Advertisement

Biochemistry (Moscow)

, Volume 80, Issue 7, pp 925–933 | Cite as

Influence of fucoidans and their derivatives on antitumor and phagocytic activity of human blood leucocytes

  • N. Yu. AnisimovaEmail author
  • N. E. UstyuzhaninaEmail author
  • F. V. Donenko
  • M. I. Bilan
  • N. A. Ushakova
  • A. I. Usov
  • N. E. Nifantiev
  • M. V. Kiselevskiy
Article

Abstract

The immunotropic activity of structurally different fucoidans and their derivatives towards isolated immune blood cells, effectors of innate immune system, was studied. The most potent effect was observed for high molecular weight fucoidan CF from the alga Chordaria flagelliformis, whose backbone is built of (1→3)-linked units of α-L-fucopyranose, and branches included residues of α-D-glucuronic acid and α-L-fucofuranose. This compound at the concentration of 0.05 mg/ml potentiated phagocytosis of Saccharomyces cerevisiae and Lactobacillus acidophilus by neutrophils, increasing relative quantity of phagocytes as well as their effectiveness. Along with this, 14% increase in the concentration of membrane-bound integrin CD11c molecules was observed. The systemic effect of CF at the dose of 0.01 mg/mouse i.p. led to potentiation of cytotoxic activity of spleen mononuclear leucocytes towards melanoma cells of line B16 by 1.9-fold and towards chronic myelogenous leukemia cells of line K-562 by 1.7-fold. These results indicate that fucoidan CF can stimulate anti-infective and antitumor activity of effectors of the innate immune system via CD11c integrins.

Keywords

fucoidans leucocytes natural killers phagocytosis cytotoxicity 

Abbreviation

CF

high molecular weight fucoidan from alga Chordaria flagelliformis

DMSO

dimethyl sulfoxide

EC

effector cells

IC

index of cytotoxicity

MFI

mean fluorescence intensity

ML

mononuclear leukocytes

NBT

nitroblue tetrazolium

NK

natural killer cells

OS

synthetic fully sulfated octasaccharide

PI

phagocytic index

PN

phagocytic number

PPdX

dexylosylated low molecular weight fucoidan from alga Punctaria plantaginea

SL

high molecular weight fucoidan from alga Saccharina latissima

TC

target cells

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fitton, J. H. (2011) Therapies from fucoidan; multifunctional marine polymers, Mar. Drugs, 9, 1731–1760.PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Pomin, V. H. (2012) Fucanomics and galactanomics: current status in drug discovery, mechanisms of action and role of the well-defined structures, Biochim. Biopys. Acta, 1820, 1971–1979.CrossRefGoogle Scholar
  3. 3.
    Jiao, G., Yu, G., Zhang, J., and Ewart, S. (2011) Chemical structures and bioactivities of sulfated polysaccharides from marine algae, Mar. Drugs, 9, 196–223.PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Ale, M. T, Mikkelsen, J. D., and Meyer, A. S. (2011) Important determinants for fucoidan bioactivity: a critical review of structure-function relations and extraction methods for fucose-containing sulfated polysaccharides from brown seaweeds, Mar. Drugs, 9, 2106–2130.PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Ananikov, V. P., Khokhlova, E. A., Egorov, M. P., Sakharov, A. M., Zlotin, S. G., Kucherov, A. V., Kustov, L. M., Gening, M. L., and Nifantiev, N. E. (2015) Organic and hybrid molecular systems, Mendeleev Commun., 25, 75–82.CrossRefGoogle Scholar
  6. 6.
    Jin, J., and Yu, Q. (2015) Fucoidan delays apoptosis and induces pro-inflammatory cytokine production in human neutrophils, Int. J. Biol. Macromol., 73, 65–71.PubMedCrossRefGoogle Scholar
  7. 7.
    Makarenkova, I. D., Logunov, D. Y., Tukhvatulin, A. I., Semenova, I. B., Zvyagintseva, T N., Gorbach, V. I., Ermakova, S. P., and Besednova, N. N. (2012) Sulfated polysaccharides of brown seaweeds are ligands of toll-like receptors, Biochem. Mosc. Suppl. Ser. B. Biomed. Chem., 6, 75–80.CrossRefGoogle Scholar
  8. 8.
    Jin, J-O., Zhang, W., Du, J-Y, Wong, K-W., Oda, T, and Yu, Q. (2014) Fucoidan can function as an adjuvant in vivo to enhance dendritic cell maturation and function and promote antigen-specific T-cell immune responses, PLoS One, 9, e99396.CrossRefGoogle Scholar
  9. 9.
    Cumashi, A., Ushakova, N. A., Preobrazhenskaya, M. E., D’Incecco, A., Piccoli, A., Totani, L., Tinari, N., Morozevich, G. E., Berman, A. E., Bilan, M. A., Usov, A. I., Ustuzhanina, N. E., Sanderson, C. J., Kelly, M., Rabinovich, G. A., Iacobelli, S., and Nifantiev, N. E. (2007) A comparative study of the antiinflammatory, anticoagulant, antiangiogenic and antiadhesive activities of nine different fucoidans from brown seaweeds, Glycobiology, 17, 541–552.PubMedCrossRefGoogle Scholar
  10. 10.
    Ustyuzhanina, N. E., Ushakova, N. A., Zyuzina, K. A., Bilan, M. I., Elizarova, A. L., Somonova, O. V., Madzhuga, A. V., Krylov, V. B., Preobrazhenskaya, M. E., Usov, A. I., Kiselevskiy, M. V., and Nifantiev, N. E. (2013) Influence of fucoidans on hemostatic system, Mar. Drugs, 11, 24442458.CrossRefGoogle Scholar
  11. 11.
    Ustyuzhanina, N. E., Bilan, M. I., Ushakova, N. A., Usov, A. I., Kiselevskiy, M. V., and Nifantiev, N. E. (2014) Fucoidans: pro- or antiangiogenic agents, Glycobiology, 24, 1265–1274.PubMedCrossRefGoogle Scholar
  12. 12.
    Ustyuzhanina, N. E., Ushakova, N. A., Preobrazhenskaya, M. E., Bilan, M. I., Tsvetkova, E. A., Krylov, V. B., Anisimova, N. A., Kiselevskiy, M. V., Krukovskaya, N. V., Li, C., Yu, G., Saran, S., Saxena, R. K., Usov, A. I., and Nifantiev, N. E. (2014) Fucoidans as a platform for new anticoagulant drugs discovery, Pure Appl. Chem., 86, 13651375.CrossRefGoogle Scholar
  13. 13.
    Bilan, M. I., Grachev, A. A., Shashkov, A. S., Kelly, M., Sanderson, C. J., Nifantiev, N. E., and Usov, A. I. (2010) Further studies on the composition and structure of a fucoidan preparation from the brown alga Saccharina latissima, Carbohydr. Res., 345, 2038–2047.PubMedCrossRefGoogle Scholar
  14. 14.
    Bilan, M. I., Vinogradova, E. V., Tsvetkova, E. A., Grachev, A. A., Shashkov, A. S., Nifantiev, N. E., and Usov, A. I. (2008) A sulfated glucuronofucan containing both fucofuranose and fucopyranose residues from the brown alga Chordaria flagelliformis, Carbohydr. Res., 343, 2605–2612.PubMedCrossRefGoogle Scholar
  15. 15.
    Bilan, M. I., Shashkov, A. S., and Usov, A. I. (2014) Structure of a sulfated xylofucan from the brown alga Punctaria plantaginea, Carbohydr. Res., 393, 1–8.PubMedCrossRefGoogle Scholar
  16. 16.
    Krylov, V. B., Kaskova, Z. M., Vinnitskiy, D. Z., Ustyuzhanina, N. E., Grachev, A. A., Chizhov, A. O., and Nifantiev, N. E. (2011) Acid-promoted synthesis of per-Osulfated fucooligosaccharides related to fucoidan fragments, Carbohydr. Res., 346, 540–550.PubMedCrossRefGoogle Scholar
  17. 17.
    Anisimova, N. Yu., Lebedinskaya, O. V., Karpenko, A. Yu., Kopylov, A. N., and Kiselevskiy, M. V. (2012) Estimation of activity ofblood neutrophils using bacteria and unicellular yeasts as phagocytosis objects, Vest. Ural. Med. Acad. Sci., 41, 12–13.Google Scholar
  18. 18.
    Karpishchenko, A. I. (ed.) (2002) Medical Laboratory Technologies. Guidebook [in Russian], Intermedika, St. Petersburg.Google Scholar
  19. 19.
    Shpakova, A. P., Pavlova, K. S., and Bulycheva, T I. (2000) MTT-colorimetric method for detection the cytotoxic activity of human natural killer cells, Klin. Lab. Diagn., 2, 20–23.PubMedGoogle Scholar
  20. 20.
    Mann, B. S., and Chung, K. F. (2006) Blood neutrophil activation markers in severe asthma: lack of inhibition by prednisolone therapy, Resp. Res., 7, 59.CrossRefGoogle Scholar
  21. 21.
    Sadhu, C., Ting, H. J., Lipsky, B., Hensley, K., Garcia-Martinez, L. F., Simon, S. I., and Staunton, D. E. (2007) CD11c/CD18: novel ligands and a role in delayed-type hypersensitivity, J. Leukoc. Biol., 81, 1395–1403.PubMedCrossRefGoogle Scholar
  22. 22.
    Anisimova, N. Yu., Pluzhnikova, N. A., Gromova, E. G., Kuznetsova, L. S., Tsvetkov, D. S., and Kiselevskiy, M. V. (2011) Receptor of apoptosis and adhesion molecules of leukocytes- promising sepsis markers in cancer patients, Russ. J. Immunol., 14, 262–265.Google Scholar
  23. 23.
    Anisimova, N. Yu., and Blokhin, N. N. (2014) Immunological Pathogenesis of Sepsis and Use of Hemosorption for Treatment of Cancer Patients with Sepsis, Nova Science Publishers Inc., N. Y.Google Scholar
  24. 24.
    Kumar, V., and Sharma, A. (2010) Neutrophils: Cinderella of innate immune system, Int. Immunopharmacol., 10, 1325–1334.PubMedCrossRefGoogle Scholar
  25. 25.
    Thomas, S., and Balasubramanian, K. A. (2004) Role of intestine in postsurgical complications: involvement of free radicals, Free Radic. Biol. Med., 36, 745–756.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • N. Yu. Anisimova
    • 1
    Email author
  • N. E. Ustyuzhanina
    • 2
    Email author
  • F. V. Donenko
    • 1
  • M. I. Bilan
    • 2
  • N. A. Ushakova
    • 3
  • A. I. Usov
    • 2
  • N. E. Nifantiev
    • 2
  • M. V. Kiselevskiy
    • 1
  1. 1.Blokhin Russian Cancer Research CenterMoscowRussia
  2. 2.Zelinsky Institute of Organic ChemistryMoscowRussia
  3. 3.Orekhovich Institute of Biomedical ChemistryMoscowRussia

Personalised recommendations