Biochemistry (Moscow)

, Volume 80, Issue 7, pp 846–856 | Cite as

Specificity of human galectins on cell surfaces

  • E. M. RapoportEmail author
  • N. V. Bovin


Galectins are ß-galactoside-binding proteins sharing homology in amino acid sequence of their carbohydraterecognition domain. Their carbohydrate specificity outside cells has been studied previously. The main conclusion of these studies was that several levels of glycan ligand recognition exist for galectins: (i) disaccharide Galß1-4GlcNAc (LN, Nacetyllactosamine) binds stronger than ß-galactopyranose; (ii) substitution at 0 -2 and 0 -3 of galactose residue as well as core fragments (“right” from GlcNAc) provides significant increase in affinity; (iii) similarly glycosylated proteins can differ significantly in affinity to galectins. Information about the natural cellular receptors of galectins is limited. Until recently, it was impossible to study specificity of cell-bound galectins. A model based on controlled incorporation of a single protein into glycocalyx of cells and subsequent interaction of loaded cells with synthetic glycoprobes measured by flow cytometry made this possible recently. In this review, data about glycan specificity of proto-, chimera-, and tandem-repeat type galectins on the cell surface are systematized, and comparative analysis of the results with data on specificity of galectins in artificial systems was performed. The following conclusions from these studies were made: (i) cellular galectins have practically no ability to bind disaccharide LNn, but display affinity to 3'-substituted oligolactosamines and oligomers LNn; (ii) tandem-repeat type galectins recognize another disaccharide, namely Galß1-3GlcNAc (Lec); (iii) on the cell surface, tandemrepeat type galectins conserve the ability to display high affinity to blood group antigens of ABH system; (iv) in general, when galectins are immersed into glycocalyx, they are more selective regarding glycan interactions. Thus, we conclude that competitive interaction of galectins with cell microenvironment (endogenous cell glycans) is the main factor providing selectivity of galectins in vivo.


galectins glycans cells carbohydrate specificity carbohydrate-recognition domain 



carbohydrate-recognition domain






glycan residue




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cooper, D. N. (2002) Galectinomics: finding themes in complexity, Biochim. Biophys. Acta, 1572, 209–231.PubMedCrossRefGoogle Scholar
  2. 2.
    Kaltner, H., and Gabius, H.-J. (2012) A toolbox of lectins for translating the sugar code: the galectin network in phylogenesis and tumors, Histol. Histopathol., 27, 397–416.PubMedGoogle Scholar
  3. 3.
    Hirabayashi, J., Hashidate, T, Arata, Y., Nishi, N., Nakamura, T, Hirashima, M., Urashima, T, Oka, T, Futai, M., Muller, W E. G., Yagi, F., and Kasai, K. (2002) Oligosaccharide specificity of galectins: a search by frontal affinity chromatography, Biochim. Biophys. Acta, 1572, 232–254.PubMedCrossRefGoogle Scholar
  4. 4.
    Dumic, J., Dabelic, S., and Flogel, M. (2006) Galectin-3: an open-ended story, Biochim. Biophys. Acta, 1760, 616635.Google Scholar
  5. 5.
    Liu, Zh., Zhang, Q., Peng, H., and Zhang, W Z. (2012) Animal lectins: potential antitumor therapeutic targets in apoptosis, Appl. Biochem. Biotechnol., 168, 629–637.PubMedCrossRefGoogle Scholar
  6. 6.
    Di Lella, S., Sundblad, V., Cerliani, J. P., Guardia, C. M., Estrin, D. A., Vasta, G. R., and Rabinovich, G. A. (2011) When galectins recognize glycans: from biochemistry to physiology and back again, Biochemistry, 50, 7842–7857.PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Viguier, M., Advedissian, T, Delacour, D., Poirier, F., and Deshayes, F. (2014) Galectins in epithelial functions, Tissue Barriers, doi: 10.4161/tisb.29103.Google Scholar
  8. 8.
    Stowell, S. R., Dias-Baruffi, M., Penttila, L., Renkonen, O., Nyame, A. K., and Cummings, R. D. (2004) Human galectin-1 recognition of poly-N-acetyllactosamine and chimeric polysaccharides, Glycobiology, 14, 157–167.PubMedCrossRefGoogle Scholar
  9. 9.
    Leppanen, A., Stowell, S., Blixt, O., and Cummings, R. D. (2005) Dimeric galectin-1 binds with high affinity to a2,3- sialylated and non-sialylated terminal N-acetyllactosamine units on surface-bound extended glycans, J. Biol. Chem., 280,5549–5562.PubMedCrossRefGoogle Scholar
  10. 10.
    Wu, A. M., Wu, J. H., Singh, T, Andre, S., Kaltner, H., and Gabius, H.-J. (2004) Effects of polyvalency of glycotopes and natural modifications of human blood group ABH/Lewis sugars at the gal-beta1-terminated core saccharides on the binding of domain-I of recombinant tandem- repeat-type galectin-4 from rat gastrointestinal tract (G4-N), Biochimie, 86, 317–326.PubMedCrossRefGoogle Scholar
  11. 11.
    Carlsson, S., Oberg, C. T, Carlsson, M. C., Sundin, A., Nilsson, U. J., Smith, D., Cummings, R. D., Almkvist, J., Karlsson, A., and Leffler, H. (2007) Affinity of galectin-8 and its carbohydrate recognition domains for ligands in solution and at the cell surface, Glycobiology, 17, 663–676.PubMedCrossRefGoogle Scholar
  12. 12.
    Munoz, F. J., Santos, J. I., Arda, A., Andre, S., Gabius, H.-J., Sinisterra, J. V., Jimenez-Barbero, J., and Hernaiz, M. J. (2010) Binding studies of adhesion/growth-regulatory galectins with glycoconjugates monitored by surface plasmon resonance and NMR spectroscopy, Org. Biomol. Chem., 28, 2986–2992.CrossRefGoogle Scholar
  13. 13.
    Takeuchi, T, Tamura, M., Nishiyama, K., Iwaki, J., Hirabayashi, J., Takahashi, H., Natsugari, H., Arata, Y., and Kasai, K.-I. (2013) Mammalian galectins bind galactose ß 1-4 fucose disaccharide, a unique structural component of protostomial N-type glycoproteins, Biochem. Biophys. Res. Commun., 436, 509–513.PubMedCrossRefGoogle Scholar
  14. 14.
    Brewer, C. F. (2004) Thermodynamic binding studies of galectin-1,-3 and-7, Glycoconj. J., 19, 459–465.PubMedCrossRefGoogle Scholar
  15. 15.
    CFG Functional Glycomics Gateway (http://www.functionalglycomics. org).Google Scholar
  16. 16.
    Stowell, S. R., Arthur, C. M., Mehta, P., Slanina, K. A., Blixt, O., Leffler, H., Smith, D. F., and Cummings, R. D. (2008) Galectins-1,-2 and-3 exhibit differential recognition of sialylated glycans and blood group antigens, J. Biol. Chem., 283, 10109–10123.PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Kopitz, J., von Reitzenstein, C., Burchert, M., Cantz, M., and Gabius, H.-J. (1998) Galectin-1 is a major receptor for ganglioside GM1, a product of the growth-controlling activity of a cell surface ganglioside sialidase, on human neuroblastoma cells in culture, J. Biol. Chem., 273, 1120511211.CrossRefGoogle Scholar
  18. 18.
    Elola, M. T, Chiesa, M. E., Alberti, A. F., Mordoh, J., and Fink, N. E. (2005) Galectin-1 receptors in different cell types, J. Biomed. Sci., 12, 13–29.PubMedCrossRefGoogle Scholar
  19. 19.
    Rapoport, E. M., Kurmyshkina, O. V., and Bovin, N. V. (2008) Mammalian galectins: structure, carbohydrate specificity and functions, Biochemistry (Moscow), 73, 483–497.CrossRefGoogle Scholar
  20. 20.
    Gabius, H., and Wu, A. (2008) in Galectins (Klyosov, A. A., Witczak, Z. J., and Platt, P., eds.) Wiley & Sons Inc., New Jersey, USA, pp. 71-85.Google Scholar
  21. 21.
    Hauselmann, I., and Borsig, L. (2014) Altered tumor-cells glycosylation promotes metastasis, Front. Oncol., doi: 10.3389/fonc.2014.00028.Google Scholar
  22. 22.
    Stillman, B. N., Hsu, D. K., Pang, M., Brewer, F. C., Johnson, P., Liu, F.-T, and Baum, L. G. (2006) Galectin- 3 and galectin-1 bind distinct cell surface glycoprotein receptors to induce T cell death, J. Immunol., 176, 778789.CrossRefGoogle Scholar
  23. 23.
    Cueni, L. N., and Detmar, M. (2009) Galectin-8 interacts with podoplanin and modulates lymphatic endothelial cell functions, Exp. Cell Res., 315, 1715–1723.PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Hsieh, S. H., Ying, N. W., Wu, M. H., Chiang, W. F., Hsu, C. L., Wong, T Y, Yin, Y. T, Hong, T M., and Chen, Y. L. (2008) Galectin-1, a novel ligand of neuropilin-1, activates VEGFR-2 signaling and modulates the migration of vascular endothelial cells, Oncogene, 27, 3746–3753.PubMedCrossRefGoogle Scholar
  25. 25.
    Wu, F. H., Yuan, Y., Li, D., Lei, Z., Song, C. W, Liu, Y Y, Li, B., Huang, B., Feng, Z. H., and Zhang, G. M. (2010) Endothelial cell-expressed Tim-3 facilitates metastasis of melanoma cells by activating the NF-kappa B pathway, Oncol. Rep., 24, 693–699.PubMedCrossRefGoogle Scholar
  26. 26.
    Cao, E., Zang, X., Ramagopal, U. A., Mukhopadhaya, A., Fedorov, A., Fedorov, E., Zencheck, W. D., Lary, J. W., Cole, J. L., Deng, H., Xiao, H., Dilorenzo, T P., Allison, J. P., Nathenson, S. G., and Almo, S. C. (2007) T cell immunoglobulin mucin-3 crystal structure reveals a galectin-9-independent ligand-binding surface, Immunity, 26, 311–321.PubMedCrossRefGoogle Scholar
  27. 27.
    Ideo, H., Seko, A., and Yamashita, K. (2005) Galectin-4 binds to sulfated glycosphingolipids and carcinoembryonic antigen in patches on the cell surface of human colon adenocarcinoma cells, J. Biol. Chem., 280, 4730–4737.PubMedCrossRefGoogle Scholar
  28. 28.
    Moiseeva, E. P., Williams, B., and Samani, N. J. (2003) Galectin-1 interacts with beta-1 subunit of integrin, Biochim. Biophys. Acta, 1619, 125–132.PubMedCrossRefGoogle Scholar
  29. 29.
    Van den Brule, F., Calfice, S., Garnier, F., Fernandez, P. L., Berchuck, A., and Castronovo, V. (2003) Galectin-1 accumulation in the ovary carcinoma peritumoral stroma is induced by ovary carcinoma cells and affects both cancer cell proliferation and adhesion to laminin-1 and fibronectin, Lab. Invest., 83, 377–386.PubMedCrossRefGoogle Scholar
  30. 30.
    Ahmad, N., Gabius, H.-J., Andre, S., Kaltner, H., Sabesan, S., Roy, R., Liu, B., Macaluso, F., and Brewer, C. F. (2004) Galectin-3 precipitates as a pentamer with synthetic multivalent carbohydrates and forms heterogeneous cross-linked complexes, J. Biol. Chem., 279, 10841–10847.PubMedCrossRefGoogle Scholar
  31. 31.
    Rapoport, E. M., Pazynina, G. V., Sablina, M. A., Kroker, P. R., and Bovin, N. V. (2006) Siglec interactions with sulfated oligosaccharides, Biochemistry (Moscow), 71, 615–625.CrossRefGoogle Scholar
  32. 32.
    Galanina, O. E., Tuzikov, A. B., Rapoport, E. M., Le Pendu, J., and Bovin, N. V. (1998) Carbohydrate-based probes for detection of cellular lectins, Anal. Biochem., 265, 282–289.PubMedCrossRefGoogle Scholar
  33. 33.
    Van Vliet, S. J., van Liempt, E., Saeland, E., Aarnoudse, C. A., Appelmelk, B., Irimura, T, Geijtenbeek, T B. H., Blixt, O., Alvarez, R., van Die, I., and van Kooyk, Y. (2005) Carbohydrate profiling reveals a distinctive role for the Ctype lectin MGL in the recognition of helminth parasites and tumor antigens by dendritic cells, Int. Immunol., 17, 661–669.PubMedCrossRefGoogle Scholar
  34. 34.
    Meyer, S., van Liempt, E., Imberty, A., van Kooyk, Y, Geyer, H., Geyer, R., and van Die, I. (2005) DC-SIGN mediates binding of dendritic cells to authentic pseudo- LewisY glycolipids of Schistosoma mansoni cercariae, the first parasite-specific ligand of DC-SIGN, J. Biol. Chem., 280, 37349–37359.PubMedCrossRefGoogle Scholar
  35. 35.
    Hughes, R. C. (1999) Secretion of the galectin family of mammalian carbohydrate-binding proteins, Biochim. Biophys. Acta, 1473, 172–185.PubMedCrossRefGoogle Scholar
  36. 36.
    Patnaik, S. K., Potvin, B., Carlsson, S., Sturm, D., Leffler, H., and Stanley, P. (2006) Complex N-glycans are the major ligands for galectin-1,-3 and-8 on Chinese hamster ovary cells, Glycobiology, 16, 305–317.PubMedCrossRefGoogle Scholar
  37. 37.
    Rapoport, E. M., Andre, S., Kurmyshkina, O. V., Pochechueva, T. V., Severov, V. V., Pazynina, G. V., Gabius, H.-J., and Bovin, N. V. (2008) Galectin-loaded cells as platform for profiling of lectin specificity by fluorescent neoglycoconjugates: case study on galectins-1 and-3 and the impact of assay setting, Glycobiology, 18, 315–324.PubMedCrossRefGoogle Scholar
  38. 38.
    Vokhmyanina, O. A., Rapoport, E. M., Andre, S., Severov, V. V., Ryzhov, I. M., Pazynina, G. V., Korchagina, E. Ju., Gabius, H.-J., and Bovin, N. V. (2012) Comparative study of the glycan specificities of cell-bound human tandem repeat-type galectins-4,-8 and-9, Glycobiology, 22, 12071217.CrossRefGoogle Scholar
  39. 39.
    Vokhmyanina, O. A., Rapoport, E. M., Ryzhov, I. M., Korchagina, E. Ju., Pazynina, G. V., Severov, V. V., Kaltner, G., Andre, S., Gabius, H.-J., and Bovin, N. V. (2011) Carbohydrate specificity of chicken and human galectins-8 on cell surface, Biochemistry (Moscow), 76, 1452–1460.CrossRefGoogle Scholar
  40. 40.
    Bovin, N. V., Korchagina, E. Y, Zemlyanukhina, T V., Byramova, N. E., Galanina, O. E., Zemlyakov, A. E., Ivanov, A. E., Zubov, V. P., and Mochalova, L. V. (1993) Synthesis of polymeric neoglycoconjugates based on Nsubstituted polyacrylamides, Glycoconj. J., 10, 142–151.PubMedCrossRefGoogle Scholar
  41. 41.
    Rapoport, E. M., Kovalenko, E. I., Belyanchikov, I. M., and Bovin, N. V. (2007) in Lectins: Analytical Technologies (Nilsson, C. L., ed.) Elsevier B. V., San-Diego, USA, pp. 397-415.Google Scholar
  42. 42.
    Rapoport, E. M., Pochechueva, T V., Kurmyshkina, O. V., Pazynina, G. V., Severov, V. V., Gordeeva, E. A., Belyanchikov, I. M., Andre, S., Gabius, H.-J., and Bovin, N. V. (2010) Solid-phase assays for galectins specificity studies, Biochemistry (Moscow), 75, 380–391.CrossRefGoogle Scholar
  43. 43.
    Allen, H. J., Ahmed, H., and Matta, K. L. (1998) Binding of synthetic sulfated ligands by human splenic galectin 1, a beta-galactoside-binding lectin, Glycoconj. J., 15, 691–695.PubMedCrossRefGoogle Scholar
  44. 44.
    Rapoport, E. M., Matveeva, V. K., Kaltner, H., Andre, S., Vokhmyanina, O. A., Pazynina, G. V., Severov, V. V., Ryzhov, I. M., Korchagina, E. Ju., Belyanchikov, I. M., Gabius, H.-J., and Bovin, N. V. (2015) Comparative lectinology: delineating glycan-specificity profiles of the chicken galectins using neoglycoconjugates in a cell assay, Glycobiology, pii: cwv012 [Epub ahead of print].Google Scholar
  45. 45.
    Ahmad, N., Gabius, H.-J., Sabesan, S., Oscarson, S., and Brewer, C. F. (2004) Thermodynamic binding studies of bivalent oligosaccharides to galectin-1, galectin-3, and the carbohydrate recognition domain of galectin-3, Glycobiology, 14, 817–825.PubMedCrossRefGoogle Scholar
  46. 46.
    Vasta, G. R. (2012) Galectins as pattern recognition receptors: structure, function, and evolution, Adv. Exp. Med. Biol., 946, 21–36.PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Sato, S., St-Pierre, Ch., Bhaumik, P., and Nieminen, J. (2009) Galectins in innate immunity: dual functions of host soluble ß-galactoside-binding lectins as damage-associated molecular patterns (DAMPS) and as receptors for pathogen-associated molecular patterns, Immunol. Rev., 230, 172–187.PubMedCrossRefGoogle Scholar
  48. 48.
    Stowell, S. R., Arthur, C. M., Dias-Baruffi, M., Rodrigues, L., Gourdine, J.-Ph., Heimburg-Molinaro, J., Ju, T, Molinaro, R. J., Rivera-Marrero, C., Xia, B., Smith, D. F., and Cummings, R. D. (2010) Innate immune lectins kill bacteria expressing blood group antigen, Nat. Med., 16, 295–301.PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Knirel, Y A., Gabius, H.-J., Blixt, O., Rapoport, E. M., Khasbiullina, N. R., Shilova, N. V., and Bovin, N. V. (2014) Human tandem-repeat-type galectins bind bacterial non-ßGal polysaccharides, Glycoconj. J., 31, 7–12.PubMedCrossRefGoogle Scholar
  50. 50.
    Fradin, C., Poulain, D., and Jouault, T (2000) ß-1,2- Linked oligomannosides from Candida albicans bind to a 32-kilodalton macrophage membrane protein homologous to the mammalian lectin galectin-3, Infect. Immun., 68, 4391–4398.PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Iwaki, J., Minamisawa, T, Tateno, H., Kominami, J., Suzuki, K., Nishi, N., Nakamura, N., and Hirabayashi, J. (2008) Desulfated galactosaminoglycans are potential ligands for galectins: evidence from frontal affinity chromatography, Biochem. Biophys. Res. Commun., 373, 206–212.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.Shemyakin and Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations