural single amino acid polymorphism (F19Y) in human galectin-8: detection of structural alterations and increased growth-regulatory activity on tumor cells, FEBS J., 281, 1446–1464.PubMedCrossRefGoogle Scholar
  68. 68.
    Sanchez-Ruderisch, H., Fischer, C., Detjen, K. M., Welzel, M., Wimmel, A., Manning, J. C., Andre, S., and Gabius, H.-J. (2010) Tumor suppressor p16 INK4a: downregulation of galectin-3, an endogenous competitor of the proanoikis effector galectin-1, in a pancreatic carcinoma model, FEBS J., 277, 3552–3563.PubMedCrossRefGoogle Scholar
  69. 69.
    Kopitz, J., Vertesy, S., Andre, S., Fiedler, S., Schnolzer, M., and Gabius, H.-J. (2014) Human chimera-type galectin-3: defining the critical tail length for high-affinity glycoprotein/cell surface binding and functional competition with galectin-1 in neuroblastoma cell growth regulation, Biochimie, 104, 90–99.PubMedCrossRefGoogle Scholar
  70. 70.
    Dawson, H., Andre, S., Karamitopoulou, E., Zlobec, I., and Gabius, H.-J. (2013) The growing galectin network in colon cancer and clinical relevance of cytoplasmic galectin-3 reactivity, Anticancer Res., 33, 3053–3059.PubMedGoogle Scholar
  71. 71.
    Jose, B., Mallon, C. T, Forster, R. J., Blackledge, C., and Keyes, T E. (2011) Lipid bilayer assembly at a gold nanocavity array, Chem. Commun., 47, 12530–12532.CrossRefGoogle Scholar
  72. 72.
    Mahfoud, R., Manis, A., Binnington, B., Ackerley, C., and Lingwood, C. A. (2010) A major fraction of glycosphingolipids in model and cellular cholesterol-containing membranes is undetectable by their binding proteins, J. Biol. Chem., 285, 36049–36059.PubMedCentralPubMedCrossRefGoogle Scholar
  73. 73.
    Lingwood, D., Binnington, B., Rog, T, Vattulainen, I., Grzybek, M., Coskun, U., Lingwood, C. A., and Simons, K. (2011) Cholesterol modulates glycolipid conformation and receptor activity, Nat. Chem. Biol., 7, 260–262.PubMedCrossRefGoogle Scholar
  74. 74.
    Rondelli, V., Fragneto, G., Motta, S., Del Favero, E., Brocca, P., Sonnino, S., and Cantu, L. (2012) Ganglioside GM1 forces the redistribution of cholesterol in a biomimetic membrane, Biochim. Biophys. Acta, 1818, 2860–2867.PubMedCrossRefGoogle Scholar
  75. 75.
    Novak, A., Binnington, B., Ngan, B., Chadwick, K., Fleshner, N., and Lingwood, C. A. (2013) Cholesterol masks membrane glycosphingolipid tumor-associated antigens to reduce their immunodetection in human cancer biopsies, Glycobiology, 23, 1230–1239.PubMedCrossRefGoogle Scholar
  76. 76.
    Percec, V., Leowanawat, P., Sun, H. J., Kulikov, O., Nusbaum, C. D., Tran, T M., Bertin, A., Wilson, D. A., Peterca, M., Zhang, S., Kamat, N. P., Vargo, K., Moock, D., Johnston, E. D., Hammer, D. A., Pochan, D. J., Chen, Y., Chabre, Y. M., Shiao, T C., Bergeron-Brlek, M., Andre, S., Roy, R., Gabius, H.-J., and Heiney, P. A. (2013) Modular synthesis of amphiphilic Janus glycodendrimers and their self-assembly into glycodendrimersomes and other complex architectures with bioactivity to biomedically relevant lectins, J. Am. Chem. Soc., 135, 9055–9077.PubMedCrossRefGoogle Scholar
  77. 77.
    Zhang, S., Moussodia, R. O., Sun, H. J., Leowanawat, P., Muncan, A., Nusbaum, C. D., Chelling, K. M., Heiney, P. A., Klein, M. L., Andre, S., Roy, R., Gabius, H.-J., and Percec, V. (2014) Mimicking biological membranes with programmable glycan ligands self-assembled from amphiphilic Janus glycodendrimers, Angew. Chem. Int. Ed., 53, 10899–10903.CrossRefGoogle Scholar
  78. 78.
    Zhang, S., Moussodia, R. O., Murzeau, C., Sun, H. J., Klein, M. L., Vertesy, S., Andre, S., Roy, R., Gabius, H.-J., and Percec, V. (2015) Dissecting molecular aspects of cell interactions using glycodendrimersomes with programmable glycan presentation and engineered human lectins, Angew. Chem. Int. Ed., 54, 4036–4040.CrossRefGoogle Scholar
  79. 79.
    Zhang, S., Moussodia, R. O., Vertesy, S., André, S., Klein, M. L., Gabius, H.-J., and Percec, V. (2015) Unraveling functional significance of natural variations of a human galectin by glycodendrimersomes with programmable glycan surface, Proc. Natl. Acad. Sci. USA, 112, 5585–5590.PubMedCentralPubMedCrossRefGoogle Scholar
  80. 80.
    Gabius, H.-J. (2015) The magic of the sugar code, Trends Biochem. Sci., 40, 341.PubMedCrossRefGoogle Scholar
  81. 81.
    Gabius, H.-J., Kaltner, H., Kopitz, J., and André, S. (2015) The glycobiology of the CD system: a dictionary for translating marker designations into glycan/lectin structure and function, Trends Biochem. Sci., 40, 360–376.PubMedCrossRefGoogle Scholar
  82. 82.
    Ledeen, R. W., and Wu, G. (2015) The multi-tasked life of GM1 ganglioside: a true factotum of nature, Trends Biochem. Sci., 40, 407–418.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • J. Majewski
    • 1
  • S. André
    • 2
  • E. Jones
    • 3
  • E. Chi
    • 3
  • H.-J. Gabius
    • 2
    Email author
  1. 1.Neutron Scattering Center, Los Alamos Neutron Science CenterLos Alamos National LaboratoryLos AlamosUSA
  2. 2.Institute of Physiological Chemistry, Faculty of Veterinary MedicineLudwig-Maximilians-University MunichMünchenGermany
  3. 3.Department of Chemical and Biological Engineering, Center for Biomedical EngineeringUniversity of New MexicoAlbuquerqueUSA

Personalised recommendations