Biochemistry (Moscow)

, Volume 80, Issue 7, pp 872–880 | Cite as

What adaptive changes in hemagglutinin and neuraminidase are necessary for emergence of pandemic influenza virus from its avian precursor?

  • A. S. GambaryanEmail author
  • M. N. Matrosovich


Wild ducks serve as the primary host for numerous and various influenza type A viruses. Occasionally, viruses from this reservoir can be transferred to other host species and cause outbreaks of influenza in fowl, swine, and horses, as well as result in novel human pandemics. Cellular tropism and range of susceptible host species are determined by interaction between virus and receptor molecules on cells. Here we discuss modern data regarding molecular features underlying interactions of influenza viruses with cellular receptors as well as a role for receptor specificity in interspecies transmission. By analyzing the earliest available pandemic influenza viruses (1918, 1957, 1968, 2009), we found that hemagglutinin reconfigured to recognize 2-6 sialic acid-containing receptors in the human upper airway tract together with altered enzymatic activity of neuraminidase necessary for maintaining functional balance with hemagglutinin are responsible for effective spread of influenza viruses in human populations. Resistance to low pH also contributes to this. Thus, a combination of such parameters makes it possible that influenza viruses give rise to novel pandemics.


influenza virus receptor specificity pandemic 







Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Webster, R. G., Bean, W. J., Gorman, O. T., Chambers, T M., and Kawaoka, Y (1992) Evolution and ecology of influenza A viruses, Microbiol. Rev., 56, 152–179.PubMedCentralPubMedGoogle Scholar
  2. 2.
    Taubenberger, J. K., Reid, A. H., Krafft, A. E., Bijwaard, K. E., and Fanning, T G. (1997) Initial genetic characterization of the 1918 “Spanish” influenza virus, Science, 275, 1793–1796.PubMedCrossRefGoogle Scholar
  3. 3.
    Tumpey, T M., Basler, C. F., Aguilar, P. V., Zeng, H., Solorzano, A., Swayne, D. E., Cox, N. J., Katz, J. M., Taubenberger, J. K., Palese, P., and Garcia-Sastre, A. (2005) Characterization of the reconstructed 1918 Spanish influenza pandemic virus, Science, 310, 77–80.PubMedCrossRefGoogle Scholar
  4. 4.
    Cox, N. J., and Subbarao, K. (2000) Global epidemiology of influenza: past and present, Annu. Rev. Med., 51, 407421.Google Scholar
  5. 5.
    Matrosovich, M. N., Matrosovich, T Y, Gray, T, Roberts, N. A., and Klenk, H. D. (2004) Neuraminidase is important for the initiation of influenza virus infection in human airway epithelium, J. Virol., 78, 12665–12667.PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Paulson, J. C. (1985) Interactions of animal viruses with cell surface receptors, in The Receptors (Conn, M., ed.) Vol. 2, Academic Press, Orlando, pp. 131–219.Google Scholar
  7. 7.
    Varki, A. (1997) Sialic acids as ligands in recognition phenomena, FASEB J., 11, 248–255.PubMedGoogle Scholar
  8. 8.
    Rogers, G. N., and D’Souza, B. L. (1989) Receptor-binding properties of human and animal H1 influenza virus isolates, Virology, 173, 317–322.PubMedCrossRefGoogle Scholar
  9. 9.
    Connor, R. J., Kawaoka, Y, Webster, R. G., and Paulson, J. C. (1994) Receptor specificity in human, avian, and equine H2 and H3 influenza virus isolates, Virology, 205, 17–23.PubMedCrossRefGoogle Scholar
  10. 10.
    Matrosovich, M. N., Gambaryan, A. S., Teneberg, S., Piskarev, V. E., Yamnikova, S. S., Lvov, D. K., Robertson, J. S., and Karlsson, K. A. (1997) Avian influenza A viruses differ from human viruses by recognition of sialyloligosaccharides and gangliosides and by a higher conservation of the HA receptor-binding site, Virology, 233, 224–234.PubMedCrossRefGoogle Scholar
  11. 11.
    Gambaryan, A. S., Tuzikov, A. B., Piskarev, V. E., Yamnikova, S. S., Lvov, D. K., Robertson, J. S., Bovin, N. V., and Matrosovich, M. N. (1997) Specification of receptor- binding phenotypes of influenza virus isolates from different hosts using synthetic sialylglycopolymers: non-eggadapted human H1 and H3 influenza A and influenza B viruses share a common high binding affinity for 6'-sialyl( N-acetyllactosamine), Virology, 232, 345–350.PubMedCrossRefGoogle Scholar
  12. 12.
    Matrosovich, M., Tuzikov, A., Bovin, N., Gambaryan, A., Klimov, A., Castrucci, M. R., Donatelli, I., and Kawaoka, Y. (2000) Early alterations of the receptor-binding properties of H1, H2, and H3 avian influenza virus hemagglutinins after their introduction into mammals, J. Virol., 74, 8502–8512.PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Baum, L. G., and Paulson, J. C. (1990) Sialyloligosaccharides of the respiratory epithelium in the selection of human influenza virus receptor specificity, Acta Histochem. Suppl., 40, 35–38.PubMedGoogle Scholar
  14. 14.
    Couceiro, J. N., Paulson, J. C., and Baum, L. G. (1993) Influenza virus strains selectively recognize sialyloligosaccharides on human respiratory epithelium; the role of the host cell in selection of hemagglutinin receptor specificity, Virus Res., 29, 155–165.PubMedCrossRefGoogle Scholar
  15. 15.
    Subbarao, K., Klimov, A., Katz, J., Regnery, H., Lim, W., Hall, H., Perdue, M., Swayne, D., Bender, C., Huang, J., Hemphill, M., Rowe, T., Shaw, M., Xu, X. Y, Fukuda, K., and Cox, N. (1998) Characterization of an avian influenza A (H5N1) virus isolated from a child with a fatal respiratory illness, Science, 279, 393–396.PubMedCrossRefGoogle Scholar
  16. 16.
    Claas, E. C., Osterhaus, A. D., Van Beek, R., Jong, J. C., Rimmelzwaan, G. F., Senne, D. A., Krauss, S., Shortridge, K. F., and Webster, R. G. (1998) Human influenza A H5N1 virus related to a highly pathogenic avian influenza virus, Lancet, 351, 472–477.PubMedCrossRefGoogle Scholar
  17. 17.
    Matrosovich, M. N., Zhau, N., Kawaoka, Y., and Webster, R. (1999) The surface glycoproteins of H5 influenza viruses isolated from humans, chickens, and wild aquatic birds have distinguishable properties, J. Virol., 73, 1146–1155.PubMedCentralPubMedGoogle Scholar
  18. 18.
    Matrosovich, M. N., Matrosovich, T Y., Gray, T, Roberts, N. A., and Klenk, H. D. (2004) Human and avian influenza viruses target different cell types in cultures of human airway epithelium, Proc. Natl. Acad. Sci. USA, 101, 46204624.CrossRefGoogle Scholar
  19. 19.
    Thompson, C. I., Barclay, W S., Zambon, M. C., and Pickles, R. J. (2006) Infection of human airway epithelium by human and avian strains of influenza a virus, J. Virol., 80, 8060–8068.PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Kogure, T, Suzuki, T, Takahashi, T, Miyamoto, D., Hidari, K. I., Guo, C. T, Ito, T, Kawaoka, Y, and Suzuki, Y. (2006) Human trachea primary epithelial cells express both sialyl(alpha2-3)Gal receptor for human parainfluenza virus type 1 and avian influenza viruses, and sialyl(alpha2- 6)Gal receptor for human influenza viruses, Glycoconj. J., 23, 101–106.PubMedCrossRefGoogle Scholar
  21. 21.
    Maines, T R., Chen, L. M., Matsuoka, Y, Chen, H., Rowe, T, Ortin, J., Falcon, A., Hien, N. T, Mai, L. Q., Sedyaningsih, E. R., Harun, S., Tumpey, T M., Donis, R. O., Cox, N. J., Subbarao, K., and Katz, J. M. (2006) Lack of transmission of H5N1 avian-human reassortant influenza viruses in a ferret model, Proc. Natl. Acad. Sci. USA, 103, 12121–12126.PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Shinya, K., and Kawaoka, Y. (2006) Influenza virus receptors in the human airway, Uirusu, 56, 85–89.PubMedCrossRefGoogle Scholar
  23. 23.
    Uiprasertkul, M., Puthavathana, P., Sangsiriwut, K., Pooruk, P., Srisook, K., Peiris, M., Nicholls, J. M., Chokephaibulkit, K., Vanprapar, N., and Auewarakul, P. (2005) Influenza A H5N1 replication sites in humans, Emerg. Infect. Dis., 11, 1036–1041.PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Gu, J., Xie, Z., Gao, Z., Liu, J., Korteweg, C., Ye, J., Lau, L. T, Lu, J., Gao, Z., Zhang, B., McNutt, M. A., Lu, M., Anderson, V. M., Gong, E., Yu, A. C., and Lipkin, W I. (2007) H5N1 infection of the respiratory tract and beyond: a molecular pathology study, Lancet, 370, 1137–1145.PubMedCrossRefGoogle Scholar
  25. 25.
    Nicholls, J. M., Chan, M. C., Chan, W. Y, Wong, H. K., Cheung, C. Y, Kwong, D. L., Wong, M. P., Chui, W. H., Poon, L. L., Tsao, S. W, Guan, Y, and Peiris, J. S. (2007) Tropism of avian influenza A (H5N1) in the upper and lower respiratory tract, Nature Med., 13, 147–149.PubMedCrossRefGoogle Scholar
  26. 26.
    Riel, D., Munster, V. J., Wit, E., Rimmelzwaan, G. F., Fouchier, R. A., Osterhaus, A. D., and Kuiken, T (2006) H5N1 virus attachment to lower respiratory tract, Science, 312, 399.PubMedCrossRefGoogle Scholar
  27. 27.
    Skehel, J. J., and Wiley, D. C. (2000) Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin, Annu. Rev. Biochem., 69, 531–569.PubMedCrossRefGoogle Scholar
  28. 28.
    Ha, Y, Stevens, D. I., Skehel, J. J., and Wiley, D. C. (2001) X-ray structures of H5 avian and H9 swine hemagglutinins bound to avian and human receptor analogs, Proc. Natl. Acad. Sci. USA, 98, 11181–11186.PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Ha, Y, Stevens, D. J., Skehel, J. J., and Wiley, D. C. (2003) X-ray structure of the hemagglutinin of a potential H3 avian progenitor of the 1968 Hong Kong pandemic influenza virus, Virology, 309, 209–218.PubMedCrossRefGoogle Scholar
  30. 30.
    Gamblin, S. J., Haire, L. F., Russell, R. J., Stevens, D. J., Xiao, B., Ha, Y, Vasisht, N., Steinhauer, D. A., Daniels, R. 5., Elliot, A., Wiley, D. C., and Skehel, J. J. (2004) The structure and receptor binding properties of the 1918 influenza hemagglutinin, Science, 303, 1838–1342.PubMedCrossRefGoogle Scholar
  31. 31.
    Russell, R. J., Gamblin, S. J., Haire, L. F., Stevens, D. J., Xiao, B., Ha, Y, and Skehel, J. J. (2004) H1 and H7 influenza haemagglutinin structures extend a structural classification of haemagglutinin subtypes, Virology, 325, 287–296.PubMedCrossRefGoogle Scholar
  32. 32.
    Russell, R. J., Stevens, D. J., Haire, L. F., Gamblin, S. J., and Skehel, J. J. (2006) Avian and human receptor binding by hemagglutinins of influenza A viruses, Glycoconj. J., 23, 85–92.PubMedCrossRefGoogle Scholar
  33. 33.
    Bateman, A. C., Busch, M. G., Karasin, A. I., Bovin, N., and Olsen, C. W. (2008) Amino acid 226 in the hemagglutinin of H4N6 influenza virus determines binding affinity for alpha2,6-linked sialic acid and infectivity levels in primary swine and human respiratory epithelial cells, J. Virol., 82, 8204–8209.PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Reid, A. H., Fanning, T G., Hultin, J. V., and Taubenberger, J. K. (1999) Origin and evolution of the 1918 “Spanish” influenza virus hemagglutinin gene, Proc. Natl. Acad. Sci. USA, 96, 1651–1656.PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Glaser, L., Stevens, J., Zamarin, D., Wilson, I. A., Garcia-Sastre, A., Tumpey, T M., Basler, C. F., Taubenberger, J. K., and Palese, P. (2005) A single amino acid substitution in 1918 influenza virus hemagglutinin changes receptor binding specificity, J. Virol., 79, 11533–11536.PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Stevens, J., Blixt, O., Glaser, L., Taubenberger, J. K., Palese, P., Paulson, J. C., and Wilso, I. A. (2006) Glycan microarray analysis of the hemagglutinins from modern and pandemic influenza viruses reveals different receptor specificities, J. Mol. Biol., 355, 1143–1155.PubMedCrossRefGoogle Scholar
  37. 37.
    Matrosovich, M., Krauss, S., and Webster, R. (2001) H9N2 influenza A viruses from poultry in Asia have human-viruslike receptor specificity, Virology, 281, 156–162.PubMedCrossRefGoogle Scholar
  38. 38.
    Olsen, C. W., Carey, S., Hinshaw, L., and Karasin, A. I. (2000) Virologic and serologic surveillance for human, swine and avian influenza virus infections among pigs in the north-central United States, Arch. Virol., 145, 13991419.CrossRefGoogle Scholar
  39. 39.
    Liu, J., Okazaki, K., Ozaki, H., Sakoda, Y, Wu, Q., Chen, F., and Kida, H. (2003) H9N2 influenza viruses prevalent in poultry in China are phylogenetically distinct from A/quail/Hong Kong/G1/97 presumed to be the donor of the internal protein genes of the H5N1 Hong Kong/97 virus, Avian Pathol., 32, 551–560.PubMedCrossRefGoogle Scholar
  40. 40.
    Gambaryan, A., Tuzikov, A., Pazynina, G., Bovin, N., Balish, A., and Klimov, A. (2006) Evolution of the receptor binding phenotype of influenza A (H5) viruses, Virology, 344, 432–438.PubMedCrossRefGoogle Scholar
  41. 41.
    Shinya, K., Hatta, M., Yamada, S., Takada, A., Watanabe, S., Halfmann, P., Horimoto, T, Neumann, G., Kim, J. H., Lim, W., Guan, Y., Peiris, M., Kiso, M., Suzuki, T, Suzuki, Y, and Kawaoka, Y. (2005) Characterization of a human H5N1 influenza A virus isolated in 2003, J. Virol., 79, 9926–9932.PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Stevens, J., Blixt, O., Tumpey, T M., Taubenberger, J. K., Paulson, J. C., and Wilson, I. A. (2006) Structure and receptor specificity of the hemagglutinin from an H5N1 influenza virus, Science, 312, 404–410.PubMedCrossRefGoogle Scholar
  43. 43.
    Yamada, S., Suzuki, Y, Suzuki, T, Le, M. Q., Nidom, C. A., Sakai-Tagawa, Y, Muramoto, Y, Ito, M., Kiso, M., Horimoto, T, Shinya, K., Sawada, T., Kiso, M., Usui, T, Murata, T, Lin, Y, Hay, A., Haire, L. F., Stevens, D. J., Russell, R. J., Gamblin, S. J., Skehel, J. J., and Kawaoka, Y. (2006) Haemagglutinin mutations responsible for the binding of H5N1 influenza A viruses to human type receptors, Nature, 444, 378–382.PubMedCrossRefGoogle Scholar
  44. 44.
    Crusat, M., Liu, J., Palma, A. S., Childs, R. A., Liu, Y, Wharton, S. A., Lin, Y P., Coombs, P. J., Martin, S. R., Matrosovich, M., Chen, Z., Stevens, D. J., Hien, V. M., Thanh, T T, le Nhu, N. T, Nguyet, L. A., do Ha, Q., van Doorn, H. R., Hien, T. T, Conradt, H. S., Kiso, M., Gamblin, S. J., Chai, W, Skehel, J. J., Hay, A. J., Farrar, J., de Jong, M. D., and Feizi, T (2013) Changes in the hemagglutinin of H5N1 viruses during human infection- influence on receptor binding, Virology, 447, 326–327.PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Lu, X., Shi, Y, Zhang, W., Zhang, Y, Qi, J., and Gao, G. F. (2013) Structure and receptor-binding properties of an airborne transmissible avian influenza A virus hemagglutinin H5 (VN1203mut), Protein Cell, 4, 502–511.PubMedCrossRefGoogle Scholar
  46. 46.
    Xiong, X., Coombs, P. J., Martin, S. R., Liu, J., Xiao, H., McCauley, J. W, Locher, K., Walker, P. A., Collins, P. J., Kawaoka, Y, Skehel, J. J., and Gamblin, S. J. (2013) Receptor binding by a ferret-transmissible H5 avian influenza virus, Nature, 497, 392–396.PubMedCrossRefGoogle Scholar
  47. 47.
    Imai, M., Watanabe, T, Hatta, M., Das, S. C., Ozawa, M., Shinya, K., Zhong, G., Hanson, A., Katsura, H., Watanabe, S., Li, C., Kawakami, E., Yamada, S., Kiso, M., Suzuki, Y, Maher, E. A., Neumann, G., and Kawaoka, Y (2012) Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets, Nature, 486, 420–428.PubMedCentralPubMedGoogle Scholar
  48. 48.
    Linster, M., van Boheemen, S., de Graaf, M., Schrauwen, E. J., Lexmond, P., Manz, B., Bestebroer, T M., Baumann, J., van Riel, D., Rimmelzwaan, G. F., Osterhaus, A. D., Matrosovich, M., Fouchier, R. A., and Herfst, S. (2014) Identification, characterization, and natural selection of mutations driving airborne transmission of A/H5N1 virus, Cell, 157, 329–339.PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Mitnaul, L. J., Matrosovich, M. N., Castrucci, M. R., Tuzikov, A. B., Bovin, N. V., Kobasa, D., and Kawaoka, Y (2000) Balanced hemagglutinin and neuraminidase activities are critical for efficient replication of influenza A virus, J. Virol., 74, 6015–6020.PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Wagner, R., Matrosovich, M. N., and Klenk, H. D. (2002) Functional balance between haemagglutinin and neuraminidase in influenza virus infections, Rev. Med. Virol., 12, 159–166.PubMedCrossRefGoogle Scholar
  51. 51.
    Xu, R., Zhu, X., McBride, R., Nycholat, C. M., Yu, W., Paulson, J. C., and Wilson, I. A. (2012) Functional balance of the hemagglutinin and neuraminidase activities accompanies the emergence of the 2009 H1N1 influenza pandemic, J. Virol., 86, 9221–9232.PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Kaverin, N. V., Matrosovich, M. N., Gambaryan, A. S., Rudneva, I. A., Shilov, A. A., Varich, N. L., Makarova, N. V., Kropotkina, E. A., and Sinitsin, B. V. (2000) Intergenic HA-NA interactions in influenza A virus: postreassortment substitutions of charged amino acid in the hemagglutinin of different subtypes, Virus Res., 66, 123–129.PubMedCrossRefGoogle Scholar
  53. 53.
    Kaverin, N. (2010) Postreassortment amino acid substitutions in influenza A viruses, Future Microbiol., 5, 705–715.PubMedCrossRefGoogle Scholar
  54. 54.
    Rudneva, I. A., Timofeeva, T A., Shilov, A. A., Kochergin-Nikitsky, K. S., Varich, N. L., Ilyushina, N. A., Gambaryan, A. S., Krylov, P. S., and Kaverin, N. V. (2007) Effect of gene constellation and postreassortment amino acid change on the phenotypic features of H5 influenza virus reassortants, Arch. Virol., 152, 1139–1145.PubMedCrossRefGoogle Scholar
  55. 55.
    Baum, L. G., and Paulson, J. C. (1991) The N2 neuraminidase of human influenza virus has acquired a substrate specificity complementary to the hemagglutinin receptor specificity, Virology, 180, 10–15.PubMedCrossRefGoogle Scholar
  56. 56.
    Air, G. M. (2012) Influenza neuraminidase, Influenza Other Respir. Viruses, 6, 245–256.PubMedCentralPubMedCrossRefGoogle Scholar
  57. 57.
    Uhlendorff, J., Matrosovich, T., Klenk, H-D., and Matrosovich, M. (2009) Functional significance of the hemadsorption activity of influenza virus neuraminidase and its alteration in pandemic viruses, Arch. Virol., 154, 945–957.PubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.
    Gerlach, T, Kehling, L., Uhlendorff, J., Laukemper, V., Matrosovich, T, Czudai-Matwich, V., Schwalm, F., Klenk, H. D., and Matrosovich, M. (2012) Characterization of the neuraminidase of the H1N1/09 pandemic influenza virus, Vaccine, 30, 7348–7352.PubMedCrossRefGoogle Scholar
  59. 59.
    Worobey, M., Han, G. Z., and Rambaut, A. (2014) Genesis and pathogenesis of the 1918 pandemic H1N1 influenza A virus, Proc. Natl. Acad. Sci. USA, 111, 8107–8112.PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Bovin, N. V., Tuzikov, A. B., Chinarev, A. A., and Gambaryan, A. S. (2004) Multimeric glycotherapeutics: new paradigm, Glycoconj. J., 21, 471–478.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.Chumakov Institute of Poliomyelitis and Viral EncephalitidesPoselok Institute of PoliomyelitisMoscowRussia
  2. 2.Institute of VirologyPhilipps UniversityMarburgGermany

Personalised recommendations