Biochemistry (Moscow)

, Volume 80, Issue 6, pp 785–789 | Cite as

Photoinduced changes in subcellular structures of the retinal pigment epithelium from the Japanese quail Coturnix japonica

  • P. P. ZakEmail author
  • N. B. Serezhnikova
  • L. S. Pogodina
  • N. N. Trofimova
  • T. S. Gur’eva
  • O. A. Dadasheva


Fifteen-week-old sexually mature female Japanese quails (Coturnix japonica) grown under various lighting conditions were used in the study. It was found that the number of mitochondria and phagosomes was increased by 1.5-fold in the retinal pigment epithelium from birds reared for 95 days under blue light (440–470 nm) vs. reduced blue light component conditions. Also, it was found that egg production was increased by 15% in birds reared under blue light compared to other lightning conditions. Thus, we concluded that blue light conditions resulted in elevating metabolic activity and accelerating pace of life in Japanese quails. It is assumed that the blue light-induced effects are probably due to inhibition of melatonin synthesis.

Key words

retinal pigment epithelium blue light mitochondria Japanese quail electron microscopy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ham, W. T., Mueller, H. A., and Sliney, D. H. (1976) Retinal sensitivity to damage from short wavelength light, Nature, 260, 153–155.PubMedCrossRefGoogle Scholar
  2. 2.
    Ham, W. T., Mueller, H. A., Ruffolo, J. J., Guerry, D., and Guerry, R. K. (1982) Action spectrum for retinal injury from near-ultraviolet radiation in the aphakic monkey, Am. J. Ophthalmol., 93, 299–306.PubMedCrossRefGoogle Scholar
  3. 3.
    Van Norren, D., and Gorgels, T. G. (2011) The action spectrum of photochemical to the retina: a review of monochromatic threshold data, Photochem. Photobiol., 87, 747–753.PubMedCrossRefGoogle Scholar
  4. 4.
    Algvere, P. V., Marshall, J., and Seregard, S. (2006) Agerelated maculopathy and the impact of blue light hazard, Acta Ophthalmol. Scand., 84, 4–15.PubMedCrossRefGoogle Scholar
  5. 5.
    Boulton, M., Dontsov, A., Ostrovsky, M., Jarvis-Evans, J., and Svistunenko, D. (1993) Lipofuscin is a photoinducible free radical generator, J. Photochem. Photobiol., 19, 201–204.CrossRefGoogle Scholar
  6. 6.
    Schutt, F., Davies, S., Kopitz, J., Holz, F. G., and Boulton, M. E. (2000) Photodamage to human RPE cells by A2-E, a retinoid component of lipofuscin, Invest. Ophthalmol. Vis. Sci., 41, 2303–2308.PubMedGoogle Scholar
  7. 7.
    Suter, M., Reme, C., Grimm, C., Wenzel, A., Jaattela, M., Esser, P., Kociok, N., Leist, M., and Richter, C. (2000) Age-related macular degeneration. The lipofusion component N-retinyl-N-retinylidene ethanolamine detaches proapoptotic proteins from mitochondria and induces apoptosis in mammalian retinal pigment epithelial cells, J. Biol. Chem., 275, 39625–39630.PubMedCrossRefGoogle Scholar
  8. 8.
    Sparrow, J. R., and Cai, B. (2001) Blue light-induced apoptosis of A2E-containing RPE: involvement of caspase-3 and protection by Bcl-2, Invest. Ophthalmol. Vis. Sci., 42, 1356–1362.PubMedGoogle Scholar
  9. 9.
    Tosini, G., Baba, K., Hwang, C. K., and Iuvone, P. M. (2012) Melatonin: an underappreciated player in retinal physiology and pathophysiology, Exp. Eye Res., 103, 82–89.PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Zak, P. P., Zykova, A. V., Trofimova, N. N., Abu Khamidakh, A. E., Fokin, A. I., Eskina, E. N., and Ostrovskiy, M. A. (2010) Experimental model for examining mechanisms of age-related and degenerative changes in human retina (Japanese quail C. japonica), Doklady AN, 434, 272–274.Google Scholar
  11. 11.
    Zak, P. P., Zykova, A. V., Trofimova, N. N., Eskina, E. N., and Ostrovskiy, M. A. (2012) Experimental model of accelerated retinal aging: Japanese quail Coturnix japonica, Sensor. Sistemy, 26, 3–10.Google Scholar
  12. 12.
    Zak, P. P., Zykova, A. V., Trofimova, N. N., and Ostrovskiy, M. A. (2013) Japanese quail Coturnix japonica as a model for accelerated aging of human retina. Report 1. Dependence between lipofuscin accumulation in the retinal pigment epithelium and level of retinal oxycarotenoids, Oftal’mokhirurgiya, 1, 9–12.Google Scholar
  13. 13.
    Feeney-Burns, L., Hilderbrand, E. S., and Eldridqe, S. (1984) Aging human RPE: morphometric analysis of macular, equatorial, and peripheral cells, Invest. Ophthalmol. Vis. Sci., 25, 195–200.PubMedGoogle Scholar
  14. 14.
    Lee, J. Y., Holden, L. A., and Djamgoz, M. B. (1997) Effects of ageing on spatial aspects of the pattern electroretinogram in male and female quail, Vision Res., 37, 505–514.PubMedCrossRefGoogle Scholar
  15. 15.
    Zak, P. P., Serezhnikova, N. B., Pogodina, L. S., Trofimova, N. N., and Ostrovskiy, M. A. (2014) Evaluation of age-related sensitivity of the retinal pigment epithelium isolated from Japanese quail Coturnix japonica to lightinduced damage, Ross. Fiziol. Zh. im. I. M. Sechenova, 100, 841–851.PubMedGoogle Scholar
  16. 16.
    Serezhnikova, N. B., Zak, P. P., Pogodina, L. S., Trofimova, N. N., Lipina, T. V., and Ostrovskiy, M. A. (2013) Subcellular markers of aging for the retinal pigment epithelium isolated from Japanese quail Coturnix japonica (electron microscopy examination), Vestnik Mosk. Univer. Ser. 16. Biologiya, 3, 9–16.Google Scholar
  17. 17.
    Liang, H., Crewther, S. G., and Crewther, D. P. (1995) A model for the formation of ring mitochondria in retinal pigment epithelium, Yan Ke Xue Bao, 11, 9–15.PubMedGoogle Scholar
  18. 18.
    Liu, X., and Hajnoczky, G. (2011) Altered fusion dynamics underlie unique morphological changes in mitochondria during hypoxia-reoxygenation stress, Cell Death Differ., 18, 1561–1572.PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Lauber, J. K. (1982/83) Retinal pigment epithelium: ring mitochondria and lesions induced by continuous light, Curr. Eye Res., 2, 855–862.PubMedCrossRefGoogle Scholar
  20. 20.
    Steele, C. T., Tosini, G., Siopes, T., and Underwood, H. (2006) Time keeping by the quail’s eye: circadian regulation of melatonin production, Gen. Comp. Endocrinol., 145, 232–236.PubMedCrossRefGoogle Scholar
  21. 21.
    Behar-Cohen, F., Martinsons, C., Vienot, F., Zissis, G., Barlier-Salsi, A., Cesarini, J. P., Enouf, O., Garcia, M., Picaud, S., and Attia, D. (2011) Light-emitting diodes (LED) for domestic lighting: any risks for the eye? Prog. Retin. Eye Res., 30, 239–257.PubMedCrossRefGoogle Scholar
  22. 22.
    Avtandilov, G. G. (1980) Introduction into Quantitative Pathological Morphology [in Russian], Meditsina, Moscow.Google Scholar
  23. 23.
    Dickson, D. H., and Morrison, C. (1993) Diurnal variation in myeloid bodies of the chick retinal pigment epithelium, Curr. Eye Res., 12, 37–43.PubMedCrossRefGoogle Scholar
  24. 24.
    Rahman, S. A., Flynn-Evans, E. E., Aeschbach, D., Brainard, G. C., Czeisler, C. A., and Lockley, S. W. (2014) Diurnal spectral sensitivity of the acute alerting effects of light, Sleep, 37, 271–281.PubMedCentralPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • P. P. Zak
    • 1
    Email author
  • N. B. Serezhnikova
    • 1
    • 2
  • L. S. Pogodina
    • 2
  • N. N. Trofimova
    • 1
  • T. S. Gur’eva
    • 3
  • O. A. Dadasheva
    • 3
  1. 1.Emanuel Institute of Biochemical PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.Faculty of BiologyLomonosov Moscow State UniversityMoscowRussia
  3. 3.Institute of Biomedical ProblemsRussian Academy of SciencesMoscowRussia

Personalised recommendations