Biochemistry (Moscow)

, Volume 80, Issue 7, pp 857–871 | Cite as

Synthetic glycolipid-like constructs as tools for glycobiology research, diagnostics, and as potential therapeutics

  • E. Y. KorchaginaEmail author
  • S. M. HenryEmail author


Function—spacer—lipid (FSL) constructs are amphiphilic molecules that are able to disperse in water and then self-assemble into cell membranes or onto solid surfaces. Modification of a biological or non-biological surface is very easy and achieved by simple contact of the surface with an appropriately buffered solution containing one or more FSLs. When the functional head group of the FSL is a glycan, glycan modified surfaces can be rapidly formed. Once cells, viruses, or solid surfaces are FSL modified with either simple or complex glycans, they can be used in vitro and/or in vivo to measure interactions with cells, viruses, antibodies, and lectins. FSLs have already been used in a variety of techniques including antibody specificity mapping, antibody/toxin neutralization, diagnostic assays, immune system manipulation, and animal modeling of transfusion reactions. FSLs offer the easiest and fastest method available to achieve a glycan-modified surface.


function-spacer-lipid KODE technology kodecyte neoglycolipid 



carboxymethylglycine spacer




functional-head group of an FSL construct


function-spacer-lipid constructs


hyaluronic acid


lipid tail of an FSL construct




spacer group of an FSL construct. Glycan abbreviations are as per Table 1


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Varki, A., Cummings, R. D., Esko, J. D., Freeze, H. H., Stanley, P., Bertozzi, C. R., Hart, G. W., and Etzler, M. E. (2009) Essentials of Glycobiology, 2nd Edn., Cold Spring Harbor Laboratory Press, N.Y.Google Scholar
  2. 2.
    Tailor, M. E., and Drickamer, K. (2006) Introduction to Glycobiology, Oxford University Press, N.Y.Google Scholar
  3. 3.
    Marcus, D. M., and Cass, L. E. (1969) Glycosphingolipids with Lewis blood group activity: uptake by human erythrocytes, Science, 164, 553–555.PubMedCrossRefGoogle Scholar
  4. 4.
    Sneath, J. S., and Sneath, P. H. A. (1955) Transformation of the Lewis groups of human red cells, Nature, 176, 172.PubMedCrossRefGoogle Scholar
  5. 5.
    Simons, K., and Ikonen, E. (1997) Functional rafts in cell membranes, Nature, 387, 569–572.PubMedCrossRefGoogle Scholar
  6. 6.
    Simons, K., and Ikonen, E. (2000) How cells handle cholesterol, Science, 290, 1721–1726.PubMedCrossRefGoogle Scholar
  7. 7.
    Tang, P. W., Gool, H. C., Hardy, M., Lee, Y. C., and Feizi, T (1985) Novel approach to the study of the antigenicities and receptor functions of carbohydrate chains of glycoproteins, Biochem. Biophys. Res. Commun., 132, 474–480.PubMedCrossRefGoogle Scholar
  8. 8.
    Palma, A. S., Feizi, T, Childs, R. A., Chai, W, and Liu, Y (2014) The neoglycolipid (NGL)-based oligosaccharide microarray system poised to decipher the meta-glycome, Curr. Opt. Chem. Biol., 18, 87–94.CrossRefGoogle Scholar
  9. 9.
    Liu, Y., Feizi, T., Campanero-Rodes, M. Z., Childs, R. A., Zhang, Y, Mullou, Y. B., Evans, Ph. G., Osborn, H. M. I., Otto, D., Crocker, P. R., and Chai, W. (2007) Neoglycolipid probes prepared via oxime ligation for microarray analysis of oligosaccharide-protein interaction, Chem. Biol., 14, 847–859.PubMedCrossRefGoogle Scholar
  10. 10.
    Hasegawa, A., and Kiso, M. (1994) Synthesis of sialyl Lewis X ganglioside and analogs, Methods Enzymol., 242, 158–173.PubMedCrossRefGoogle Scholar
  11. 11.
    Ando, T, Imamura, A., Ishida, H., and Kiso, M. (2007) 1.20. Synthesis of glycolipids, Compr. Glycosci., 1, 797–813.CrossRefGoogle Scholar
  12. 12.
    Faivre, V., de Lourdes Costa, M., Boullanger, P., Baszkin, A., and Rosilio, V. (2003) Specific interaction of lectins with liposomes and monolayers, Chem. Phys. Lipids, 125, 147–159.PubMedCrossRefGoogle Scholar
  13. 13.
    Miyashita, H., Ikeda, T, and Nohara, T (2007) Synthesis of neosaponins and neoglycolipid containing a chacotriosyl moiety, Carbohydr. Res., 342, 2182–2191.PubMedCrossRefGoogle Scholar
  14. 14.
    Queneau, Y, Chambert, S., Besseta, S., and Cheai, R. (2008) Recent progress in the synthesis of carbohydratebased amphiphilic materials: the examples of sucrose and isomaltulose, Carbohydr. Res., 343, 1999–2009.PubMedCrossRefGoogle Scholar
  15. 15.
    Korchagina, E., Tuzikov, A., Formanovsky, A., Popova, I., Henry, S., and Bovin, N. (2012) Toward creating cell membrane glycolandscapes with glycan lipid constructs, Carbohydr. Res., 356, 238–246.PubMedCrossRefGoogle Scholar
  16. 16.
    Barr, K., Korchagina, E., Popova, I., Bovin, N., and Henry, S. (2015) Monoclonal anti-A activity against the FORS1 (Forssman) antigen, Transfusion, 55, 129–136.PubMedCrossRefGoogle Scholar
  17. 17.
    Blake, D. A., Bovin, N. V., Bess, D., and Henry, S. M. (2011) FSL constructs: a simple method for modifying cell/virion surfaces with a range of biological markers without affecting their viability, J. Vis. Exp., 54, e3289; DOI: 10.3791/3289.PubMedGoogle Scholar
  18. 18.
    Barr, K., Korchagina, E., Ryzhov, I., Bovin, N., and Henry, S. (2014) Mapping the fine specificity of ABO monoclonal reagents with A and B type-specific FSL constructs in kodecytes and inkjet printed on paper, Transfusion, 54, 2477–2484.PubMedCrossRefGoogle Scholar
  19. 19.
    Carter, N. L., Blake, D. A., Bovin, N. V., Henry, S. M., Korchagina, E. Y, Williams, E. C., and Tuzikov, A. B. (2006) Cell Surface Coating with Hyaluronic Acid Oligomer Derivative, US Patent WO/2007/035116.Google Scholar
  20. 20.
    Harrison, A. L., Olsson, M. L., Brad Jones, R., Ramkumar, S., Sakac, D., Binnington, B., Henry, S., Lingwood, C. A., and Branch, D. R. (2010) A synthetic globotriaosylceramide analogue inhibits HIV-1 infection in vitro by two mechanisms, Glycoconj. J., 27, 515–524.PubMedCrossRefGoogle Scholar
  21. 21.
    Oliver, C., Blake, D., and Henry, S. (2011) In vivo neutralization of anti-A and successful transfusion of A antigen incompatible red cells in an animal model, Transfusion, 51, 2664–2675.PubMedCrossRefGoogle Scholar
  22. 22.
    Lan, C.-C., Blake, D., Henry, S., and Love, D. R. (2012) Fluorescent function-spacer-lipid construct labelling allows for real-time in vivo imaging of cell migration and behavior in zebrafish (Danio rerio), J. Fluoresc., 22, 1055–1063.PubMedCrossRefGoogle Scholar
  23. 23.
    Bovin, N. V., and Khorlin, A. Ya. (1984) Synthesis of the determinant oligosaccharides of ABH (type 1) blood group antigens and Leb tetrasaccharide from the same precursor, Bioorg. Khim., 10, 853–860.PubMedGoogle Scholar
  24. 24.
    Bovin, N. V., and Khorlin, A. Ya. (1985) Convenient method for preparing the Le and ABH (type 1) determinant oligosaccharides, Bioorg. Khim., 11, 826–829.PubMedGoogle Scholar
  25. 25.
    Bovin, N. V., Zemlyanukhina, T V., Chagiashvili, C. N., and Khorlin, A. Ya. (1988) Artificial antigens and affinity sorbents of blood-group specificity Lea, Leb, and Led, Khim. Prirod. Soedin., 6, 777–785.Google Scholar
  26. 26.
    Zemlyanukhina, T V., and Bovin, N. V. (1990) Synthesis of blood group oligosaccharides with A, B, and H (type 3) specificity, Bioorg. Khim., 16, 1096–1104.Google Scholar
  27. 27.
    Korchagina, E. Yu., and Bovin, N. V. (1992) Synthesis of spacered trisaccharides with blood group specificities A and B, their fragments and structural analogs, Bioorg. Khim., 18, 283–298.PubMedGoogle Scholar
  28. 28.
    Ovchinnikova, T V., Ter-Grigoryan, A. G., Pazynina, G. V., and Bovin, N. V. (1997) Synthesis of terminal disaccharide of Forssman antigen and some of its analogs as spacered glycosides and free disaccharides, Rus. J. Bioorg. Chem., 23, 55–68.Google Scholar
  29. 29.
    Simeoni, L. A., Byramova, N. E., and Bovin, N. V. (1997) Synthesis of aminopropyl glycoside of the SiaTn antigen Neu5Aca2-6GalNAca, Russ. J. Bioorg. Chem., 23, 683691.Google Scholar
  30. 30.
    Simeoni, L. A., Byramova, N. E., and Bovin, N. V. (2000) Neu5Gca(2-6)GalNAca as a spacer glycoside, Russ. J. Bioorg. Chem., 26, 183–191.CrossRefGoogle Scholar
  31. 31.
    Pazynina, G. V., Tyrtysh, T V., and Bovin, N. V. (2002) Synthesis of histo blood-group antigens A and B (type 2), xenoantigen Gala1-3Galß1-4GlcNAc and related type 2 backbone oligosaccharides as haptens in spacered form, Mendeleev Commun., 12, 143–145.CrossRefGoogle Scholar
  32. 32.
    Pazynina, G., Tuzikov, A., Chinarev, A., Obukhova, P., and Bovin, N. (2002) Simple stereoselective synthesis of a2-6 sialooligosaccharides, Tetrahedron Lett., 43, 8011–8013.CrossRefGoogle Scholar
  33. 33.
    Korchagina, E. Y, Pochechueva, T. V., Obukhova, P. S., Formanovsky, A. A., Imberty, A., Rieben, R., and Bovin, N. V. (2005) Design of the blood group AB glycotopes, Glycoconj. J., 22, 127–133.PubMedCrossRefGoogle Scholar
  34. 34.
    Byramova, N. E., Tuzikov, A. B., Tyrtysh, T V., and Bovin, N. V. (2007) 1,6-Anhydro-N-acetyl-ß-D-glucosamine in oligosaccharide synthesis: II. The synthesis of the spacered LeY tetrasaccharides, Rus. J. Bioorg. Chem., 33, 99–109.CrossRefGoogle Scholar
  35. 35.
    Korchagina, E. Yu., Ryzhov, I. M., Byrgazov, K. A., Popova, I. S., Pokrovsky, S. N., and Bovin, N. V. (2009) Block synthesis of blood group tetrasaccharides B (types 1, 3 and 4), Mendeleev Commun., 19, 152–154.CrossRefGoogle Scholar
  36. 36.
    Ryzhov, I. M., Korchagina, E. Y., Popova, I. S., and Bovin, N. V. (2012) Block synthesis of A tetrasaccharides (types 1, 3, and 4) related to the human ABO blood group system, Carbohydr. Res., 351, 17–25.PubMedCrossRefGoogle Scholar
  37. 37.
    Pazynina, G., Tyrtysh, T, Nasonov, V., Belyanchikov, I., Paramonov, A., Malysheva, N., Zinin, A., Kononov, L., and Bovin, N. (2013) Divergent strategy for the synthesis of a2- 3-linked sialo-oligosaccharide libraries using a Neu5TFA- (a2-3)-Gal building block, Synlett, 24, 226–230.CrossRefGoogle Scholar
  38. 38.
    Pazynina, G. V., Chinarev, A. A., Tuzikov, A. B., Nasonov, V. V., Malysheva, N. N., and Bovin, N. V. (2013) Synthesis of a spacer-armed 6'-sialyl-N-acetyllactosamine, in Carbohydrate Chemistry: Proven Synthetic Methods, Vol. 2, Series: Carbohydrate Chemistry, CRC Press, pp. 155–160.Google Scholar
  39. 39.
    Tuzikov, A. B., Gambaryan, A. S., Juneja, L. R., and Bovin, N. V. (2000) Conversion of complex sialooligosaccharides into polymeric conjugates and their anti-influenza virus inhibitory potency, J. Carbohydr. Chem., 19, 1191–1200.CrossRefGoogle Scholar
  40. 40.
    Lee, R. T, and Lee, Y C. (1997) Facile synthesis of a highaffinity ligand for mammalian hepatic lectin containing three terminal N-acetylglucosamine residues, Bioconj. Chem., 8, 762–765.CrossRefGoogle Scholar
  41. 41.
    Cremer, P. S., and Boxer, S. G. (1999) Formation and spreading of lipid bilayers on planar glass support, J. Phys. Chem. B, 103, 2554–2559.CrossRefGoogle Scholar
  42. 42.
    Nollert, P., Kiefer, H., and Jahnig, F. (1995) Lipid vesicle adsorption versus formation of planar bilayers on solid surfaces, Biophys. J., 69, 1447–1455.PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Richter, R., Mukhopadhyay, A., and Brisson, A. (2003) Pathways of lipid vesicle deposition on solid surfaces: a com- bined QCM-D and AFM study, Biophys. J., 85, 3035–3047.PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Radler, J., Strey, H., and Sackmann, E. (1995) Phenomenology and kinetics of lipid bilayers spreading on hydrophilic surfaces, Langmuir, 11, 4539–4548.CrossRefGoogle Scholar
  45. 45.
    Whiles, J. A., Deems, R., Vold, R. R., and Dennis, E. A. (2002) Bicelles in structure-function studies of membraneassociated proteins, Bioorg. Chem., 30, 431–442.PubMedCrossRefGoogle Scholar
  46. 46.
    Henry, S. (2009) Modification of red blood cells for laboratory quality control use, Curr. Opin. Hematol., 16, 467–472.PubMedCrossRefGoogle Scholar
  47. 47.
    Oliver, C., Blake, D., and Henry, S. (2011) Modeling transfusion reactions and predicting in vivo cell survival with kodecytes, Transfusion, 51, 1723–1730.PubMedCrossRefGoogle Scholar
  48. 48.
    Hult, A. K., Frame, T, Chesla, S., Henry, S., and Olsson, M. L. (2012) Flow cytometry evaluation of red blood cells mimicking naturally-occurring ABO subgroups following modification with variable amounts of FSL-A and B constructs, Transfusion, 52, 247–251.PubMedCrossRefGoogle Scholar
  49. 49.
    Hadac, E. M., Federspiel, M. J., Chernyy, E., Tuzikov, A., Korchagina, E., Bovin, N. V., Russell, S., and Henry, S. M. (2011) Fluorescein and radiolabeled function-spacer-lipid constructs allow for simple in vitro and in vivo bioimaging of enveloped virions, J. Virol. Methods, 176, 78–84.PubMedCrossRefGoogle Scholar
  50. 50.
    Perry, H., and Henry, S. (2015) Training students in serologic reaction grading increased perceptions of self-efficacy and ability to recognize serologic reactions but decreased grading accuracy, Transfusion, Jan. 7, DOI: 10.1111/ trf.12985 [Epub ahead of print].Google Scholar
  51. 51.
    Frame, T, Carroll, T, Korchagina, E., Bovin, N., and Henry, S. (2007) Synthetic glycolipid modification of red blood cell membranes, Transfusion, 47, 876–882.PubMedCrossRefGoogle Scholar
  52. 52.
    Henry, S. M. (2005) Engineering the surface of red cells with synthetic glycolipids (KODE CAE) to create ABO analytical sensitivity controls and xeno-modified cells, Xenotransplantation, 12, 356.Google Scholar
  53. 53.
    Georgakopoulos, T, Komarraju, S., Henry, S., and Bertolini, J. (2012) An improved Fc function assay utilizing CMV antigen coated red blood cells generated with synthetic function-spacer-lipid constructs, Vox Sanguinis, 102, 72–78.PubMedCrossRefGoogle Scholar
  54. 54.
    Perry, E. H., and Henry, S. M. (2013) Teaching the recognition of hemolysis by controlling antibody mediated in vitro hemolysis with kodecytes, Transfusion, 53 (Suppl.), 182A.Google Scholar
  55. 55.
    Henry, S. (2014) Magnetic Bead Coatings: Today and Tomorrow. Chap. 5. Rapid biofunctionalization of magnetic beads with function-spacer-lipid constructs, SepMag eBook ( Scholar
  56. 56.
    Svensson, L., Hult, A. K., Stamps, R., Angstrom, J., Teneberg, S., Jorgensen, R., Rydberg, L., Henry, S. M., and Olsson, M. L. (2013) Forssman expression on human erythrocytes: biochemical and genetic evidence of a new histo-blood group system, Blood, 121, 1459–1468.PubMedCrossRefGoogle Scholar
  57. 57.
    Henry, S., Korchagina, E., Tuzikov, A., and Bovin, N. V. (2010) Glyco-landscaping with neo glycolipid constructs, Glycobiology, 20, 1472.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.Shemyakin and Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussia
  2. 2.AUT Centre for KODE Technology InnovationSchool of Engineering, Faculty of Design and Creative Technologies, Auckland University of TechnologyAucklandNew Zealand

Personalised recommendations