Biochemistry (Moscow)

, Volume 80, Issue 7, pp 915–924 | Cite as

Tissue-specific rhamnogalacturonan I forms the gel with hyperelastic properties

  • P. V. MikshinaEmail author
  • A. A. Petrova
  • D. A. Faizullin
  • Yu. F. Zuev
  • T. A. Gorshkova


Rhamnogalacturonans I are complex pectin polysaccharides extremely variable in structure and properties and widely represented in various sources. The complexity and diversity of the structure of rhamnogalacturonans I are the reasons for the limited information about the properties and supramolecular organization of these polysaccharides, including the relationship between these parameters and the functions of rhamnogalacturonans I in plant cells. In the present work, on the example of rhamnogalacturonan I from flax gelatinous fibers, the ability of this type of pectic polysaccharides to form at physiological concentrations hydrogels with hyperelastic properties was revealed for the first time. According to IR spectroscopy, water molecules are more tightly retained in the gelling rhamnogalacturonan I from flax fiber cell wall in comparison with the non-gelling rhamnogalacturonan I from primary cell wall of potato. With increase in strength of water binding by rhamnogalacturonan I, there is an increase in elastic modulus and decrease in Poisson’s ratio of gel formed by this polysaccharide. The model of hyperelastic rhamnogalacturonan I capture by laterally interacting cellulose microfibrils, constructed using the finite element method, confirmed the suitability of rhamnogalacturonan I gel with the established properties for the function in the gelatinous cell wall, allowing consideration of this tissue- and stage-specific pectic polysaccharide as an important factor in creation of gelatinous fiber contractility.


gelatinous fibers polysaccharides rhamnogalacturonan I water sorption gel elastoplastic properties 



flax fiber rhamnogalacturonan I before incorporation into the cell wall


rhamnogalacturonan I of flax fiber cell wall


rhamnogalacturonan I of potato primary cell wall


relative humidity


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gorshkova, T A., Kozlova, L. V., and Mikshina, P. V. (2013) Spatial structure of plant cell wall polysaccharides and its functional significance, Biochemistry (Moscow), 78, 836–853.CrossRefGoogle Scholar
  2. 2.
    Vithanage, C. R., Grimson, M. J., Wills, P. R., Harrison, P., and Smith, B. G. (2010) Rheological and structural properties of high-methoxyl esterified, low-methoxyl esterified and low-methoxyl-amidated pectin gels, J. Texture Studies, 41, 899–927.CrossRefGoogle Scholar
  3. 3.
    Ngouemazong, E. D., Jolie, R. P., Cardinaels, R., Van Loey, A., Moldenaers, P., and Hendrickx, M. (2012) Stiffness of Ca2+-pectin gels: combined effect of degree and pattern of methyl esterification for various Ca2+ concentrations, Carbohydr. Res., 348, 69–76.PubMedCrossRefGoogle Scholar
  4. 4.
    Mitsumata, T, Honda, A., Kanazawa, H., and Kawai, M. (2012) Magnetically tunable elasticity for magnetic hydrogels consisting of carrageenan and carbonyl iron particles, J. Phys. Chem., 116, 12341–12348.CrossRefGoogle Scholar
  5. 5.
    Brenner, T, Wang, Z., Achayuthakan, P., Nakajima, T, and Nishinari, K. (2013) Rheology and synergy of K-carrageenan/ locust bean gum/konjac glucomannan gels, Carbohydr. Polymers, 98, 754–760.CrossRefGoogle Scholar
  6. 6.
    Grant, G. T, Morris, E. R., Rees, D. A., Smith, P. J. C., and Thom, D. (1973) Biological interactions between polysaccharides and divalent cations: the egg-box model, FEBS Lett., 32, 195–198.CrossRefGoogle Scholar
  7. 7.
    Fishman, M. L., and Cooke, P. H. (2009) The structure of high-methoxyl sugar acid gels of citrus pectin as determined by AFM, Carbohydr. Res., 344, 1792–1797.PubMedCrossRefGoogle Scholar
  8. 8.
    Yapo, B. M., and Gnakri, D. (2014) Pectic polysaccharides and their functional properties, Polysaccharides; DOI: 10.1007/978-3-319-03751-6-62-1.Google Scholar
  9. 9.
    Yapo, B. M. (2011) Rhamnogalacturonan-I: a structurally puzzling and functionally versatile polysaccharide from plant cell walls and mucilages, Polymer Rev., 51, 391–413.CrossRefGoogle Scholar
  10. 10.
    Oosterveld, A., Beldman, G., Schols, H. A., and Voragen, A. G. (2000) Characterization of arabinose and ferulic acid rich pectic polysaccharides and hemicelluloses from sugar beet pulp, Carbohydr. Res., 328, 185–197.PubMedCrossRefGoogle Scholar
  11. 11.
    Sengkhamparn, N., Sagis, L. M. C., de Vries, R., Schols, H. A., Sajjaanantakul, T, and Voragen, A. G. J. (2010) Food Hydrocolloids, 24, 35–41.CrossRefGoogle Scholar
  12. 12.
    Morris, G. A., Ralet, M.-C., Bonnin, E., Thibault, J.-F., and Harding, S. E. (2010) Physical characterization of the rhamnogalacturonan and homogalacturonan fractions of sugar beet (Beta vulgaris) pectin, Carbohydr. Polymers, 82, 1161–1167.CrossRefGoogle Scholar
  13. 13.
    Mikshina, P. V., Idiyatullin, B. Z., Petrova, A. A., Shashkov, A. S., Zuev, Y. F., and Gorshkova, T A. (2015) Physicochemical properties of complex rhamnogalacturonan I from gelatinous cell walls of flax fibers, Carbohydr. Polymers, 117, 853–861.CrossRefGoogle Scholar
  14. 14.
    Mellerowicz, E. J., Immerzeel, P., and Hayashi, T (2008) Xyloglucan: the molecular muscle of trees, Ann. Botany, 102, 659–665.CrossRefGoogle Scholar
  15. 15.
    Gorshkova, T A., Gurjanov, O. P., Mikshina, P. V., Ibragimova, N. N., Mokshina, N. E., Salnikov, V. V., Ageeva, M. V., Amenitskii, S. I., Chernova, T E., and Chemikosova, S. B. (2010) Specific type of secondary cell wall formed by plant fibers, Russ. J. Plant Physiol., 57, 328–341.CrossRefGoogle Scholar
  16. 16.
    Gorshkova, T, Brutch, N., Chabbert, B., Deyholos, M., Hayashi, T, Lev-Yadun, S., Mellerowicz, E. J., Morvan, C., Neutelings, G., and Pilate, G. (2012) Plant fiber formation: state of the art, recent and expected progress, and open questions, Crit. Rev. Plant Sci., 31, 201–228.CrossRefGoogle Scholar
  17. 17.
    Mellerowicz, E. J., and Gorshkova, T A. (2012) Tensional stress generation in gelatinous fibers: a review and possible mechanism based on cell-wall structure and composition, J. Exp. Bot., 63, 551–565.PubMedCrossRefGoogle Scholar
  18. 18.
    Mikshina, P. V., Chernova, T E., Chemikosova, S. B., Ibragimova, N. N., Mokshina, N. Y, and Gorshkova, T A. (2013) in Cellulose (van de Ven, T, and Godbout, L., eds.) InTech, Rijeka, pp. 91–112.Google Scholar
  19. 19.
    Salnikov, V. V., Ageeva, M. V., and Gorshkova, T A. (2008) Homofusion of Golgi secretory vesicles in flax phloem fibers during formation of the gelatinous secondary cell wall, Protoplasma, 233, 269–273.PubMedCrossRefGoogle Scholar
  20. 20.
    Gorshkova, T A., Wyatt, S. E., Salnikov, V. V., Gibeaut, D. M., Ibragimov, M. R., Lozovaya, V. V., and Carpita, N. C. (1996) Cell wall polysaccharides of developing flax plants, Plant Physiol., 110, 721–729.PubMedCentralPubMedGoogle Scholar
  21. 21.
    Gorshkova, T A., Salnikov, V. V., Chemikosova, S. B., Ageeva, M. V., Pavlencheva, N. V., and van Dam, J. E. G. (2003) Snap point: a transient point in Linum usitatissimum bast fiber development, Ind. Crops Products, 18, 213–221.CrossRefGoogle Scholar
  22. 22.
    Gurjanov, O. P., Ibragimova, N. N., Gnezdilov, O. I., and Gorshkova, T. A. (2008) Polysaccharides, tightly bound to cellulose in the cell wall of flax bast fiber: isolation and identification, Carbohydr. Polymer, 72, 719–729.CrossRefGoogle Scholar
  23. 23.
    Dubois, M., Gilles, K. A., and Hamilton, J. K. (1956) Colorimetric method for determination of sugars and related substances, Anal. Chem., 28, 350–356.CrossRefGoogle Scholar
  24. 24.
    Mikshina, P. V., Gurjanov, O. P., Mukhitova, F. K., Petrova, A. A., Shashkov, A. S., and Gorshkova, T. A. (2012) Structural details of pectic galactan from the secondary cell walls of flax (Linum usitatissimum L.) phloem fibers, Carbohydr. Polymers, 87, 853–861.CrossRefGoogle Scholar
  25. 25.
    Gulrez, S. K. H., Al-Assaf, S., and Phillips, G. O. (2011) Hydrogels: methods of preparation, characterization and applications, in Progress in Molecular and Environmental Bioengineering- From Analysis and Modeling to Technology Applications (Carpim, A., ed.) InTech, Rijeka, pp. 117–150.Google Scholar
  26. 26.
    Zimmermann, U., Husken, D., and Schulze, E.-D. (1980) Direct turgor pressure measurements in individual leaf cells of Tradescantia virginiana, Planta, 149, 445–453.PubMedCrossRefGoogle Scholar
  27. 27.
    Perez, S., and Mazeau, K. (2005) in Polysaccharides: Structural Diversity and Functional Versatility, 2nd Edn. (Dumitriu, S., ed.) Marcel Dekker, N. Y., pp. 41–68.Google Scholar
  28. 28.
    Ioelovich, M. (2008) Cellulose as a nanostructured polymer: a short review, BioResources, 3, 1403–1418.Google Scholar
  29. 29.
    Sturcova, A., Davies, G. R., and Eichhorn, S. J. (2005) The elastic modulus and stress-transfer properties of tunicate cellulose whiskers, Biomacromolecules, 6, 1055–1061.PubMedCrossRefGoogle Scholar
  30. 30.
    Bos, H. L. (2004) The Potential of Flax Fibers as Reinforcement for Composite Materials, Technische Universiteit Eindhoven, Proefschrift, Eindhoven.Google Scholar
  31. 31.
    Kastner, H., Einhorn-Stoll, U., and Senge, B. (2012) Structure formation in sugar containing pectin gels- influence of Ca2+ on the gelation of low-methoxylated pectin at acidic pH, Food Hydrocolloids, 27, 42–49.CrossRefGoogle Scholar
  32. 32.
    Jha, A. K., Malik, M. S., Farach-Carson, M. C., Duncanb, R. L., and Jia, X. (2010) Hierarchically structured, hyaluronic acid-based hydrogel matrices via the covalent integration of microgels into macroscopic networks, RSC J., 6, 5045–5055.Google Scholar
  33. 33.
    Robertson, C. G., Bogoslovov, R., and Roland, C. M. (2007) Effect of structural arrest on Poisson’s ratio in nanoreinforced elastomers, Phys. Rev., 75, 051403-1-7.Google Scholar
  34. 34.
    Sekine, Y, Takagi, H., Sudo, S., Kajiwara, Y, Fukazawa, H., and Ikeda-Fukazawa, T (2014) Dependence of structure of polymer side chain on water structure in hydrogels, Polymer, 55, 6320–6324.CrossRefGoogle Scholar
  35. 35.
    Zundel, G. (1969) Hydration and Intermolecular Interaction: Infrared Investigations with Polyelectrolyte Membranes, Academic Press, Germany.Google Scholar
  36. 36.
    Hofstetter, K., Hinterstoisser, B., and Salmen, L. (2006) Moisture uptake in native cellulose- the roles of different hydrogen bonds: a dynamic FT-IR study using deuterium exchange, Cellulose, 13, 131–145.CrossRefGoogle Scholar
  37. 37.
    Korobeinikov, S. N. (2000) Non-linear Deformation of Solids [in Russian], Izd-vo SO RAN, Novosibirsk.Google Scholar
  38. 38.
    McNeil, M., Darvill, A. G., and Albersheim, P. (1980) Structure of plant cell walls: X. Rhamnogalacturonan I, a structurally complex pectic polysaccharide in the walls of suspension-cultured sycamore cells, Plant Physiol., 66, 1128–1134.PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Goubet, F., Bourlard, T, Girault, R., Alexandre, C., Vandevelde, M. C., and Morvan, C. (1995) Structural features of galactans from flax fibers, Carbohydr. Polymers, 27, 221–227.CrossRefGoogle Scholar
  40. 40.
    Ridley, B. L., O’Neill, M. A., and Mohnen, D. (2001) Pectins: structure, biosynthesis and oligogalacturoniderelated signaling, Phytochemistry, 57, 929–967.PubMedCrossRefGoogle Scholar
  41. 41.
    Western, T. L., Skinner, D. J., and Haughn, G. W. (2000) Differentiation of mucilage secretory cells of the Arabidopsis seed coat, Plant Physiol., 122, 345–355.PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Naran, R., Chen, G., and Carpita, N. C. (2008) Novel rhamnogalacturonan I and arabinoxylan polysaccharides of flax seed mucilage, Plant Physiol., 148, 132–141.PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Ahmed, E. M. (2015) Hydrogel: preparation, characterization, and applications, J. Adv. Res., 6, 105–121.PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Richel, A., and Paquot, M. (2012) in Carbohydrates — Comprehensive Studies on Glycobiology and Glycotechnology (Chang, Ch-F., ed.) InTech, Rijeka, pp. 21–36.Google Scholar
  45. 45.
    Bezakova, Z., Hermannova, M., Drimalova, E., Malovikova, A., Ebringerova, A., and Velebny, V. (2008) Effect of microwave irradiation on the molecular and structural properties of hyaluronan, Carbohydr. Polymers, 73, 640–646.CrossRefGoogle Scholar
  46. 46.
    Ulvskov, P., Wium, H., Bruce, D., Jorgensen, B., Qvist, K. B., Skjot, M., Hepworth, D., Borkhardt, B., and Sorensen, S. O. (2005) Biophysical consequences of remodeling the neutral side chains of rhamnogalacturonan I in tubers of transgenic potatoes, Planta, 220, 609–620.PubMedCrossRefGoogle Scholar
  47. 47.
    Larsen, F. H., Byg, I., Damager, I., Diaz, J., Engelsen, S. B., and Ulvskov, P. (2011) Residue specific hydration of primary cell wall potato pectin identified by solid-state 13C single-pulse MAS and CP/MAS NMR spectroscopy, Biomacromolecules, 12, 1844–1850.PubMedCrossRefGoogle Scholar
  48. 48.
    Cardenas, A., Goycoolea, F. M., and Rinaudo, M. (2008) On the gelling behavior of “nopal” (Opuntia ficusindica) low methoxyl pectin, Carbohydr. Polymers, 73, 212222.CrossRefGoogle Scholar
  49. 49.
    Ngouemazong, E. D., Nkemamin, N. F., Cardinaels, R., Jolie, R. P., Fraeye, I., Van Loey, A. M., Moldenaers, P., and Hendrickx, M. E. (2012) Rheological properties of Ca2+-gels of partially methyl-esterified polygalacturonic acid: effect of “mixed” patterns of methyl-esterification, Carbohydr. Polymers, 88, 37–45.CrossRefGoogle Scholar
  50. 50.
    Park, H., Park, K., and Shalaby, W. S. W. (1993) Biodegradable Hydrogels for Drug Delivery, Technomic Publishing Company, Lancaster, Pennsylvania, USA.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • P. V. Mikshina
    • 1
    Email author
  • A. A. Petrova
    • 1
  • D. A. Faizullin
    • 1
  • Yu. F. Zuev
    • 1
  • T. A. Gorshkova
    • 1
  1. 1.Kazan Institute of Biochemistry and Biophysics, Kazan Scientific CenterRussian Academy of SciencesKazanRussia

Personalised recommendations