Biochemistry (Moscow)

, Volume 80, Issue 7, pp 836–845 | Cite as

Exploiting natural anti-carbohydrate antibodies for therapeutic purposes

  • D. Bello-Gil
  • R. ManezEmail author


Natural anti-carbohydrate antibodies (NAbC) are antibodies that target glycans and are continuously produced without apparent external antigen stimulation. Clinically, NAbC are recognized by the adverse reactions to ABO mismatched blood transfusions or organ transplantation and the rejection of xenografts. These clinical effects do not reflect the biological functions of NAbC. However, they launch the possibility of using NAbC for boosting immunity in different clinical settings by means of: 1) expression of glycan antigens in elements that do not hold them to allow the binding and reactivity of existing NAbC; 2) removal of existing NAbC; 3) manipulation of the glycosylation pattern of NAbC.


natural antibodies anti-carbohydrate antibodies anti-blood group antibodies anti-galactose α 1,3 galactose antibodies 



antibody-dependent cell cytotoxicity


antibody-dependent enhancement


complement-dependent cytotoxicity


antigen-binding fragment


constant fragment


hemolytic anti-pig antibodies


natural antibodies


natural anti-carbohydrate antibodies


tumor-associated antigens


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Schwartz-Albiez, R., Monteiro, R. C., Rodriguez, M., Binder, C. J., and Shoenfeld, Y. (2009) Natural antibodies, intravenous immunoglobulin and their role in autoimmunity, cancer and inflammation, Clin. Exp. Immunol., 158 (Suppl. 1), 43–50.PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Holodick, N. E., Tumang, J. R., and Rothstein, T L. (2010) Immunoglobulin secretion by B1 cells: differential intensity and IRF4-dependence of spontaneous IgM secretion by peritoneal and splenic B1 cells, Eur. J. Immunol., 40, 3007–3016.PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Sorman, A., Zhang, L., Ding, Z., and Heyman, B. (2014) How antibodies use complement to regulate antibody responses, Mol. Immunol., 61, 79–88.PubMedCrossRefGoogle Scholar
  4. 4.
    Gronwall, C., and Silverman, G. J. (2014) Natural IgM: beneficial autoantibodies for the control of inflammatory and autoimmune disease, J. Clin. Immunol., 34 (Suppl. 1), S12–21.CrossRefGoogle Scholar
  5. 5.
    Panda, S., and Ding, J. L. (2015) Natural antibodies bridge innate and adaptive immunity, J. Immunol., 194, 13–20.PubMedCrossRefGoogle Scholar
  6. 6.
    Bovin, N. V. (2013) Natural antibodies to glycans, Biochemistry (Moscow), 78, 786–797.CrossRefGoogle Scholar
  7. 7.
    Bovin, N., Obukhova, P., Shilova, N., Rapoport, E., Popova, I., Navakouski, M., Unverzagt, C., Vuskovic, M., and Huflejt, M. (2012) Repertoire of human natural antiglycan immunoglobulins. Do we have auto-antibodies? Biochim. Biophys. Acta, 1820, 1373–1383.PubMedCrossRefGoogle Scholar
  8. 8.
    Galili, U., Mandrell, R. E., Hamadeh, R. M., Shohet, S. B., and Griffis, J. M. (1988) Interaction between human natural anti-a-galactosyl immunoglobulin G and bacteria of the human flora, Infect. Immun., 56, 1730–1737.PubMedCentralPubMedGoogle Scholar
  9. 9.
    Manez, R., Blanco, F. J., Diaz, I., Centeno, A., Lopez-Pelaez, E., Hermida, M., Davies, H. F., and Katopodis, A. (2001) Removal of bowel aerobic gram-negative bacteria is more effective than immunosuppression with cyclophosphamide and steroids to decrease natural alpha-galactosyl IgG antibodies, Xenotransplantation, 8, 15–23.PubMedCrossRefGoogle Scholar
  10. 10.
    Galili, U., Korkesh, A., Kahane, I., and Rachmilewitz, E. A. (1983) Demonstration of a natural antigalactosyl IgG antibody on thalassemic red blood cells, Blood, 61, 12581264.Google Scholar
  11. 11.
    D’Alessandro, M., Mariani, P., Lomanto, D., Bachetoni, A., and Speranza, V. (2002) Alterations in serum anti-agalactosyl antibodies in patients with Crohn’s and ulcerative colitis, Clin. Immunol., 103, 63–68.PubMedCrossRefGoogle Scholar
  12. 12.
    Fontan, M. P., Manez, R., Rodriguez-Carmona, A., Peteiro, J., Martinez, V., Garcia-Falcon, T, and Domenech, N. (2006) Serum levels of anti-alpha galactosyl antibodies predict survival and peritoneal dialysis-related enteric peritonitis rates in patients undergoing renal replacement therapy, Am. J. Kidney Dis., 48, 972–982.PubMedCrossRefGoogle Scholar
  13. 13.
    Obukhova, P., Korchagina, E., Henry, S., and Bovin, N. (2011) Natural anti-A and anti-B of the ABO system: alloand autoantibodies have different epitope specificity, Transfusion, 52, 860–869.PubMedCrossRefGoogle Scholar
  14. 14.
    Galili, U., Ishida, H., Tanabe, K, and Toma, H. (2002) Anti-gal A/B, a novel anti-blood group antibody identified in recipients of abo-incompatible kidney allografts, Transplantation, 74, 1574–1580.PubMedCrossRefGoogle Scholar
  15. 15.
    Galon, J., Costes, A., Sanchez-Cabo, F., Kirilovsky, A., Mlecnik, B., Lagorce-Pages, C., Tosolini, M., Camus, M., Berger, A., Wind, P., Zinzindohoue, F., Bruneval, P., Cugnenc, P. H., Trajanoski, Z., Fridman, W H., and Pages, F. (2006) Type, density, and location of immune cells within human colorectal tumors predict clinical outcome, Science, 313, 1960–1964.PubMedCrossRefGoogle Scholar
  16. 16.
    Galili, U., Wigglesworth, K., and Abdel-Motal, U. M. (2007) Intratumoral injection of a-gal glycolipids induces xenograft-like destruction and conversion of lesions into endogenous vaccines, J. Immunol., 178, 4676–4687.PubMedCrossRefGoogle Scholar
  17. 17.
    Galili, U., Albertini, M. R., Sondel, P. M., Wigglesworth, K., Sullivan, M., and Whalen, G. F. (2010) In situ conversion of melanoma lesions into autologous vaccine by intratumoral injections of a-gal glycolipids, Cancers, 2, 773–793.PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Whalen, G. F., Sullivan, M., Piperdi, B., Wasseff, W., and Galili, U. (2012) Cancer immunotherapy by intratumoral injection of a-gal glycolipids, Anticancer Res., 32, 38613868.Google Scholar
  19. 19.
    Gening, M. L., Maira-Litran, T, Kropec, A., Skurnik, D., Grout, M., Tsvetkov, Y E., Nifantiev, N. E., and Pier, G. B. (2010) Synthetic ß-(1 → 6 )-linked N-acetylated and nonacetylated oligoglucosamines used to produce conjugate vaccines for bacterial pathogens, Infect. Immun., 78, 764–772.PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Abdel-Motal, U. M., Guay, H. M., Wigglesworth, K., Welsh, R. M., and Galili, U. (2007) Immunogenicity of influenza virus vaccine is increased by anti-gal-mediated targeting to antigen-presenting cells, J. Virol., 81, 91319141.CrossRefGoogle Scholar
  21. 21.
    Abdel-Motal, U., Wang, S., Lu, S., Wigglesworth, K., and Galili, U. (2006) Increased immunogenicity of human immunodeficiency virus gp120 engineered to express Gala1-3Galß1-4GlcNAc-R epitopes, J. Virol., 80, 69436951.CrossRefGoogle Scholar
  22. 22.
    Phanse, Y, Carrillo-Conde, B. R., Ramer-Tait, A. E., Broderick, S., Kong, C. S., Rajan, K., Flick, R., Mandell, R. B., Narasimhan, B., and Wannemuehler, M. J. (2014) A systems approach to designing next generation vaccines: combining a-galactose modified antigens with nanoparticle platforms, Sci. Rep., 4, 3775.PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Wigglesworth, K. M., Racki, W J., Mishra, R., Szomolanyi-Tsuda, E., Greiner, D. L., and Galili, U. (2011) Rapid recruitment and activation of macrophages by anti-Gal/a-Gal liposome interaction accelerates wound healing, J. Immunol., 186, 4422–4432.PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Galili, U., Wigglesworth, K., and Abdel-Motal, U. M. (2010) Accelerated healing of skin burns by anti-Gal/a-gal liposomes interaction, Burns, 36, 239–251.PubMedCrossRefGoogle Scholar
  25. 25.
    Hurwitz, Z. M., Ignotz, R., Lalikos, J. F., and Galili, U. (2012) Accelerated porcine wound healing after treatment with a-gal nanoparticles, Plast. Reconstr. Surg., 129, 242e–251e.PubMedCrossRefGoogle Scholar
  26. 26.
    Galili, U. (2013) Anti-Gal: an abundant human natural antibody of multiple pathogeneses and clinical benefits, Immunology, 140, 1–11.PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Ubol, S., Phuklia, W., Kalayanarooj, S., and Modhiran, N. (2010) Mechanisms of immune evasion induced by a complex of dengue virus and preexisting enhancing antibodies, J. Infect. Dis., 201, 923–935.PubMedCrossRefGoogle Scholar
  28. 28.
    Willey, S., Aasa-Chapman, M. M., O’Farrell, S., Pellegrino, P., Williams, I., Weiss, R. A., and Neil, S. J. (2011) Extensive complement-dependent enhancement of HIV-1 by autologous non-neutralizing antibodies at early stages of infection, Retrovirology, 8, 16.PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Takada, A., and Kawaoka, Y (2003) Antibody-dependent enhancement of viral infection: molecular mechanisms and in vivo implications, Rev. Med. Virol., 13, 387–398.PubMedCrossRefGoogle Scholar
  30. 30.
    Huisman, W, Martina, B. E., Rimmelzwaan, G. F., Gruters, R. A., and Osterhaus, A. D. (2009) Vaccine-induced enhancement of viral infections, Vaccine, 27, 505–512.PubMedCrossRefGoogle Scholar
  31. 31.
    Mahalingam, S., and Lidbury, B. A. (2003) Antibodydependent enhancement of infection: bacteria do it too, Trends Immunol., 24, 465–467.PubMedCrossRefGoogle Scholar
  32. 32.
    Skurnik, D., Kropec, A., Roux, D., Theilacker, C., Huebner, J., and Pier, G. B. (2012) Natural antibodies in normal human serum inhibit Staphylococcus aureus capsular polysaccharide vaccine efficacy, Clin. Infect. Dis., 55, 1188–1197.PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Hamadeh, R. M., Jarvis, G. A., Galili, U., Mandrell, R. E., Zhou, P., and Griffiss, J. M. (1992) Human natural antiGal IgG regulates alternative complement pathway activation on bacterial surfaces, J. Clin. Invest., 89, 1223–1235.PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Hamadeh, R. M., Estabrook, M. M., Zhou, P., Jarvis, G. A., and Griffiss, J. M. (1995) Anti-Gal binds to pili of Neisseria meningitidis: the immunoglobulin A isotype blocks complement-mediated killing, Infect. Immun., 63, 4900–4906.PubMedCentralPubMedGoogle Scholar
  35. 35.
    Wells, T J., Whitters, D., Sevastsyanovich, Y. R., Heath, J. N., Pravin, J., Goodall, M., Browning, D. F., O’Shea, M. K., Cranston, A., De Soyza, A., Cunningham, A. F., MacLennan, C. A., Henderson, I. R., and Stockley, R. A. (2014) Increased severity of respiratory infections associated with elevated anti-LPS IgG2 which inhibits serum bactericidal killing, J. Exp. Med., 211, 1893–1904.PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Giuntini, S., Reason, D. C., and Granoff, D. M. (2012) Combined roles of human IgG subclass, alternative complement pathway activation, and epitope density in the bactericidal activity of antibodies to meningococcal factor H binding protein, Infect. Immun., 80, 187–194.PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Manez, R., Perez-Cruz, M., Bello, D., Dominguez, M. A., and Costa, C. (2014) Removal of natural anti-galactose a1,3 galactose antibodies with GAS914 enhances humoral immunity and prevents sepsis mortality in mice, Intens. Care Med. Exp., 2 (Suppl. 1), P50.Google Scholar
  38. 38.
    Galili, U., and Matta, K. L. (1996) Inhibition of anti-Gal IgG binding to porcine endothelial cells by synthetic oligosaccharides, Transplantation, 62, 256–262.PubMedCrossRefGoogle Scholar
  39. 39.
    Byrne, G. W., Schwarz, A., Fesi, J. R., Birch, P., Nepomich, A., Bakaj, I., Velardo, M. A., Jiang, C., Manzi, A., Dintzis, H., Diamond, L. E., and Logan, J. S. (2002) Evaluation of different alpha-galactosyl glycoconjugates for use in xenotransplantation, Bioconj. Chem., 13, 571–581.CrossRefGoogle Scholar
  40. 40.
    Manez, R., Domenech, N., Centeno, A., Lopez-Pelaez, E., Crespo, F., Juffe, A., Duthaler, R. O., and Katopodis, A. G. (2004) Failure to deplete anti-Gal a1-3Gal antibodies after pig-to-baboon organ xenotransplantation by immunoaffinity columns containing multiple Gala1-3Gal oligosaccharides, Xenotransplantation, 11, 408–415.PubMedCrossRefGoogle Scholar
  41. 41.
    Diamond, L. E., Byrne, G. W., Schwarz, A., Davis, T A., Adams, D. H., and Logan, J. S. (2002) Analysis of the control of the anti-gal immune response in a non-human primate by galactose a1-3 galactose trisaccharide-polyethylene glycol conjugate, Transplantation, 73, 1780–1787.PubMedCrossRefGoogle Scholar
  42. 42.
    Katopodis, A. G., Warner, R. G., Duthaler, R. O., Streiff, M. B., Bruelisauer, A., Kretz, O., Dorobek, B., Persohn, E., Andres, H., Schweitzer, A., Thoma, G., Kinzy, W, Quesniaux, V. F., Cozzi, E., Davies, H. F., Manez, R., and White, D. (2002) Removal of anti-Gala1,3Gal xenoantibodies with an injectable polymer, J. Clin. Invest., 110, 1869–1877.PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Lam, T T., Paniagua, R., Shivaram, G., Schuurman, H. J., Borie, D. C., and Morris, R. E. (2004) Anti-non-Gal porcine endothelial cell antibodies in acute humoral xenograft rejection of hDAF-transgenic porcine hearts in cynomolgus monkeys, Xenotransplantation, 11, 531–535.PubMedCrossRefGoogle Scholar
  44. 44.
    Chen, G., Qian, H., Starzl, T, Sun, H., Garcia, B., Wang, X., Wise, Y., Liu, Y, Xiang, Y., Copeman, L., Liu, W, Jevnikar, A., Wall, W, Cooper, D. K., Murase, N., Dai, Y, Wang, W, Xiong, Y, White, D. J., and Zhong, R. (2005) Acute rejection is associated with antibodies to non-Gal antigens in baboons using Gal-knockout pig kidneys, Nat. Med., 11, 1295–1298.PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Angus, D. C., Linde-Zwirble, W T, Lidicker, J., Clermont, G., Carcillo, J., and Pinsky, M. R. (2001) Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care, Crit. Care Med., 29, 1303–1310.PubMedCrossRefGoogle Scholar
  46. 46.
    McPherson, D., Griffiths, C., Williams, M., Baker, A., Klodawski, E., Jacobson, B., and Donaldson, L. (2013) Sepsis-associated mortality in England: an analysis of multiple cause of death data from 2001 to 2010, B. M. J. Open, 3, e002586.Google Scholar
  47. 47.
    Almeida, I. C., Milani, S. R., Gorin, P. A., and Travassos, L. R. (1991) Complement-mediated lysis of Trypanosoma cruzi trypomastigotes by human anti-a-galactosyl antibodies, J. Immunol., 146, 2394–2400.PubMedGoogle Scholar
  48. 48.
    Yilmaz, B., Portugal, S., Tran, T M., Gozzelino, R., Ramos, S., Gomes, J., Regalado, A., Cowan, P. J., d’Apice, A. J., Chong, A. S., Doumbo, O. K., Traore, B., Crompton, P. D., Silveira, H., and Soares, M. P. (2014) Gut microbiota elicits a protective immune response against malaria transmission, Cell, 159, 1277–1289.PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Frame, T, Carroll, T, Korchagina, E., Bovin, N., and Henry, S. (2006) Synthetic glycolipid modification of red blood cell membranes, Transfusion, 47, 876–882.CrossRefGoogle Scholar
  50. 50.
    Oliver, C., Blake, D., and Henry, S. (2011) Modeling transfusion reactions and predicting in vivo cell survival with kodecytes, Transfusion, 51, 1723–1730.PubMedCrossRefGoogle Scholar
  51. 51.
    Oliver, C., Blake, D., and Henry, S. (2011) In vivo neutralization of anti-A and successful transfusion of A antigenincompatible red blood cells in an animal model, Transfusion, 51, 2664–2675.PubMedCrossRefGoogle Scholar
  52. 52.
    Jefferis, R. (1991) Structure—function relationships in human immunoglobulins, Netherlands J. Med., 39, 188198.Google Scholar
  53. 53.
    Vidarsson, G., Dekkers, G., and Rispens, T (2014) IgG subclasses and allotypes: from structure to effector functions, Front. Immunol., 5, 520.PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Shade, K. T, and Anthony, R. M. (2013) Antibody glycosylation and inflammation, Antibodies, 2, 392–414.CrossRefGoogle Scholar
  55. 55.
    Schur, P. H. (1988) IgG subclasses. A historical perspective, Monogr. Allergy, 23, 1–11.PubMedGoogle Scholar
  56. 56.
    Rispens, T, Davies, A. M., Ooijevaar-de Heer, P., Absalah, S., Bende, O., Sutton, B. J., Vidarsson, G., and Aalberse, R. C. (2014) Dynamics of inter-heavy chain interactions in human immunoglobulin G (IgG) subclasses studied by kinetic Fab arm exchange, J. Biol. Chem., 289, 6098–6109.PubMedCentralPubMedCrossRefGoogle Scholar
  57. 57.
    Schroeder, H. W, Jr., and Cavacini, L. (2010) Structure and function of immunoglobulins, J. Allergy Clin. Immunol., 125, S41–S52.PubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.
    Edelman, G. M., Cunningham, B. A., Gall, W E., Gottlieb, P. D., Rutishauser, U., and Waxdal, M. J. (1969) The covalent structure of an entire gammaG immunoglobulin molecule, Proc. Natl. Acad. Sci. USA, 63, 78–85.PubMedCentralPubMedCrossRefGoogle Scholar
  59. 59.
    Hristodorov, D., Fischer, R., and Linden, L. (2013) With or without sugar? (A)glycosylation of therapeutic antibodies, Mol. Biotechnol., 54, 1056–1068.PubMedCrossRefGoogle Scholar
  60. 60.
    Grossberg, A. L., Stelos, P., and Pressman, D. (1962) Structure of fragments of antibody molecules as revealed by reduction of exposed disulfide bonds, Proc. Natl. Acad. Sci. USA, 48, 1203–1209.PubMedCentralPubMedCrossRefGoogle Scholar
  61. 61.
    Huber, R. (1980) Spatial structure of immunoglobulin molecules, Klin. Wochenschr., 58, 1217–1231.PubMedCrossRefGoogle Scholar
  62. 62.
    Wang, J., Balog, C. I., Stavenhagen, K., Koeleman, C. A., Scherer, H. U., Selman, M. H., Deelder, A. M., Huizinga, T W, Toes, R. E., and Wuhrer, M. (2011) Fc-glycosylation of IgG1 is modulated by B-cell stimuli, Mol. Cell Proteom., 10, M110.004655.Google Scholar
  63. 63.
    Hmiel, L. K., Brorson, K. A., and Boyne, M. T (2015) Post-translational structural modifications of immunoglobulin G and their effect on biological activity, Anal. Bioanal. Chem., 407, 79–94.PubMedCrossRefGoogle Scholar
  64. 64.
    Nimmerjahn, F., Anthony, R. M., and Ravetch, J. V. (2007) Agalactosylated IgG antibodies depend on cellular Fc receptors for in vivo activity, Proc. Natl. Acad. Sci. USA, 104, 8433–8437.PubMedCentralPubMedCrossRefGoogle Scholar
  65. 65.
    Abes, R., and Teillaud, J. L. (2010) Glycosylation on effector functions of therapeutic IgG, Pharmaceuticals, 3, 146157.CrossRefGoogle Scholar
  66. 66.
    Feige, M. J., Nath, S., Catharino, S. R., Weinfurtner, D., Steinbacher, S., and Buchner, J. (2009) Structure of the murine unglycosylated IgG1 Fc fragment, J. Mol. Biol., 391, 599–608.PubMedCrossRefGoogle Scholar
  67. 67.
    Zauner, G., Selman, M. H. J., Bondt, A., Rombouts, Y., Blank, D., Deelder, A. M., and Wuhrer, M. (2013) Glycoproteomic analysis of antibodies, Mol. Cell. Proteom., 12, 856–865.CrossRefGoogle Scholar
  68. 68.
    Lamontagne, A., Long, R. E., Comunale, M. A., Hafner, J., Rodemich-Betesh, L., Wang, M., Marrero, J., Di Bisceglie, A. M., Block, T, and Mehta, A. (2013) Altered functionality of anti-bacterial antibodies in patients with chronic hepatitis C virus infection, PLoS One, 8, e64992.CrossRefGoogle Scholar
  69. 69.
    Ho, C. H., Chien, R. N., Cheng, P. N., Liu, J. H., Liu, C. K., Su, C. S., Wu, I. C., Li, I. C., Tsai, H. W., Wu, S. L., Liu, W. C., Chen, S. H., and Chang, T T (2015) Aberrant serum immunoglobulin G glycosylation in chronic hepatitis B is associated with histological liver damage and reversible by antiviral therapy, J. Infect. Dis., 211, 115–124.PubMedCrossRefGoogle Scholar
  70. 70.
    Kaneko, Y., Nimmerjahn, F., and Ravetch, J. V. (2006) Antiinflammatory activity of immunoglobulin G resulting from Fc sialylation, Science, 313, 670–673.PubMedCrossRefGoogle Scholar
  71. 71.
    Malhotra, R., Wormald, M. R., Rudd, P. M., Fischer, P. B., Dwek, R. A., and Sim, R. B. (1995) Glycosylation changes of IgG associated with rheumatoid arthritis can activate complement via the mannose-binding protein, Nat. Med., 1, 237–243.PubMedCrossRefGoogle Scholar
  72. 72.
    Moore, J. S., Wu, X., Kulhavy, R., Tomana, M., Novak, J., Moldoveanu, Z., Brown, R., Goepfert, P. A., and Mestecky, J. (2005) Increased levels of galactose-deficient IgG in sera of HIV-1-infected individuals, AIDS, 19, 381389.CrossRefGoogle Scholar
  73. 73.
    Ackerman, M. E., Crispin, M., Yu, X., Baruah, K., Boesch, A. W., Harvey, D. J., Dugast, A. S., Heizen, E. L., Ercan, A., Choi, I., Streeck, H., Nigrovic, P. A., Bailey- Kellogg, C., Scanlan, C., and Alter, G. (2013) Natural variation in Fc glycosylation of HIV-specific antibodies impacts antiviral activity, J. Clin. Invest., 123, 2183–2192.PubMedCentralPubMedCrossRefGoogle Scholar
  74. 74.
    Mehta, A. S., Long, R. E., Comunale, M. A., Wang, M., Rodemich, L., Krakover, J., Philip, R., Marrero, J. A., Dwek, R. A., and Block, T. M. (2008) Increased levels of galactose-deficient anti-Gal immunoglobulin G in the sera of hepatitis C virus-infected individuals with fibrosis and cirrhosis, J. Virol., 82, 1259–1270.PubMedCentralPubMedCrossRefGoogle Scholar
  75. 75.
    Van de Geijn, F. E., Wuhrer, M., Selman, M. H., Willemsen, S. P., de Man, Y A., Deelder, A. M., Hazes, J. M., and Dolhain, R. J. (2009) Immunoglobulin G galactosylation and sialylation are associated with pregnancyinduced improvement of rheumatoid arthritis and the postpartum flare: results from a large prospective cohort study, Arthritis Res. Ther., 11, R193–R193.PubMedCentralPubMedCrossRefGoogle Scholar
  76. 76.
    Niwa, R., and Satoh, M. (2015) The current status and prospects of antibody engineering for therapeutic use: focus on glycoengineering technology, J. Pharm. Sci., 104, 930–941.PubMedCrossRefGoogle Scholar
  77. 77.
    Shields, R. L., Lai, J., Keck, R., O’Connell, L. Y, Hong, K., Meng, Y. G., Weikert, S. H., and Presta, L. G. (2002) Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human Fc-gamma RIII and antibody dependent cellular toxicity, J. Biol. Chem., 277, 2673326740.Google Scholar
  78. 78.
    Shinkawa, T, Nakamura, K., Yamane, N., Shoji-Hosaka, E., Kanda, Y, Sakurada, M., Uchida, K., Anazawa, H., Satoh, M., Yamasaki, M., Hanai, N., and Shitara, K. (2003) The absence of fucose but not the presence of galactose or bisecting N-acetylglucosamine of human IgG1 complex-type oligosaccharides shows the critical role of enhancing antibody-dependent cellular cytotoxicity, J. Biol. Chem., 278, 3466–3473.PubMedCrossRefGoogle Scholar
  79. 79.
    Jedrzejewski, P. M., del Val, I. J., Constantinou, A., Dell, A., Haslam, S. M., Polizzi, K. M., and Kontoravdi, C. (2014) Towards controlling the glycoform: a model framework linking extracellular metabolites to antibody glycosylation, Int. J. Mol. Sci., 15, 4492–4522.PubMedCentralPubMedCrossRefGoogle Scholar
  80. 80.
    Del Val, I. J., Kontoravdi, C., and Nagy, J. M. (2010) Towards the implementation of quality by design to the production of therapeutic monoclonal antibodies with desired glycosylation patterns, Biotechnol. Progr., 26, 15051527.CrossRefGoogle Scholar
  81. 81.
    Murrell, M. P., Yarema, K. J., and Levchenko, A. (2004) The systems biology of glycosylation, Chembiochem, 5, 1334–1347.PubMedCrossRefGoogle Scholar
  82. 82.
    Sou, S. N., Sellick, C., Lee, K., Mason, A., Kyriakopoulos, S., Polizzi, K. M., and Kontoravdi, C. (2014) How does mild hypothermia affect monoclonal antibody glycosylation? Biotechnol. Bioeng., doi: 10.1002/bit.25524 [Epub ahead of print].Google Scholar
  83. 83.
    Hills, A. E., Patel, A., Boyd, P., and James, D. C. (2001) Metabolic control of recombinant monoclonal antibody Nglycosylation in GS-NS0 cells, Biotechnol. Bioeng., 75, 239–251.PubMedCrossRefGoogle Scholar
  84. 84.
    Grainger, R. K., and James, D. C. (2013) CHO cell line specific prediction and control of recombinant monoclonal antibody N-glycosylation, Biotechnol. Bioeng., 110, 2970–2983.PubMedCrossRefGoogle Scholar
  85. 85.
    Jedrzejewski, P. M., del Val, I. J., Polizzi, K. M., and Kontoravdi, C. (2013) Applying quality by design to glycoprotein therapeutics: experimental and computational efforts of process control, Pharm. Bioprocess., 1, 51–69.CrossRefGoogle Scholar
  86. 86.
    Wong, N. S., Wati, L., Nissom, P. M., Feng, H. T., Lee, M. M., and Yap, M. G. (2010) An investigation of intracellular glycosylation activities in CHO cells: effects of nucleotide sugar precursor feeding, Biotechnol. Bioeng., 107, 321–336.PubMedCrossRefGoogle Scholar
  87. 87.
    Kalia, K., Sharma, S., and Mistry, K. (2004) Non-enzymatic glycosylation of immunoglobulins in diabetic nephropathy, Clin. Chem. Acta, 347, 169–176.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.Bellvitge Biomedical Research Institute (IDIBELL)Hospitalet de LlobregatSpain
  2. 2.Bellvitge University HospitalHospitalet de LlobregatSpain

Personalised recommendations