Biochemistry (Moscow)

, Volume 80, Issue 7, pp 934–942 | Cite as

High-throughput glycomics: Optimization of sample preparation

  • I. Trbojević AkmačićEmail author
  • I. Ugrina
  • J. Štambuk
  • I. Gudelj
  • F. Vučković
  • G. Lauc
  • M. Pučić-Baković


Glycosylation affects structure, folding, and function of numerous proteins. Aberrant glycosylation has been shown to be associated with different diseases. A wide range of analytical methods is available for glycan analysis of antibodies (mainly IgG), but analysis of plasma glycans is less established due to additional challenges encountered with higher complexity of the sample. Here we describe development and optimization of a high-throughput sample preparation method for hydrophilic interaction liquid chromatography and ultra-performance liquid chromatography analysis of plasma N-glycans. Clean-up of labeled glycans was found to be the largest source of variation, and we tested cellulose, silica gel, Bio-Gel, and hydrophilic GHP filter as stationary phases for solid-phase extraction. All stationary phases were shown to be suitable for purification of labeled glycans, but GHP filter plate in combination with cold 96% acetonitrile had the highest reproducibility and was easiest to work with. The method was further optimized with Plackett—Burman screening design and validated in terms of analysis of major step variation and between-day and between-person variation. The developed method is fast, cost-effective, and easy to perform, and it has very good reproducibility during long period of time, enabling the detection of biological variability of the plasma N-glycome.


plasma glycans high-throughput glycome analysis HILIC UPLC 







coefficient of variation


hydrophilic polypropylene


hydrophilic interaction liquid chromatography


2-picoline borane


solid-phase extraction


ultra-performance liquid chromatography


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gornik, O., and Lauc, G. (2008) Glycosylation of serum proteins in inflammatory diseases, Dis. Markers, 25, 267–278.PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Ohtsubo, K., and Marth, J. D. (2006) Glycosylation in cellular mechanisms of health and disease, Cell, 126, 855–867.PubMedCrossRefGoogle Scholar
  3. 3.
    Huffman, J. E., Pucic-Bakovic, M., Klaric, L., Hennig, R., Selmane, M. H. J., VuCkoviC, F., Novokmet, M., KristiC, J., Borowiak, M., Muth, T, Polasek, O., Razdorov, G., Gornik, O., Plompe, R., Theodoratou, E., Wright, A. F., Rudan, I., Hayward, C., Campbell, H., Deelder, A. M., Reichl, U., Aulchenko, Y S., Rapp, E., Wuhrer, M., and Lauc, G. (2014) Comparative performance of four methods for high-throughput glycosylation analysis of immunoglobulin G in genetic and epidemiological research, Mol. Cell Proteom., 13, 1598–1610.CrossRefGoogle Scholar
  4. 4.
    Royle, L., Campbell, M. P., Radcliffe, C. M., White, D. M., Harvey, D. J., Abrahams, J. L., Kim, Y. G., Henry, G. W., Shadick, N. A., Weinblatt, M. E., Lee, D. M., Rudd, P. M., and Dwek, R. A. (2008) HPLC based analysis of serum N-glycans on a 96-well plate platform with dedicated database software, Anal. Biochem., 376, 1–12.PubMedCrossRefGoogle Scholar
  5. 5.
    Burnina, I., Hoyt, E., Lynaugh, H., Li, H., and Gong, B. (2013) A cost-effective plate-based sample preparation for antibody N-glycan analysis, J. Chromatogr. A, 1307, 201–206.PubMedCrossRefGoogle Scholar
  6. 6.
    Stöckmann, H., Adamczyk, B., Hayes, J., and Rudd, P. M. (2013) Automated, high-throughput IgG-antibody glycoprofiling platform, Anal. Chem., 85, 8841–8849.PubMedCrossRefGoogle Scholar
  7. 7.
    PuCiC, M., Pinto, S., Novokmet, M., KnezeviC, A., Gornik, O., Polasek, O., VlahoviCek, K., Wang, W., Rudd, P. M., Wright, A. F., Campbell, H., Rudan, I., and Lauc, G. (2010) Common aberrations from the normal human plasma N-glycan profile, Glycobiology, 20, 970–975.PubMedCrossRefGoogle Scholar
  8. 8.
    PuCiC, M., MuziniC, A., Novokmet, M., Skledar, M., Pivac, N., Lauc, G., and Gornik, O. (2012) Changes in plasma and IgG N-glycome during childhood and adolescence, Glycobiology, 22, 975–982.PubMedCrossRefGoogle Scholar
  9. 9.
    Saldova, R., Shehni, A. A., Haaksen, V. D., Steinfeld, I., Hilliard, M., Kifer, I., Helland, E., Yakhini, Z., Bnrresen-Dale, A.-L., and Rudd, P. M. (2014) Association of N-gly-cosylation with breast carcinoma and systemic features using high-resolution quantitative UPLC, J. ProteomeRes., 13, 2314–2327.CrossRefGoogle Scholar
  10. 10.
    Novokmet, M., Pucic, M., Redzic, I., Muzinic, A., and Gornik, O. (2012) Robustness testing of the high through-put HPLC-based analysis of plasma N-glycans, Biochim. Biophys. Acta, 1820, 1399–1404.PubMedCrossRefGoogle Scholar
  11. 11.
    Reusch, D., Haberger, M., Maier, B., Maier, M., Kloseck, R., Zimmermann, B., Hook, M., Szabo, Z., Tep, S., Wegstein, J., Alt, N., Bulau, P., and Wuhrer, M. (2015) Comparison of methods for the analysis of therapeutic immunoglobulin G Fc-glycosylation profiles. Part 1. Separation-based methods, mAbs, 7, 167–179.PubMedCrossRefGoogle Scholar
  12. 12.
    Bigge, J. C., Patel, T P., Bruce, J. A., Goulding, P. N., Charles, S. M., and Parekh, R. B. (1995) Nonselective and efficient fluorescent labeling of glycans using 2-aminobenz-amide and anthranilic acid, Anal. Biochem., 230, 229–238.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • I. Trbojević Akmačić
    • 1
    Email author
  • I. Ugrina
    • 1
  • J. Štambuk
    • 1
  • I. Gudelj
    • 1
  • F. Vučković
    • 1
  • G. Lauc
    • 1
    • 2
  • M. Pučić-Baković
    • 1
  1. 1.Genos Glycoscience Research LaboratoryZagrebCroatia
  2. 2.Faculty of Pharmacy and BiochemistryUniversity of ZagrebZagrebCroatia

Personalised recommendations