Advertisement

Biochemistry (Moscow)

, Volume 80, Issue 7, pp 801–807 | Cite as

What controls the expression of the core-1 (Thomsen—Friedenreich) glycotope on tumor cells?

  • U. KarstenEmail author
  • S. GoletzEmail author
Review

Abstract

Malignant transformation is tightly connected with changes in the glycosylation of proteins and lipids, which in turn are contributing to the invasive and metastatic behavior of tumor cells. One example of such changes is demasking of the otherwise hidden core-1 structure, also known as Thomsen–Friedenreich antigen, which is a highly tumor-specific glycotope and potentially a cancer stem cell marker. This review summarizes what is known about the mechanism(s) of its expression on tumor cells. New data reveal a close connection between tumor metabolism and Golgi function. Based on these data, we suggest that the expression of this antigen is also a marker of aerobic glycolysis.

Keywords

glycosylation Golgi core-1 Thomsen–Friedenreich glycolysis tumor metabolism pH 

Abbreviation

TF

Thomsen—Friedenreich antigen

V-ATPase

vacuolar H+-ATPase

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Friedenreich, V. (1930) The Thomsen Hemagglutination Phenomenon, Levin & Munksgaard, Copenhagen.Google Scholar
  2. 2.
    Kim, Z., and Uhlenbruck, G. (1966) Untersuchungen uber T-antigen und T-agglutinin, Z. Immun. Forsch., 130, 8899.Google Scholar
  3. 3.
    Springer, G. F., Desai, P. R., and Banatwala, I. (1975) Blood group MN antigens and precursors in normal and malignant human breast glandular tissue, J. Natl. Cancer Inst., 54, 335–339.PubMedGoogle Scholar
  4. 4.
    Springer, G. F. (1997) Immunoreactive T and Tn epitopes in cancer diagnosis, prognosis, and immunotherapy, J. Mol. Med., 75, 594–602.PubMedCrossRefGoogle Scholar
  5. 5.
    Springer, G. F. (1984) T and Tn, general carcinoma autoantigens, Science, 228, 1198–1206.CrossRefGoogle Scholar
  6. 6.
    Cao, Y., Stosiek, P., Springer, G. F., and Karsten, U. (1996) Thomsen–Friedenreich-related carbohydrate antigens in normal adult human tissues: a systematic and comparative study, Histochem. Cell Biol., 106, 197–207.PubMedCrossRefGoogle Scholar
  7. 7.
    Cao, Y., Karsten, U., Liebrich, W., Haensch, W., Springer, G. F., and Schlag, P. M. (1995) Expression of Thomsen–Friedenreich-related antigens in primary and metastatic colorectal carcinomas: a reevaluation, Cancer, 76, 1700–1708.PubMedCrossRefGoogle Scholar
  8. 8.
    Takanami, I. (1999) Expression of Thomsen–Friedenreich antigen as a marker of poor prognosis in pulmonary adenocarcinoma, Oncol. Rep., 6, 341–344.PubMedGoogle Scholar
  9. 9.
    Baldus, S. E., Hanisch, F. G., Monaca, E., Karsten, U., Zirbes, T. K., Thiele, J., and Dienes, H. P. (1999) Immunoreactivity of Thomsen–Friedenreich (TF) antigen in human neoplasms: the importance of carrier-specific glycotope expression on MUC1, Histol. Histopathol., 14, 1153–1158.PubMedGoogle Scholar
  10. 10.
    Cao, Y., Karsten, U., Otto, G., and Bannasch, P. (1999) Expression of MUC1, Thomsen–Friedenreich antigen, Tn, sialosyl-Tn, and a2,6-linked sialic acid in hepatocellular carcinomas and preneoplastic hepatocellular lesions, Virchows Arch., 434, 503–509.PubMedCrossRefGoogle Scholar
  11. 11.
    Veerman, A. J. P., Hogeman, P. H. G., Huismans, D. R., Van Zantwijk, C. H., and Bezemer, P. D. (1985) Peanut agglutinin, a marker for T-cell acute lymphoblastic leukemia with a good prognosis, Cancer Res., 45, 1890–1893.PubMedGoogle Scholar
  12. 12.
    Karsten, U. (2002) CD176 workshop panel report, in Leucocyte Typing VII (Mason, D., ed.) Oxford University Press, Oxford, pp. 202–203.Google Scholar
  13. 13.
    Karsten, U., and Goletz, S. (2013) What makes cancer stem cell markers different? Springer Plus, 2, 301.PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Brockhausen, I., Yang, J., Burchell, J., Whitehouse, C., and Taylor-Papadimitriou, J. (1995) Mechanism underlying aberrant glycosylation of the MUC1 mucin in breast cancer, Eur. J. Biochem., 233, 607–617.PubMedCrossRefGoogle Scholar
  15. 15.
    Ermini, L., Bhattacharjee, J., Spagnoletti, A., Bechi, N., Aldi, S., Ferretti, C., Bianchi, L., Bini, L., Rosati, F., Paulesu, L., and Ietta, F. (2013) Oxygen governs Galß13GalNAc epitope in human placenta, Am. J. Physiol. Cell Physiol., 305, C931–C940.Google Scholar
  16. 16.
    Brockhausen, I. (1999) Pathways of O-glycan biosynthesis in cancer cells, Biochim. Biophys. Acta, 1473, 67–95.PubMedCrossRefGoogle Scholar
  17. 17.
    Brockhausen, I. (2006) Mucin-type O-glycosylation in human colon and breast cancer: glycodynamics and functions, EMBO Rep., 7, 599–604.PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Goletz, S., Cao, Y., Danielczyk, A., Ravn, P., Schoeber, U., and Karsten, U. (2003) Thomsen–Friedenreich antigen: the “hidden” tumor antigen, Adv. Exp. Med. Biol., 535, 147–162.PubMedCrossRefGoogle Scholar
  19. 19.
    Burchell, J. M., Mungul, A., and Taylor-Papadimitriou, J. (2001) O-linked glycosylation in the mammary gland: changes that occur during malignancy, J. Mamm. Gland Biol. Neoplasm, 6, 355–364.CrossRefGoogle Scholar
  20. 20.
    Vavasseur, F., Yang, J., Dole, K., Paulsen, H., and Brockhausen, I. (1995) Synthesis of core 3: characterization of UDP-GlcNAc: GalNAc ß3-N-acetylglucosaminyltransferase activity from colonic tissues. Loss of the activity in human cancer cell lines, Glycobiology, 5, 351–357.PubMedCrossRefGoogle Scholar
  21. 21.
    Schneider, F., Kemmner, W., Haensch, W., Franke, G., Gretschel, S., Karsten, U., and Schlag, P. M. (2001) Overexpression of sialyltransferase CMP-sialic acid:Galß1,3GalNAc-R a6-sialyltransferase is related to poor patient survival in human colorectal carcinomas, Cancer Res., 61, 4605–4611.PubMedGoogle Scholar
  22. 22.
    Dalziel, M., Whitehouse, C., McFarlane, I., Brockhausen, I., Gschmeissner, S., Schwientek, T., Clausen, H., Burchell, J. M., and Taylor-Papadimitriou, J. (2001) The relative activities of the C2GnT1 and ST3Gal-I glycosyltransferases determine O-glycan structure and expression of a tumor-associated epitope on MUC1, J. Biol. Chem., 276, 11007–11015.PubMedCrossRefGoogle Scholar
  23. 23.
    Gill, D. J., Tham, K. M., Chia, J., Wang, S. C., Steentoft, C., Clausen, H., Bard-Chapeau, E. A., and Bard, F. A. (2013) Initiation of GalNAc-type O-glycosylation in the endoplasmic reticulum promotes cancer cell invasiveness, Proc. Natl. Acad. Sci. USA, 110, E3152–E3162.PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Radhakrishnan, P., Dabelsteen, S., Madsen, F. B., Francavilla, C., Kopp, K. L., Steentoft, C., Vakhrushev, S. Y., Olsen, J. V., Hansen, L., Bennett, E. P., Woetmann, A., Yin, G., Chen, L., Song, H., Bak, M., Hlady, R. A., Peters, S. L., Opavsky, R., Thode, C., Qvortrup, K., Schjoldager, K. T. -B. G., Clausen, H., Hollingsworth, M. A., and Wandall, H. H. (2014) Immature truncated O-glycophenotype of cancer directly induces oncogenic features, Proc. Natl. Acad. Sci. USA, 111, E4066–E4075.PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Ju, T., Otto, V. I., and Cummings, R. D. (2011) The Tn antigen–structural simplicity and biological complexity, Angew. Chem. Int. Ed., 50, 1770–1791.CrossRefGoogle Scholar
  26. 26.
    Kumamoto, K., Goto, Y., Sekikawa, K., Takenoshita, S., Ishida, N., Kawakita, M., and Kannagi, R. (2001) Increased expression of UDP-galactose transporter RNA in human colon cancer tissues and its implication in synthesis of Thomsen–Friedenreich antigen and sialyl Lewis A/X determinants, Cancer Res., 61, 4620–4627.PubMedGoogle Scholar
  27. 27.
    Nilsson, T., Slusarewicz, P., Hoe, M. H., and Warren, G. (1993) Kin recognition. A model for the retention of Golgi enzymes, FEBS Lett., 330, 1–4.PubMedCrossRefGoogle Scholar
  28. 28.
    De Graffenried, C. L., and Bertozzi, C. R. (2004) The roles of enzyme localization and complex formation of Golgi enzymes, Curr. Opin. Cell Biol., 16, 356–363.PubMedCrossRefGoogle Scholar
  29. 29.
    Engelsberg, A., Hermosilla, R., Karsten, U., Schulein, R., Dorken, B., and Rehm, A. (2003) The Golgi protein RCAS1 controls cell surface expression of tumor-associated O-linked glycan antigens, J. Biol. Chem., 278, 22998–23007.PubMedCrossRefGoogle Scholar
  30. 30.
    Egea, G., Franci, C., Gambus, G., Lesuffleur, T., Zweibaum, A., and Real, F. X. (1993) Cis-Golgi resident proteins and O-glycans are abnormally compartmentalized in the RER of colon cancer cells, J. Cell Sci., 105, 819–830.PubMedGoogle Scholar
  31. 31.
    Sewell, R., Backstrom, M., Dalziel, M., Gschmeissner, S., Karlsson, H., Noll, T., Gatgens, J., Clausen, H., Hansson, G. C., Burchell, J., and Taylor-Papadimitriou, J. (2006) The ST6GalNAc-I sialyltransferase localizes throughout the Golgi and is responsible for the synthesis of the tumorassociated sialyl-Tn-glycan in human breast cancer, J. Biol. Chem., 281, 3586–3594.PubMedCrossRefGoogle Scholar
  32. 32.
    Rottger, S., White, J., Wandall, H. H., Olivo, J.-C., Stark, A., Bennett, E. P., Whitehouse, C., Berger, E. G., Clausen, H., and Nilsson, T. (1998) Localization of three human polypeptide GalNAc-transferases in HeLa cells suggests initiation of O-linked glycosylation throughout the Golgi apparatus, J. Cell Sci., 111, 45–60.PubMedGoogle Scholar
  33. 33.
    Axelsson, M. A. B., Karlsson, N. G., Steel, D. M., Ouwendijk, J., Nilsson, T., and Hansson, G. C. (2001) Neutralization of pH in the Golgi apparatus cause redistribution of glycosyltransferases and changes in the O-glycosylation of mucins, Glycobiology, 11, 633–644.PubMedCrossRefGoogle Scholar
  34. 34.
    Campbell, B. J., Rowe, G. E., Leiper, K., and Rhodes, J. M. (2001) Increasing the intra-Golgi pH of cultured LS174T goblet-differentiated cells mimics the decreased mucin sulfation and increased Thomsen–Friedenreich antigen (Galß1-3GalNaca-) expression seen in colon cancer, Glycobiology, 11, 385–393.PubMedCrossRefGoogle Scholar
  35. 35.
    Thorens, B., and Vassalli, P. (1986) Chloroquine and ammonium chloride prevent terminal glycosylation of immunoglobulins in plasma cells without affecting secretion, Nature, 321, 618–620.PubMedCrossRefGoogle Scholar
  36. 36.
    Caplan, M. J., Stow, J. L., Newman, A. P., Madri, J., Anderson, H. C., Farquhar, M. G., Palade, G. E., and Jamieson, J. D. (1987) Dependence on pH of polarized sorting of secreted proteins, Nature, 329, 632–635.PubMedCrossRefGoogle Scholar
  37. 37.
    Kellokumpu, S., Sormunen, R., and Kellokumpu, I. (2002) Abnormal glycosylation and altered Golgi structure in colorectal cancer: dependence on intra-Golgi pH, FEBS Lett., 516, 217–224.PubMedCrossRefGoogle Scholar
  38. 38.
    Paroutis, P., Touret, N., and Grinstein, S. (2004) The pH of the secretory pathway: measurement, determinants, and regulation, Physiology, 19, 207–215.PubMedCrossRefGoogle Scholar
  39. 39.
    Rivinoja, A., Kokkonen, N., Kellokumpu, I., and Kellokumpu, S. (2006) Elevated Golgi pH in breast and colorectal cancer cells correlates with the expression of oncofetal carbohydrate T-antigen, J. Cell. Physiol., 208, 167–174.PubMedCrossRefGoogle Scholar
  40. 40.
    Gawlitzek, M., Ryll, T., Lofgren, J., and Sliwkowski, M. B. (2000) Ammonium alters N-glycan structures of recombinant TNFR-IgG: degradative versus biosynthetic mechanisms, Biotechnol. Bioeng., 68, 637–646.PubMedCrossRefGoogle Scholar
  41. 41.
    Rivinoja, A., Hassinen, A., Kokkonen, N., Kauppila, A., and Kellokumpu, S. (2009) Elevated Golgi pH impairs terminal N-glycosylation by inducing mislocalization of Golgi glycosyltransferases, J. Cell. Physiol., 220, 144–154.PubMedCrossRefGoogle Scholar
  42. 42.
    Hassinen, A., Pujol, F. M., Kokkonen, N., Pieters, C., Kihlstrom, M., Korhonen, K., and Kellokumpu, S. (2011) Functional organization of the Golgi Nand O-glycosylation pathways involves pH-dependent complex formation that is impaired in cancer cells, J. Biol. Chem., 286, 38329–38340.PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Hassinen, A., and Kellokumpu, S. (2014) Organizational interplay of Golgi N-glycosyltransferases involves organelle microenvironment-dependent transitions between enzyme homoand heteromers, J. Biol. Chem., 289, 26937–26948.PubMedCrossRefGoogle Scholar
  44. 44.
    Rivinoja, A., Pujol, F. M., Hassinen, A., and Kellokumpu, S. (2012) Golgi pH, its regulation and roles in human disease, Ann. Med., 44, 542–554.PubMedCrossRefGoogle Scholar
  45. 45.
    Maeda, Y., Ide, T., Koike, M., Uchiyama, Y., and Kinoshita, T. (2008) GPHR is a novel anion channel critical for acidification and functions of the Golgi apparatus, Nature Cell Biol., 10, 1135–1145.PubMedCrossRefGoogle Scholar
  46. 46.
    Marshansky, V., Rubinstein, J. L., and Gruber, G. (2014) Eukaryotic V-ATPase: novel structural findings and functional insights, Biochim. Biophys. Acta, 1837, 857–879.PubMedCrossRefGoogle Scholar
  47. 47.
    Warburg, O., Wind, F., and Negelein, E. (1927) The metabolism of tumors in the body, J. Gen. Physiol., 8, 519–530.PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Hanahan, D., and Weinberg, R. A. (2011) Hallmarks of cancer: the next generation, Cell, 144, 646–674.PubMedCrossRefGoogle Scholar
  49. 49.
    DeBerardinis, R. J., Lum, J. J., Hatzivassiliou, G., and Thompson, C. B. (2008) The biology of cancer: metabolic reprogramming fuels cell growth and proliferation, Cell Metab., 7, 11–20.PubMedCrossRefGoogle Scholar
  50. 50.
    Gillies, R. J., Raghunand, N., Karczmar, G. S., and Bhujwalla, Z. M. (2002) MRI of the tumor microenvironment, J. Magn. Reson. Imag., 16, 430–450.CrossRefGoogle Scholar
  51. 51.
    Damaghi, M., Wojtkowiak, J. W., and Gillies, R. J. (2013) pH sensing and regulation in cancer, Front. Physiol., 4; http://dx.doi.org/10.3389/fphys.2013.00370.Google Scholar
  52. 52.
    Gatenby, R. A., Smallbone, K., Maini, P. K., Rose, F., Averill, J., Nagle, R. B., Worrall, L., and Gillies, R. J. (2007) Cellular adaptions to hypoxia and acidosis during somatic evolution of breast cancer, Brit. J. Cancer, 97, 646–653.PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Vogelstein, B., and Kinzler, K. W. (2004) Cancer genes and the pathways they control, Nature Med., 10, 789–799.PubMedCrossRefGoogle Scholar
  54. 54.
    Kroemer, G., and Pouyssegur, J. (2008) Tumor cell metabolism: cancer’s Achilles heel, Cancer Cell, 13, 472–482.PubMedCrossRefGoogle Scholar
  55. 55.
    Cardone, R. A., Casavola, V., and Reshkin, S. J. (2005) The role of disturbed pH dynamics and the Na+/H+ exchanger in metastasis, Nature Rev. Cancer, 5, 786–795.CrossRefGoogle Scholar
  56. 56.
    Wong, N., De Melo, J., and Tang, D. (2013) PKM2, a central point of regulation in cancer metabolism, Int. J. Cell Biol.; http://dx.doi.org/10.1155/2013/242513.Google Scholar
  57. 57.
    Semenza, G. L. (2013) HIF-1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations, J. Clin. Invest., 123, 3665–3671.CrossRefGoogle Scholar
  58. 58.
    Soonthornsit, J., Yamaguchi, Y., Tamura, D., Ishida, R., Nakakoji, Y., Osako, S., Yamamoto, A., and Nakamura, N. (2014) Low cytoplasmic pH reduces ER–Golgi trafficking and induces disassembly of the Golgi apparatus, Exp. Cell Res., 328, 325–339.PubMedCrossRefGoogle Scholar
  59. 59.
    Finley, L. W. S., Carracedo, A., Lee, J., Souza, A., Egia, A., Zhang, J., Teruya-Feldstein, J., Moreira, P. I., Cardoso, S. M., Clish, C. B., Pandolfi, P. P., and Haigis, M. C. (2011) SIRT3 opposes reprogramming of cancer cell metabolism through HIFa destabilization, Cancer Cell, 19, 416–428.PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Schapiro, F., Sparkowski, J., Adduci, A., Suprynowicz, F., Schlegel, R., and Grinstein, S. (2000) Golgi alkalinization by the papillomavirus E5 oncoprotein, J. Cell Biol., 148, 305–315.PubMedCentralPubMedCrossRefGoogle Scholar
  61. 61.
    Sautin, Y. Y., Lu, M., Gaugler, A., Zhang, L., and Gluck, S. L. (2005) Phosphatidylinositol 3-kianse-mediated effects of glucose on vacuolar H+-ATPase assembly, translocation, and acidification of intracellular compartments in renal epithelial cells, Mol. Cell. Biol., 25, 575–589.PubMedCentralPubMedCrossRefGoogle Scholar
  62. 62.
    Jeschke, U., Richter, D. U., Hammer, A., Briese, V., Friese, K., and Karsten, U. (2002) Expression of the Thomsen–Friedenreich antigen and of its putative carrier protein mucin 1 in the human placenta and in trophoblast cells in vitro, Histochem. Cell Biol., 117, 219–226.PubMedCrossRefGoogle Scholar
  63. 63.
    Ito, K., and Suda, T. (2014) Metabolic requirements for the maintenance of self-renewing stem cells, Nature Rev. Mol. Cell Biol., 15, 243–256.CrossRefGoogle Scholar
  64. 64.
    Martinez-Outschoorn, U. E., Lisanti, M. P., and Sotgia, F. (2014) Catabolic cancer-associated fibroblasts transfer energy and biomass to anabolic cancer cells, fueling tumor growth, Seminars Cancer Biol., 25, 47–60.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.Glycotope GmbHBerlin-BuchGermany

Personalised recommendations