Advertisement

Biochemistry (Moscow)

, Volume 80, Issue 7, pp 881–900 | Cite as

Plant oligosaccharides — outsiders among elicitors?

  • I. A. LarskayaEmail author
  • T. A. Gorshkova
Review

Abstract

This review substantiates the need to study the plant oligoglycome. The available information on oligosaccharins - physiologically active fragments of plant cell wall polysaccharides - is summarized. The diversity of such compounds in chemical composition, origin, and proved biological activity is highlighted. At the same time, plant oligosaccharides can be considered as outsiders among elicitors of various natures in research intensity of recent decades. This review discusses the reasons for such attitude towards these regulators, which are largely connected with difficulties in isolation and identification. Together with that, approaches are suggested whose potentials can be used to study oligosaccharins. The topics of oligosaccharide metabolism in plants, including the ways of formation, transport, and inactivation are presented, together with data on biological activity and interaction with plant hormones. The current viewpoints on the mode of oligosaccharin action — perception, signal transduction, and possible “targets” — are considered. The potential uses of such compounds in medicine, food industry, agriculture, and biotechnology are discussed.

Keywords

plant oligosaccharides oligosaccharins cell wall oligoglycome 

Abbreviation

ABA

abscisic acid

lAA

indole-3-acetic acid (auxin)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bishop, P. D., Makus, D. J., Pearce, G., and Ryan, C. (1981) Proteinase inhibitor inducing factor activity in tomato leaves resides in oligosaccharides enzymically released from cell walls, Proc. Nat. Acad. Sci. USA, 78, 3536–3540.PubMedCentralPubMedGoogle Scholar
  2. 2.
    Hahn, M. G., Darvill, A. G., and Albersheim, P. (1981) Host—pathogen interactions. XIX. The endogenous elicitor, a fragment of a plant cell wall polysaccharide that elicits phytoalexin accumulation in soybeans, Plant Physiol., 68, 1161–1169.PubMedCentralPubMedGoogle Scholar
  3. 3.
    Nothnagel, E. A., McNeil, M., Ahbersheim, P., and Dell, A. (1983) Host—pathogen interactions. XXII. A galacturonic acid oligosaccharide from plant cell walls elicits phytoalexins, Plant Physiol., 71, 916–926.PubMedCentralPubMedGoogle Scholar
  4. 4.
    Jin, D. F., and West, C. A. (1984) Characteristics of galacturonic acid oligomers as elicitors of casbene synthetase activity in castor bean seedlings, Plant Physiol., 74, 989–992.PubMedCentralPubMedGoogle Scholar
  5. 5.
    Tran Than Van, K., Toubart, P., and Cousson, A. (1985) Manipulation of the morphogenetic pathways of tobacco explants by oligosaccharins, Nature, 314, 615–617.Google Scholar
  6. 6.
    Darvill, A., Augur, C., Bergmann, C., Carlson, R. W., Cheong, J. J., Eberhard, S., Hahn, M. G., Lo, V. M., Marfa, V., and Meyer, B. (1992) Oligosaccharins — oligosaccharides that regulate growth, development and defense responses in plants, Glycobiology, 2, 181–198.PubMedGoogle Scholar
  7. 7.
    Aldington, S., and Fry, S. C. (1993) Oligosaccharins, Adv. Bot. Res., 19, 1–101.Google Scholar
  8. 8.
    Albersheim, P., Darvill, A. G., McNeil, M., Valent, B. S., Sharp, J. K., Nothnagel, E. A., Davis, K. R., Yamazaki, N., Gollin, D. J., York, S., Dudman, F., Darvill, J. E., and Dell, A. (1983) Oligosaccharins: naturally occurring carbohydrates with biological regulatory functions, in Structure and Function of Plant Genomes (Ciferri, O., and Dure, L., eds.) Plenum Publishing Corp., N.Y., pp. 293–312.Google Scholar
  9. 9.
    York, W. S., Darvill, A. G., and Albersheim, P. (1984) Inhibition of 2,4-dichlorophenoxyacetic acid-stimulated elongation of pea stem segments by a xyloglucan oligosaccharide, Plant Physiol., 75, 295–297.PubMedCentralPubMedGoogle Scholar
  10. 10.
    Ishii, T, and Saka, H. (1992) Inhibition of auxin-stimulated elongation of cells in rice lamina joints by a feruloylated arabinoxylan trisaccharide, Plant Cell Physiol., 33, 321–324.Google Scholar
  11. 11.
    Liskova, O., Auxtova, O., Kakoniova, D., Kubackova, M., Karacsonyi, S., and Bilisics, L. (1995) Biological activity of galactoglucomannan-derived oligosaccharides, Planta, 196, 425–429.Google Scholar
  12. 12.
    Lorences, E. P., McDougall, G. J., and Fry, S. C. (1990) Xyloglucan- and cello-oligosaccharides: antogonists of the growth-promoting effect of H+, Physiol. Plant., 80, 109–113.Google Scholar
  13. 13.
    Dinand, E., Excoffier, G., Lienart, Y, and Vignon, M. R. (1997) Two rhamnogalacturonide tetrasaccharides isolated from semi-retted flax fibers are signaling molecules in Rubus fruticosus L. cells, Plant Physiol., 115, 793–801.PubMedCentralPubMedGoogle Scholar
  14. 14.
    Boudart, G., Dechamp-Guillaume, G., Lafitte, C., Ricart, G., Barthe, J.-P., Mazau, D., and Esquerre-Tugaye, M-T (1995) Elicitors and suppressors of hydroxyproline-rich glycoprotein accumulation are solubilized from plant cell walls by endopolygalacturonase, Biochem. J., 232, 449–457.Google Scholar
  15. 15.
    Marfa, V., Gollin, D. J., Eberhard, S., Mohnen, D., Danill, A., and Albersheim, P. (1991) Oligogalacturonides are able to induce flowers to form on tobacco explants, Plant J., 1, 217–225.Google Scholar
  16. 16.
    Albersheim, P., and Darvill, A. G. (1985) Oligosaccharins, Sci. Am., 253, 58–64.Google Scholar
  17. 17.
    Ryan, C. A. (1987) Oligosaccharide signaling in plants, Annu. Rev. Cell Biol., 3, 295–317.PubMedGoogle Scholar
  18. 18.
    Usov, A. I. (1993) Oligosaccharins — a new class of signaling molecules in plants, Russ. Chem. Rev., 62, 1047–1071.Google Scholar
  19. 19.
    Ozeretskovskaya, O. L., and Romenskaya, I. G. (1996) Oligosaccharins as regulatory molecules of plants, Russ. J. Plant Physiol., 43, 648–655.Google Scholar
  20. 20.
    Ridley, B. L., O’Neill, M. A., and Mohnen, D. (2001) Pectins: structure, biosynthesis, and oligogalacturoniderelated signaling, Phytochemistry, 57, 929–967.PubMedGoogle Scholar
  21. 21.
    Gorshkova, T. A. (2007) Plant Cell Wall as a Dynamic System [in Russian], Nauka, Moscow.Google Scholar
  22. 22.
    Davis, K. R., and Hahlbrock, K. (1987) Induction of plant defense responses in cultured parsley cells by plant cell wall fragments, Plant Physiol., 85, 1286–1290.Google Scholar
  23. 23.
    Bellincampi, D., Salvi, G., De Lorenzo, G., Cervone, F., Marfa, V., Eberhard, S., Darvill, A., and Albersheim, P. (1993) Oligogalacturonides inhibit the formation of roots on tobacco explants, Plant J., 4, 207–213.Google Scholar
  24. 24.
    Legendre, L., Yueh, Y G., Crain, R., Haddock, N., Heinsteinll, P. F., and Low, P. S. (1993) Phospholipase C activation during elicitation of the oxidative burst in cultured plant cells, J. Biol. Chem., 268, 24559–24563.PubMedGoogle Scholar
  25. 25.
    Altamura, M. M., Zaghi, D., Salvi, G., De Lorenzo, G., and Bellincampi, D. (1998) Oligogalacturonides stimulate pericycle cell wall thickening and cell divisions leading to stoma formation in tobacco leaf explants, Planta, 204, 429–436.Google Scholar
  26. 26.
    Bruce, R., and West, C. (1989) Elicitation of lignin biosynthesis and isoperoxidase activity by pectic fragments in suspension cultures of castor beans, Plant Physiol., 91, 889897.Google Scholar
  27. 27.
    Tong, C., Labavitch, J., and Yang, S. (1986) The induction of ethylene production from pear cell culture by cell wall fragments, Plant Physiol., 81, 929–930.PubMedCentralPubMedGoogle Scholar
  28. 28.
    Simpson, S. D., Ashford, D. A., Harvey, D. J., and Bowles, D. J. (1998) Short chain oligogalacturonides induce ethylene production and expression of the gene encoding aminocyclopropane 1-carboxylic acid oxidase in tomato plants, Glycobiology, 8, 579–583.PubMedGoogle Scholar
  29. 29.
    Falasca, G., Capitani, F., Della Rovere, F., Zaghi, D., Franchin, C., Biondi, S., and Altamura, M. M. (2008) Oligogalacturonides enhance cytokinin-induced vegetative shoot formation in tobacco explants, inhibit polyamine biosynthetic gene expression, and promote long-term remobilization of cell calcium, Planta, 227, 835–852.PubMedGoogle Scholar
  30. 30.
    Thain, J. F., Gubb, J. K., and Wildon, D. C. (1995) Depolarization of tomato leaf cells by oligogalacturonide elicitors, Plant Cell Environ., 18, 211–214.Google Scholar
  31. 31.
    McDougall, G. J., and Fry, S. C. (1988) Inhibition of auxin-stimulated growth of pea stem segments by a specific nonasaccharide of xyloglucan, Planta, 175, 412–416.PubMedGoogle Scholar
  32. 32.
    Warneck, H., and Seitz, H. U. (1993) Inhibition of gibberellic acid-induced elongation-growth of pea epicotyls by xyloglucan oligosaccharides, J. Exp. Bot., 44, 1105–1109.Google Scholar
  33. 33.
    Warneck, H. M., Haug, T, and Seitz, H. U. (1996) Activation of cell wall-associated peroxidase isoenzymes in pea epicotyls by a xyloglucan-derived nonasaccharide, J. Exp. Bot., 47, 1897–1904.Google Scholar
  34. 34.
    McDougall, G. J., and Fry, C. S. (1990) Xyloglucan oligosaccharides promote growth and activate cellulase: evidence for a role of cellulase in cell expansion, Plant Physiol., 93, 1042–1048.PubMedCentralPubMedGoogle Scholar
  35. 35.
    Pavlova, Z. N., Ash, A. O., Vnuckova, V. A., Babakov, A. V., Torgov, V. I., Nechaev, O. A., Usov, A. I., and Shibaev, V. N. (1992) Biological activity of a synthetic pentasaccharide fragment of xyloglucan, Plant Sci., 85, 131–134.Google Scholar
  36. 36.
    Zabotina, O. A., Ayupova, D. A., Larskaya, I. A., Nikolaeva, O. G., Petrovicheva, G. A., and Zabotin, A. I. (1998) Physiologically active oligosaccharides accumulating in the roots of winter wheat during adaptation to low temperature, Russ. J. Plant Physiol., 45, 221–226.Google Scholar
  37. 37.
    Zabotin, A. I., Barisheva, T S., Trofimova, O. I., Toroschina, T E., Larskaya, I. A., and Zabotina, O. A. (2009) Oligosaccharin and ABA synergistically affect the acquisition of freezing tolerance in winter wheat, Plant Physiol. Biochem., 47, 854–858.PubMedGoogle Scholar
  38. 38.
    Cutillas-Iturralde, A., Fulton, D. C., Fry, S. C., and Lorences, E. P. (1998) Xyloglucan-derived oligosaccharides induce ethylene synthesis in persimmon (Diospyros kaki L.) fruit, J. Exp. Bot., 49, 701–706.Google Scholar
  39. 39.
    Kakosova, A., Digonnet, C., Goffner, D., and Liskova, D. (2013) Galactoglucomannan oligosaccharides are assumed to affect tracheary element formation via interaction with auxin in Zinnia xylogenic cell culture, Plant Cell Rep., 32, 479–487.PubMedGoogle Scholar
  40. 40.
    Kollarova, K., Vatehova, Z., Slovakova, L., and Liskova, D. (2010) Interaction of galactoglucomannan oligosaccharides with auxin in mung bean primary root, Plant Physiol. Biochem., 48, 401–406.PubMedGoogle Scholar
  41. 41.
    Melotto, E., Greve, L. C., and Labavitch, J. M. (1994) Cell wall metabolism in ripening fruit: biologically active pectin oligomers in ripening tomato (Lycopersicon esculentum Mill) fruits, Plant Physiol., 106, 575–581.PubMedCentralPubMedGoogle Scholar
  42. 42.
    Lozovaya, V. V., Zabotina, O. A., Rumyantseva, N. I., Malihov, R. G., and Zihareva, M. V. (1993) Stimulation of root development on buckwheat thin cell-layer explants by pectic fragments from pea stem cell walls, Plant Cell Rep., 12, 530–533.PubMedGoogle Scholar
  43. 43.
    Zabotina, O. A., Gurjanov, O. P., Ibragimova, N. N., Ayupova, D. A., and Lozovaya, V. V. (1998) Rhizogenesis in buckwheat thin-cell-layer explants: effect of plant oligosaccharides, Plant Sci., 135, 195–201.Google Scholar
  44. 44.
    Larskaya, I. A., Barisheva, T S., Zabotin, A. I., and Gorshkova, T. A. (2015) Character of oligosaccharin OSRG participation in the IAA-induced formation of adventitious roots, Russ. J. Plant Physiol., 62, 171–178.Google Scholar
  45. 45.
    Ochoa-Villarreal, M., Aispuro-Hernandez, E., Vargas-Arispuro, I., and Martinez-Tellez, M. A. (2012) Plant cell wall polymers: function, structure and biological activity of their derivatives, in Polymerizatin, Vol. 4 (De Souza Gomes, A., ed.) InTech, pp. 63–86.Google Scholar
  46. 46.
    Schroder, R., and Knoop, B. (1995) An oligosaccharide growth-factor in plant suspension-cultures- a proposed structure, J. Plant Physiol., 146, 139–147.Google Scholar
  47. 47.
    Fry, S. C. (1986) In vivo formation of xyloglucan nonasaccharide: a possible biologically-active cell-wall fragment, Planta, 169, 443–453.PubMedGoogle Scholar
  48. 48.
    Kabel, M. A., Schols, H. A., and Voragen, A. G. J. (2001) Mass determination of oligosaccharides by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry following HPLC, assisted by on-line desalting and automated sample handling, Carbohydr. Polym., 44, 161–165.Google Scholar
  49. 49.
    Matamoros Fernandez, L. E., Obel, N., Scheller, H. V., and Roepstorff, P. (2003) Characterization of plant oligosaccharides by matrix-assisted laser desorption/ionization and electrospray mass spectrometry, J. Mass. Spectrom., 38, 427–437.PubMedGoogle Scholar
  50. 50.
    Bauer, S. (2012) Mass spectrometry for characterizing plant cell wall polysaccharides, Front. Plant Sci., 3, 45–50.PubMedCentralPubMedGoogle Scholar
  51. 51.
    Schols, H. A., Voragen, A. G. J., and Colquhoun, I. J. (1994) Isolation and characterization of rhamnogalacturonan oligomers, liberated during degradation of pectic hairy regions by rhamnogalacturonase, Carbohydr. Res., 256, 97–111.PubMedGoogle Scholar
  52. 52.
    Jia, Z., Cash, M., Darvill, A. G., and York, W. S. (2005) NMR characterization of endogenously O-acetylated oligosaccharides isolated from tomato (Lycopersicon esculentum) xyloglucan, Carbohydr. Res., 340, 1818–1825.PubMedGoogle Scholar
  53. 53.
    Toukach, F. V., and Ananikov, V. P. (2013) Recent advances in computational predictions of NMR parameters for the structure elucidation of carbohydrates: methods and limitations, Chem. Soc. Rev., 42, 8376–8415.PubMedGoogle Scholar
  54. 54.
    Augur, C., Yu, I., Sakai, K., Ogawa, T, Sina, P., Darvill, A. G., and Albersheim, P. (1992) Further studies of the ability of xyloglucan oligosaccharides to inhibition auxin-stimulated growth, Plant Physiol., 99, 180–185.PubMedCentralPubMedGoogle Scholar
  55. 55.
    Branca, C., De Lorenzo, G., and Cervone, F. (1988) Competitive inhibition of the auxin-induced elongation by a-D-oligogalacturonides in pea stem segments, Physiol. Plant., 72, 499–504.Google Scholar
  56. 56.
    Auxtova-Samajova, O., Liskova, D., Kakoniova, D., Kubackova, M., Karacsonyi, S., and Bilisics, L. (1996) Inhibition of auxin stimulated short-term elongation growth of pea stem segments by galactoglucomannanderived oligosaccharides, J. Plant Physiol., 147, 611–613.Google Scholar
  57. 57.
    Boller, T, and Felix, G. (2009) A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern recognition receptors, Annu. Rev. Plant Biol., 60, 379–400.PubMedGoogle Scholar
  58. 58.
    Tor, M., Lotze, M. T, and Holton, N. (2009) Receptormediated signaling in plants: molecular patterns and programmes, J. Exp. Bot., 60, 3645–3654.PubMedCentralPubMedGoogle Scholar
  59. 59.
    Malinovsky, F. G., Fangel, J. U., and Willats, W. G. T (2014) The role of the cell wall in plant immunity, Front. Plant Sci., 5, 1–11.Google Scholar
  60. 60.
    Zabotin, A. I., Barisheva, T. S., Larskaya, I. A., Toroshina, T. E., Trofimova, O. I., Hahn, M. G., and Zabotina, O. A. (2005) Oligosaccharin- a new systemic factor in the acquisition of freeze tolerance in winter plants, Plant Biosyst., 139, 36–41.Google Scholar
  61. 61.
    Domann, P. J., Pardos-Pardos, A. C., Fernandes, D. L., Spencer, D. I. R., Radcliffe, C. M., Royle, L., Dwek, R. A., and Rudd, P. M. (2007) Separation-based glycoprofiling approaches using fluorescent labels, Pract. Proteom., 1, 70–76.Google Scholar
  62. 62.
    Wuhrer, M. (2013) Glycomics using mass spectrometry, Glycoconj. J., 30, 11–22.PubMedCentralPubMedGoogle Scholar
  63. 63.
    Kristic, J., Vuckovic, F., Menni, C., Klaric, L., Keser, T, Beceheli, I., Pucic-Bakovic, M., Novokmet, M., Mangino, M., Thaqi, K., Rudan, P., Novokmet, N., Sarac, J., Missoni, S., Kolcic, I., Polasek, O., Rudan, I., Campbell, H., Hayward, C., Aulchenko, Y., Valdes, A., Wilson, J. F., Gornik, O., Primorac, D., Zoldos, V., Spector, T, and Lauc, G. (2014) Glycans are a novel biomarker of chronological and biological ages, J. Gerontol. Biol. Sci. Med. Sci., 69, 779–789.Google Scholar
  64. 64.
    Hudak, J. E., and Bertozzi, C. R. (2014) Glycotherapy: new advances inspire a reemergence of glycans in medicine, Chem. Biol., 21, 16–37.PubMedCentralPubMedGoogle Scholar
  65. 65.
    Moloshok, T, Pearce, G., and Ryan, C. A. (1992) Oligouronide signaling of proteinase inhibitor genes in plants: structure-activityrelationships of di- and trigalacturonic acids and their derivatives, Arch. Biochem. Biophys., 294, 731–734.PubMedGoogle Scholar
  66. 66.
    Low, P. S., and Merida, J. R. (1996) The oxidative burst in plant defense: function and signal transduction, Physiol. Plant., 96, 533–542.Google Scholar
  67. 67.
    Rodionova, N. A., Milyaeva, E. L., Nikiforova, V. Yu., Martinovich, L. I., Zagustina, N. A., Mestechkina, N. M., Shcherbukhin, V. D., and Bezborodov, A. M. (1999) Effects of oligogalacturonic acids and pectolytic enzymes on plant flowering, Appl. Biochem. Microbiol., 35, 502–506.Google Scholar
  68. 68.
    Roberts, A. W., Donovan, S. G., and Haigler, C. H. (1997) A secreted factor induces cell expansion and formation of metaxylem-like tracheary elements in xylogenic suspension cultures of Zinnia, Plant Physiol., 115, 683–692.PubMedCentralPubMedGoogle Scholar
  69. 69.
    Spiro, M. D., Ridley, B. L., Eberhard, S., Kates, K. A., Mathieu, Y, O’Neill, M. A., Mohnen, D., Guern, J., Darvill, A., and Albersheim, P. (1998) Biological activity of reducing-end-derivatized oligogalacturonides in tobacco tissue cultures, Plant Physiol., 116, 1289–1298.PubMedCentralPubMedGoogle Scholar
  70. 70.
    Ryan, C. A. (1992) The search for the proteinase inhibitorinducing factor, Plant Mol. Biol., 19, 123–133.PubMedGoogle Scholar
  71. 71.
    Navazio, L., Moscatiello, R., Bellincampi, D., Baldan, B., Meggio, F., Brini, M., Bowler, C., and Mariani, P. (2002) The role of calcium in oligogalacturonide-activated signaling in soybean cells, Planta, 215, 596–605.PubMedGoogle Scholar
  72. 72.
    McDougall, G. J., and Fry, S. C. (1989) Structure-activity relationships for xyloglucan oligosaccharides with antiauxin activity, Plant Physiol., 189, 883–887.Google Scholar
  73. 73.
    Zablackis, E., York, W. S., Pauly, M., Hantus, S., Reiter, W-D., Chapple, C. C. S., Albersheim, P., and Darvill, A. (1996) Substitution of L-fucose by L-galactose in cell walls of Arabidopsis mur1, Science, 272, 1808–1810.PubMedGoogle Scholar
  74. 74.
    Ash, O. A., Loskutova, N. A., Pavlova, Z. N., Abramycheva, N. Yu., Vnuchkova, V. A., Babakov, A. V., Muromtsev, G. S., Melnikova, T N., Nechaev, O. A., Torgov, V. I., Usov, A. I., and Shibaev, V. N. (1995) New physiological effects of oligosaccharide fragments of plant xyloglucan, Doklady RAN, 340, 427–429.Google Scholar
  75. 75.
    Dixon, R. A., Jennings, A. C., Davies, L. A., Gerrish, G., and Murthy, D. L. (1989) Elicitor-active components from French bean hypocotyls, Physiol. Mol. Plant Pathol., 34, 99–115.Google Scholar
  76. 76.
    Gonzalez-Perez, L., Vazquez-Glaria, A., Perrotta, L., Acosta, A., Scriven, S. A., Herbert, R., Cabrera, J. C., Francis, D., and Rogers, H. J. (2012) Oligosaccharins and Pectimorf® stimulate root elongation and shorten the cell cycle in higher plants, Plant Growth Reg., 68, 211–221.Google Scholar
  77. 77.
    McDougall, G. J., and Fry, S. C. (1991) Xyloglucan nonasaccharide, a naturally-occurring oligosaccharin, arises in vivo by polysaccharide breakdown, Plant Physiol., 137, 332–336.Google Scholar
  78. 78.
    Frankova, L., and Fry, S. C. (2013) Biochemistry and physiological roles of enzymes that “cut and paste” plant cellwall polysaccharides, J. Exp. Bot., 64, 3519–3550.PubMedGoogle Scholar
  79. 79.
    Bonnin, E., Garnier, C., and Ralet, M-C. (2014) Pectinmodifying enzymes and pectin-derived materials: applications and impacts, Appl. Microbiol. Biotechnol., 98, 519–532.PubMedGoogle Scholar
  80. 80.
    Miller, A. R. (1989) Oxidation of cell wall polysaccharides by hydrogen peroxide: a potential mechanism for cell wall breakdown in plants, Biochem. Biophys. Res Commun., 26, 238–244.Google Scholar
  81. 81.
    Tabbi, G., Fry, S. C., and Bonomo, R. E (2001) ESR study of the non-enzymic scission of xyloglucan by an ascorbate-H2O2- copper system: the involvement of the hydroxyl radical and the degradation of ascorbate, J. Inorg. Biochem., 84, 179–187.PubMedGoogle Scholar
  82. 82.
    Dumville, J. C., and Fry, S. C. (2000) Uronic acid-containing oligosaccharins: their biosynthesis, degradation and signaling roles in non-diseased plant tissues, Plant Physiol. Biochem., 38, 125–140.Google Scholar
  83. 83.
    Elboutachfaiti, R., Delattre, C., Michaudc, P., Courtois, B., and Courtois, J. (2008) Oligogalacturonans production by free radical depolymerization of polygalacturonan, Int. J. Biol. Macromol., 43, 257–261.PubMedGoogle Scholar
  84. 84.
    Bacic, A., Harris, P. J., and Stone, B. A. (1988) Structure and function of plant cell walls, Biochem. Plants, 14, 297–371.Google Scholar
  85. 85.
    Wolf, S., Hematy, K., and Heofte, H. (2012) Growth control and cell wall signaling in plants, Annu. Rev. Plant Biol., 63, 381–407.PubMedGoogle Scholar
  86. 86.
    Tarchevsky, I. A. (1993) Catabolism and stress in plants, in 52nd Timiryazev’s Readings [in Russian], Nauka, Moscow.Google Scholar
  87. 87.
    MacDougall, A. J., Rigby, N. M., Needs, P. W., and Selvendran, R. R. (1992) Movement and metabolism of oligogalacturonide elicitors in tomato shoots, Planta, 188, 566–574.PubMedGoogle Scholar
  88. 88.
    Warneck, H. M., Fulton, D. C., Seitz, H. U., and Fry, S. C. (1998) Transport, degradation and cell wall-integration of XXFGol, a growth-regulating nonasaccharide of xyloglucan, in pea stems, Planta, 204, 78–85.Google Scholar
  89. 89.
    Faugeron, C., Sakr, S., Lhernould, S., Michalski, J. C., Delrot, S., and Morvan, H. (1999) Long-distance transport and metabolism of unconjugated N-glycans in tomato plants, J. Exp. Bot., 50, 1669–1675.Google Scholar
  90. 90.
    Baydoun, E. A. H., and Fry, S. C. (1985) The immobility of pectic substances in injured tomato leaves and its bearing on the identity of the wound hormone, Planta, 165, 269–276.PubMedGoogle Scholar
  91. 91.
    Smith, R. C., and Fry, S. C. (1991) Endotransglycosylation of xyloglucans in plant cell suspension cultures, Biochem. J., 279, 529–535.PubMedCentralPubMedGoogle Scholar
  92. 92.
    Cosio, E. G., Frey, T., and Ebel, J. (1992) Identification of a high-affinity binding protein for a hepta-beta-glucoside phytoalexin elicitor in soybean, Eur. J. Biochem., 204, 11151123.Google Scholar
  93. 93.
    Vargas-Rechia, C., Reicher, F., Sierakowski, M. R., Heyraud, A., Driguez, H., and Lienart, Y. (1998) Xyloglucan octasaccharide XXLgol derived from the seeds of Hymenaea courbaril acts as a signaling molecule, Plant Physiol., 116, 1013–1021.PubMedCentralPubMedGoogle Scholar
  94. 94.
    He, Z-H., Fujiki, M., and Kohorn, B. D. (1996) A cell wall-associated, receptor-like protein kinase, J. Biol. Chem., 127, 19789–19793.Google Scholar
  95. 95.
    Decreux, A., and Messiaen, J. (2005) Wall-associated kinase WAK1 interacts with cell wall pectins in a calciuminduced conformation, Plant Cell Physiol., 46, 268–278.PubMedGoogle Scholar
  96. 96.
    Kohorn, B. D., Johansen, S., Shishido, A., Todorova, T, Martinez, R., Defeo, E., and Obregon, P. (2009) Pectin activation of MAP kinase and gene expression is WAK2 dependent, Plant J., 60, 974–982.PubMedCentralPubMedGoogle Scholar
  97. 97.
    Decreux, A., Thomas, A., Spies, B., Brasseur, R., van Cutsem, P., and Messiaen, J. (2006) In vitro characterization of the homogalacturonan binding domain of the wallassociated kinase WAK1 using site-directed mutagenesis, Phytochemistry, 67, 1068–1079.PubMedGoogle Scholar
  98. 98.
    Brutus, A., Sicilia, F., Macone, A., Cervone, F., and De Lorenzo, G. (2010) A domain swap approach reveals a role of the plant wall-associated kinase 1 (WAK1) as a receptor of oligogalacturonides, Proc. Nat. Acad. Sci. USA, 107, 9452–9457.PubMedCentralPubMedGoogle Scholar
  99. 99.
    Ferrari, S., Savatin, D. V., Sicilia, F., Gramegna, G., Cervone, F., and De Lorenzo, G. (2013) Oligogalacturonides: plant damage-associated molecular patterns and regulators of growth and development, Front. Plant Sci., 4, 49–54.PubMedCentralPubMedGoogle Scholar
  100. 100.
    Mathieu, Y., Kurkdijan, A., Xia, H., Guern, J., Koller, A., Spiro, M. D., O’Neil, M., Albersheim, P., and Darvill, A. (1991) Membrane responses induced by oligogalacturonides in suspension-cultured tobacco cells, Plant J., 1, 333–343.Google Scholar
  101. 101.
    Mathieu, Y., Guern, J., Spiro, M. D., O’Neill, M. A., Kates, K., Darvill, A. G., and Albersheim, P. (1998) The transient nature of the oligogalacturonide-induced ion fluxes of tobacco cells is not correlated with fragmentation of the oligogalacturonides, Plant J., 16, 305–311.Google Scholar
  102. 102.
    Messiaen, J., and Van Cutsem, P. (1994) Pectic signal transduction in carrot cells: membrane, cytosolic and nuclear responses induced by oligogalacturonides, Plant Cell Physiol., 35, 677–689.Google Scholar
  103. 103.
    Moscatiello, R., Mariani, P., Sanders, D., and Maathuis, F. J. (2006) Transcriptional analysis of calcium-dependent and calcium-independent signaling pathways induced by oligogalacturonides, J. Exp. Bot., 57, 2847–2865.PubMedGoogle Scholar
  104. 104.
    Kohorn, B. D., and Kohorn, S. L. (2012) The cell wallassociated kinases, WAKs, as pectin receptors, Front. Plant Sci., 3, 1–5.Google Scholar
  105. 105.
    Farmer, E. E., Moloshok, T D., Saxton, M. J., and Ryan, C. A. (1991) Oligosaccharide signaling in plants. Specificity of oligouronide-enhanced plasma membrane protein phosphorylation, J. Biol. Chem., 266, 3140–3145.PubMedGoogle Scholar
  106. 106.
    Reymond, P., Kunz, B., Paul-Pletzer, K., Grimm, R., Eckerskorn, C., and Farmer, E. E. (1996) Cloning of a cDNA encoding a plasma membrane associated, uronide binding phosphoprotein with physical properties similar to viral movement proteins, Plant Cell, 8, 2265–2276.PubMedCentralPubMedGoogle Scholar
  107. 107.
    Raffaele, S., Bayer, E., Lafarge, D., Cluzet, S., Retana, S. G., Boubekeur, T, Leborgne-Castel, N., Carde, J-P., Lherminier, J., Noirot, E., Satiat-Jeunemaitre, B., Laroche-Traineau, J., Moreau, P., Otti, T, Maule, A. J., Reymond, P., Simon-Plas, F., Farmer, E. E., Bessoule, J-J., and Mongrand, S. (2009) Remorin, a Solanaceae protein resident in membrane rafts and plasmodesmata, impairs Potato virus X movement, Plant Cell, 21, 1541–1555.PubMedCentralPubMedGoogle Scholar
  108. 108.
    Bariola, P. A., Retelska, D., Stasiak, A., Kammerer, R. A., Fleming, A., Hijri, M., Frank, S., and Farmer, E. E. (2004) Remorins form a novel family of coiled coilforming oligomeric and filamentous proteins associated with apical, vascular and embryonic tissues in plants, Plant Mol. Biol., 55, 579–594.PubMedGoogle Scholar
  109. 109.
    Raffaele, S., Mongrand, S., Gamas, P., Niebel, A., and Ott, T. (2007) Genome-wide annotation of remorins, a plant-specific protein family: evolutionary and functional perspectives, Plant Physiol., 145, 593–600.PubMedCentralPubMedGoogle Scholar
  110. 110.
    Vaid, N., Macovel, A., and Tuteja, N. (2013) Knights in action: lectin receptor-like kinases in plant development and stress responses, Mol. Plant., 6, 1405–1418.PubMedGoogle Scholar
  111. 111.
    Gouget, A., Senchou, V., Govers, F., Sanson, A., Barre, A., Rouge, P., Pont-Lezica, R., and Canut, H. (2006) Lectin receptor kinases participate in protein—protein interactions to mediate plasma membrane—cell wall adhesions in Arabidopsis, Plant Physiol., 140, 81–90.PubMedCentralPubMedGoogle Scholar
  112. 112.
    Casasoli, M., Spadoni, S., Lilley, K. S., Cervone, F., De Lorenzo, G., and Mattei, B. (2008) Identification by 2-D DIGE of apoplastic proteins regulated by oligogalacturonides in Arabidopsis thaliana, Proteomics, 8, 1042–1054.PubMedGoogle Scholar
  113. 113.
    Kaku, H., Nishizawa, Y., Ishii-Minami, N., Akimoto-Tomiyama, C., Dohmae, N., Takio, K., Minami, E., and Shibuya, N. (2006) Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor, Proc. Natl. Acad. Sci. USA, 103, 11086–11091.PubMedCentralPubMedGoogle Scholar
  114. 114.
    Lorences, E., and Fry, S. (1993) Xyloglucan oligosaccharides with at least two a-D-xylose residues act as acceptor substrates for xyloglucan endotransglycosylase and promote the depolymerization of xyloglucan, Physiol. Plant., 88, 105–112.Google Scholar
  115. 115.
    Loreti, E., Bellincampi, D., Millet, C., Alpi, A., and Perata, P. (2002) Elicitors of defense responses repress a gibberellin signaling pathway in barley embryos, J. Plant Physiol., 159, 1383–1386.Google Scholar
  116. 116.
    Savatin, D. V., Ferrari, S., Sicilia, F., and De Lorenzo, G. (2011) Oligogalacturonide auxin antagonism does not require posttranscriptional gene silencing or stabilization of auxin response repressors in Arabidopsis, Plant Physiol., 157, 1163–1174.PubMedCentralPubMedGoogle Scholar
  117. 117.
    Bellincampi, D., Cardarelli, M., Zaghi, D., Serino, G., Salvi, G., Gatz, C., Cervone, F., Altamura, M. M., Costantino, P., and Lorenzo, G. D. (1996) Oligogalacturonides prevent rhizogenesis in rol B transformed tobacco explants by inhibiting auxin-induced expression of the rolB gene, Plant Cell, 8, 477–487.PubMedCentralPubMedGoogle Scholar
  118. 118.
    Mauro, M. L., De Lorenzo, G., Costantino, P., and Bellincampi, D. (2002) Oligogalacturonides inhibit the induction of late but not of early auxin-responsive genes in tobacco, Planta, 215, 494–501.PubMedGoogle Scholar
  119. 119.
    Richterova-Kucerova, D., Kollarova, K., Zelko, I., Vatehova, Z., and Liskova, D. (2012) How do galactoglucomannan oligosaccharides regulate cell growth in epidermal and cortical tissues of mung bean seedlings? Plant Physiol. Biochem., 57, 154–158.PubMedGoogle Scholar
  120. 120.
    Zabotina, O. A., and Zabotin, A. I. (2010) Biologically active oligosaccharide functions in plant cell: updates and prospects, in Oligosaccharides: Sources, Properties and Applications (Gordon, N. S., ed.) Nova Science Publishers, Inc., pp. 1–34.Google Scholar
  121. 121.
    Augur, C., Benhamou, N., Darvill, A., and Albersheim, P. (1993) Purification, characterization and cell wall localization of an a-fucosidase that inactivates a xyloglucan oligosaccharin, Plant J., 3, 415–426.PubMedGoogle Scholar
  122. 122.
    De la Torre, F., Sampedro, J., Zarra, I., and Revilla, G. (2002) AtFXG1, an Arabidopsis gene encoding a-Lfucosidase active against fucosylated xyloglucan oligosaccharides, Plant Physiol., 128, 247–255.PubMedCentralPubMedGoogle Scholar
  123. 123.
    Sampedro, J., Sieiro, C., Revilla, G., Gonzalez-Villa, T, and Zarra, I. (2001) Cloning and expression pattern of a gene encoding an a-xylosidase active against xyloglucan oligosaccharides from Arabidopsis, Plant Physiol., 126, 910–920.PubMedCentralPubMedGoogle Scholar
  124. 124.
    Garcia-Romera, I., and Fry, S. C. (1995) The longevity of biologically active oligosaccharide in rose cell cultures: degradation by exopolygalacturonase, J. Exp. Bot., 46, 1853–1867.Google Scholar
  125. 125.
    Fry, S. C., Aldington, S., Hetherington, P. R., and Aitken, J. (1993) Oligosaccharides as signals and substrates in the plant cell wall, Plant Physiol., 103, 1–5.PubMedCentralPubMedGoogle Scholar
  126. 126.
    Ramirez, A., Cruz, N., and Franchialfaro, O. (2003) Uso de bioestimuladores en la produccion de guayaba (P. guajava L.) mediante el enraizamiento de esquejes, Cultivos Tropicales, 24, 59–63.Google Scholar
  127. 127.
    Baque, M. A., Shiragi, M. H. K., Lee, E.-J., and Paek, K.- Y. (2012) Elicitor effect of chitosan and pectin on the biosynthesis of anthraquinones, phenolics and flavonoids in adventitious root suspension cultures of Morinda citrifolia (L.), Austr. J. Crop Sci., 6, 1349–1355.Google Scholar
  128. 128.
    Nosov, A. M. (1991) Regulation of the Secondary Compound Synthesis in the Plant Cell Culture in Biology of Cultured Cells and Plant Biotechnology [in Russian], Nauka, Moscow.Google Scholar
  129. 129.
    Praveen, N., and Murthy, H. N. (2010) Production of withanolide-a from adventitious root cultures of Withania somnifera, Acta Physiol. Plant., 32, 1017–1022.Google Scholar
  130. 130.
    Kaida, R., Sugawara, S., Negoro, K., Maki, H., Hayashi, T, and Kaneko, T S. (2010) Acceleration of cell growth by xyloglucan oligosaccharides in suspension-cultured tobacco cells, Mol. Plant., 3, 549–554.PubMedGoogle Scholar
  131. 131.
    Nieves, N., Poblete, A., Cid, M., Lezcano, Y., Gonzalez-Olmedo, J. L., and Cabrera, J. C. (2006) Evaluacion del Pectimorf como complemento del 2,4-D en el proceso de embriogenesis somatica en cana de azucar, Cultivos Tropicales, 27, 25–30.Google Scholar
  132. 132.
    Allegre, M., Heloir, M. C., Trouvelot, S., Daire, X., Pugin, A., Wendehenne, D., and Adrian, M. (2009) Are grapevine stomata involved in the elicitor-induced protection against downy mildew? Mol. Plant Microbe Interact., 22, 977–986.PubMedGoogle Scholar
  133. 133.
    Aziz, A., Heyraud, A., and Lambert, B. (2004) Oligogalacturonide signal transduction, induction of defense-related responses and protection of grapevine against Botrytis cinerea, Planta, 218, 767–774.PubMedGoogle Scholar
  134. 134.
    Garcia-Sahagun, M. L., Martinez-Juarez, V., Avendaio-Lopez, A. N., Padilla-Sahagun, M. C., and Izquierdo-Oviedo, H. (2009) Accion de oligosacaridos en el rendimiento y calidad de tomate, Revista Fitotecnia Mexicana, 32, 295–301.Google Scholar
  135. 135.
    Marina-de la Huerta, C., Fernandez, L., Saborit, M., Castillo, P., and Nieto, M. (2005) Comportamiento de la planta de cana de azucar tratada con ENERPLANT cultivada en suelos vertisoles, Revista Electronica Granma Ciencia, 9, 1–6.Google Scholar
  136. 136.
    Jeurink, P. V., van Esch, B. C., Rijnierse, A., Garssen, J., and Knippels, L. M. J. (2013) Mechanisms underlying immune effects of dietary oligosaccharides, Am. J. Clin. Nutr., 98, 572S–577S.PubMedGoogle Scholar
  137. 137.
    Ninonuevo, M. R., and Lebrilla, C. B. (2009) Mass spectrometric methods for analysis of oligosaccharides in human milk, Nutr. Rev., 67, 216–226.Google Scholar
  138. 138.
    Roberford, M. (2007) Prebiotics: the concept revisited, J. Nutr., 137, 830S–837S.Google Scholar
  139. 139.
    Casci, T, and Rastall, R. A. (2006) Manufacture of prebiotic oligosaccharides, in Prebiotics: Development and Application (Gibson, G. R., and Rastall, R. A., eds.) John Wiley & Sons Ltd, Chichester, pp. 29–56.Google Scholar
  140. 140.
    Valyshev, A. V., and Golovchenko, V. V. (2012) Prebiotic activity of pectins and their derivatives, Byull. Orenburg Nauch. Tsentra UrO RAN, 3, 1–8.Google Scholar
  141. 141.
    Rycroft, C. E., Jones, M. R., Gibson, G. R., and Rastall, R. A. (2001) A comparative in vitro evaluation of the fermentation properties of prebiotic oligosaccharides, J. Appl. Microbiol., 91, 878–887.PubMedGoogle Scholar
  142. 142.
    Hartemink, R., van Laere, K. M. J., Mertens, A. K. C., and Rombouts, F. M. (1996) Fermentation of xyloglucan by intestinal bacteria, Anaerobe, 2, 223–230.Google Scholar
  143. 143.
    Van Laere, K. M. J., Hartemink, R., Bosveld, M., Schols, H. A., and Voragen, A. G. J. (2000) Fermentation of plant cell wall derived polysaccharides and their corresponding oligosaccharides by intestinal bacteria, J. Agricult. Food Chem., 48, 1644–1652.Google Scholar
  144. 144.
    Garthoff, J. A., Heemskerk, S., Hempenius, R. A., Lina, B. A. R., Krul, C. A. M., and Koeman, J. H. (2010) Safety evaluation of pectin derived acidic oligosaccharides (pAOS): genotoxicity and sub-chronic studies, Reg. Toxicol. Pharmacol., 57, 31–42.Google Scholar
  145. 145.
    Li, T, Li, S., Du, L., Wang, N., Guo, M., Zhang, J., and Zhang, H. (2010) Effects of haw pectic oligosaccharide on lipid metabolism and oxidative stress in experimental hyperlipidemia mice induced by high-fat diet, Food Chem., 121, 1010–1013.Google Scholar
  146. 146.
    Olano-Martin, E., Williams, M. R., Gibson, G. R., and Rastall, R. A. (2003) Pectins and pectic-oligosaccharides inhibit Escherichia coli O157:H7 Shiga toxin as directed towards the human colonic cell line HT29, FEMS Microbiol. Lett., 218, 101–105.PubMedGoogle Scholar
  147. 147.
    Trevisi, P., De Filippi, S., Minieri, L., Mazzoni, M., Modesto, M., Biavati, B., and Bosi, P. (2008) Effect of fructo-oligosaccharides and different doses of Bifidobacterium animalis in a weaning diet on bacterial translocation and Toll-like receptor gene expression in pig, Nutrition, 24, 1023–1029.PubMedGoogle Scholar
  148. 148.
    Guggenbichler, J. P., Bettignies-Dutz, A., Meissner, P., Schellmoser, S., and Jurenitsch, J. (1997) Acidic oligosaccharides from natural sources block adherence of Escherichia coli on uroepithelial cells, Pharmac. Pharmacol. Lett., 7, 35–38.Google Scholar
  149. 149.
    Onumpai, C., Kolida, S., Bonnin, E., and Rastall, R. (2011) Utilization and selectivity of pectin fractions with various structures, Appl. Environ. Microbiol., 77, 57475754.Google Scholar
  150. 150.
    Vos, A. P., van Esch, E. C. A. M., Stahl, B., M’Rabet, L., Folkerts, G., Nijkamp, F. P., and Garssen, J. (2007) Dietary supplementation with specific oligosaccharide mixtures decreases parameters of allergic asthma in mice, Int. Immunopharmacol., 7, 1582–1587.PubMedGoogle Scholar
  151. 151.
    Wang, J., Sun, B., Cao, Y, Song, H., and Tian, Y (2008) Inhibitory effect of wheat bran feruloyl oligosaccharides on oxidative DNA damage in human lymphocytes, Food Chem., 109, 129–136.PubMedGoogle Scholar
  152. 152.
    Wu, J. H., Xu, C., Shan, C. Y, and Tan, R. X. (2006) Antioxidant properties and PC12 cell protective effects of APS-1 a polysaccharide from Aloe vera var. chinensis, Life Sci., 78, 622–630.PubMedGoogle Scholar
  153. 153.
    Chun-hui, L., Chang-hai, W., Zhi-liang, X., and Yi, W (2007) Isolation, chemical characterization and antioxidant activities of two polysaccharides from the gel and the skin of Aloe barbadensis Miller irrigated with sea water, Process Biochem., 42, 961–970.Google Scholar
  154. 154.
    Uhlenbruk, G., Beuth, J., Oette, K., Roszkowski, W., Ko, H. L., and Pulverer, G. (1986) Prevention of experimental liver metastases by arabinogalactan, Naturwissenschaften, 73, 626–627.Google Scholar
  155. 155.
    Medvedeva, E. N., Babkin, V. A., and Ostroukhova, L. A. (2003) Larch arabinogalactan- properties and prospects of using, Khim. Rast. Syr’ya, 1, 27–37.Google Scholar
  156. 156.
    Gronhaug, T E., Ghildyal, P., Barsett, H., Michaelsen, T E., Morris, G., and Diallo, D. (2010) Bioactive arabinogalactans from the leaves of Opilia celtidifolia Endl. ex Walp. (Opiliaceae), Glycobiology, 20, 1654–1664.PubMedGoogle Scholar
  157. 157.
    Popov, S. V., and Ovodov, Y. S. (2013) Polypotency of the immunomodulatory effect of pectins, Biochemistry (Moscow), 78, 823–835.Google Scholar
  158. 158.
    Popov, S. V., Ovodova, R. G., Golovchenko, V. V., Khramova, D. S., Markov, P. A., Smirnov, V. V., Shashkov, A. S., and Ovodov, Y. S. (2014) Pectic polysaccharides of the fresh plum Prunus domestica L. isolated with a simulated gastric fluid and their anti-inflammatory and antioxidant activities, Food Chem., 143, 106–113.PubMedGoogle Scholar
  159. 159.
    Vos, A. P., Haarman, M., van Ginkel, J.-W. H., Knol, J., Stahl, B., Boehm, G., M’Rabet, L., Nijkamp, F. P., and Garssen, J. (2007) Dietary supplementation of neutral and acidic oligosaccharides enhances Th1-dependent vaccination responses in mice, Pediatr. Allergy Immunol., 18, 304312.Google Scholar
  160. 160.
    Barondes, S. H., Castronovo, V., Cooper, D. N. W., Cummings, R. D., Drickmer, K., and Feizi, T (1994) Galectins- a family of animal beta-galactoside-binding lectins, Cell, 76, 597–598.PubMedGoogle Scholar
  161. 161.
    Rapoport, E. M., Kurmyshkina, O. V., and Bovin, N. V. (2008) Mammalian galectins: structure, carbohydrate specificity, and functions, Biochemistry (Moscow), 73, 393–405.Google Scholar
  162. 162.
    Glinsky, V. V., and Raz, A. (2009) Modified pectin antimetastatic properties: one bullet, multiple targets, Carbohydr. Res., 344, 1788–1791.PubMedCentralPubMedGoogle Scholar
  163. 163.
    Takenaka, Y, Fukumori, T, and Raz, A. (2002) Galectin- 3 and metastasis, Clycoconj. J., 19, 543–549.Google Scholar
  164. 164.
    Gunning, A. P., Bongaerts, R. J. M., and Morris, V. J. (2009) Recognition of galactan components of pectin by galectin-3, FASEB J., 23, 415–424.PubMedGoogle Scholar
  165. 165.
    Hagmar, B., Ryd, W., and Skomedal, H. (1991) Arabinogalactan blockade of experimental metastases to liver by murine hepatoma, Invasion and Metastasis, 11, 348–355.PubMedGoogle Scholar
  166. 166.
    Hauer, J., and Anderer, F. A. (1993) Mechanism of stimulation of human natural killer cytotoxicity by arabinogalactan from Larixoccidentalis, Cancer Immunol. Immunother., 36, 237–244.PubMedGoogle Scholar
  167. 167.
    Miller, M. C., Klyosov, A., and Mayo, K. H. (2009) The alpha-galactomannan Davanat binds galectin-1atasitedifferent from the conventional galectin carbohydrate binding domain, Glycobiology, 19, 1034–1045.PubMedCentralPubMedGoogle Scholar
  168. 168.
    Tevyashova, A. N., Olsufyeva, E. N., Preobrazhenskaya, M. N., Klyosov, A. A., Zomer, E., and Platt, D. (2007) New conjugates of antitumor antibiotic doxorubicin with water-soluble galactomannan: synthesis and biological activity, Russ. J. Bioorg. Chem., 33, 139–145.Google Scholar
  169. 169.
    Lubrano, C., Flavet, L., Saintigny, G., and Robin, J. (2007) Methods of treating aging of skin with oligosaccharides in cosmetic or dermatological compositions that stimulate adhesion of keratinocytes to major proteins of the dermoepidermal junction and restore epidermal cohesion, US Patent, No. US 2007/0293433A1.Google Scholar
  170. 170.
    Fiehn, O. (2002) Metabolomics- the link between genotypes and phenotypes, Plant Mol. Biol., 48, 155–171.PubMedGoogle Scholar
  171. 171.
    Lokhov, P. G., and Archakov, A. I. (2009) Mass spectrometry methods in metabolomics, Biochemistry (Moscow), Suppl. Ser. B: Biomed. Chem., 3, 1–9.Google Scholar
  172. 172.
    Pabst, M., and Altmann, F. (2011) Glycan analysis by modern instrumental methods, Proteomics, 11, 631–643.PubMedGoogle Scholar
  173. 173.
    Adamczyk, B., Tharmalingam, T, and Rudd, P. M. (2011) Glycans as cancer biomarkers, Biochim. Biophys. Acta, 1820, 1347–1353.PubMedGoogle Scholar
  174. 174.
    Tarchevsky, I. A. (2002) Signal System of Plant Cells [in Russian], Nauka, Moscow.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.Kazan Institute of Biochemistry and Biophysics, Kazan Scientific CenterRussian Academy of SciencesKazanRussia

Personalised recommendations