Biochemistry (Moscow)

, Volume 80, Issue 6, pp 752–762 | Cite as

Development of bacteriochlorophyll a-based near-infrared photosensitizers conjugated to gold nanoparticles for photodynamic therapy of cancer

  • I. V. Pantiushenko
  • P. G. Rudakovskaya
  • A. V. Starovoytova
  • A. A. Mikhaylovskaya
  • M. A. Abakumov
  • M. A. Kaplan
  • A. A. Tsygankov
  • A. G. Majouga
  • M. A. GrinEmail author
  • A. F. Mironov


We report the synthesis and characterization of a new sulfur-containing derivative of bacteriochlorophyll a. The latter was isolated from biomass of the nonsulfur purple bacterium Rhodobacter capsulatus strain B10. The developed photosensitizer is N-aminobacteriopurpurinimide with an exocyclic amino group acylated with a lipoic acid moiety, which is a biogenic substance that acts as a cofactor of the pyruvate dehydrogenase and α-ketoglutarate dehydrogenase complexes in the body. The disulfide moiety of lipoic acid confers the compound aurophilicity, thus allowing its conjugation with gold nanoparticles (NP-Au) via S—Au bonds. The shape and the size of the resulting nanoconjugate with immobilized photosensitizer (PS—Au) were assessed by dynamic light scattering and transmission electron microscopy. The conjugated nanoparticles are spherical with hydrodynamic diameter of 100–110 nm. The PS—Au conjugate absorbs light at 824 nm and emits strong fluorescence at 830 nm, which allowed in vivo study of its dynamic biodistribution in rats bearing sarcoma M-1. Compared to the free photosensitizer, PS loaded on the gold nanoparticles (PS—Au) showed extended circulation time in the blood and enhanced tumor uptake due to nonspecific passive targeting when the drug accumulates in tumor sites through the leaky tumor neovasculature and does not return to the circulation.

Key words

bacteriochlorophyll a bacteriopurpurinimide photosensitizers photodynamic therapy lipoic acid gold nanoparticles sarcoma M-1 


BChl a

bacteriochlorophyll a


dynamic light scattering


gold nanoparticles


photodynamic therapy




gold nanoparticles with immobilized photosensitizer


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bonnett, R. (1999) Photodynamic therapy in historical perspective, Rev. Contemp. Pharmacother., 10, 1–17.Google Scholar
  2. 2.
    Dougherty, T. J., Gomer, C. J., Henderson, B. W., Jori, G., Kessel, D., Korbelik, M., Moan, J., and Peng, Q. (1998) Photodynamic therapy, J. Natl. Cancer Inst., 90, 889–905.PubMedCrossRefGoogle Scholar
  3. 3.
    Stranadko, E. F. (2002) Historical development of photodynamic therapy, Lazer. Med., 4, 4–8.Google Scholar
  4. 4.
    Ronn, A. M. (1999) Pharmacokinetics in photodynamic therapy, Rev. Contemp. Pharmacother., 10, 39–46.Google Scholar
  5. 5.
    Freitas, I. (1990) Lipid accumulation: the common feature to photosensitizer retaining normal and malignant tissues, J. Photochem. Photobiol. B, 7, 359–361.PubMedCrossRefGoogle Scholar
  6. 6.
    Mason, M. D. (1999) Cellular aspects of photodynamic therapy for cancer, Rev. Contemp. Pharmacother., 10, 25–37.Google Scholar
  7. 7.
    Vrouenraets, M. B., Visser, G. W., Snow, G. B., and van Dongen, G. A. (2003) Basic principles, applications in oncology and improved selectivity of photodynamic therapy, Anticancer Res., 23, 505–522.PubMedGoogle Scholar
  8. 8.
    Allison, R. R., Downie, G. H., Cuenca, R., Hu, X. H., Childs, C. J. H., and Sibata, C. H. (2004) Photosensitizers in clinical PDT, Photodiagn. Photodyn. Ther., 1, 27–42.CrossRefGoogle Scholar
  9. 9.
    Moan, J., Peng, Q., Iani, V., Ma, L. W., Horobin, R. W., Berg, K., Kongshaug, M., and Nesland, J. M. (1995) Biodistribution, pharmacokinetic and in vivo fluorescence spectroscopic studies of photosensitizers, SPIE, 2625, 234–238.Google Scholar
  10. 10.
    Moser, J. G. (1997) Definitions and general properties of 2nd and 3rd generation photosensitizers, in Photodynamic Tumor Therapy, 2nd and 3rd Generation Photosensitizers (Moser, J. G., ed.) Harwood Academic Publishers, London, pp. 3–8.Google Scholar
  11. 11.
    Henderson, B. W., Sumlin, A. B., Owcharczak, B. L., and Dougherty, T. J. (1991) Bacteriochlorophyll a as photosensitizer for photodynamic treatment of transplantable murine tumors, Photochem. Photobiol. B, 10, 303–313.CrossRefGoogle Scholar
  12. 12.
    Koudinova, N. V., Pinthus, J. H., Brandis, A., Brenner, O., Bendel, P., Ramon, J., Eshhar, Z., Scherz, A., and Salomon, Y. (2003) Photodynamic therapy with Pd-bacteriopheophorbide (TOOKAD): successful in vivo treatment of human prostatic small cell carcinoma xenografts, Int. J. Cancer, 104, 782–789.PubMedCrossRefGoogle Scholar
  13. 13.
    Brandis, A., Mazor, O., Neumark, E., Rozenbach-Belkin, V., Salomon, Y., and Scherz, A. (2005) Novel water-soluble bacteriochlorophyll derivatives for vascular-targeted photodynamic therapy: synthesis, solubility, phototoxicity and the effect of serum proteins, Photochem. Photobiol., 81, 983–993.PubMedCrossRefGoogle Scholar
  14. 14.
    Grin, M. A., Mironov, A. F., and Shtil, A. A. (2008) Bacteriochlorophyll a and its derivatives: chemistry and perspectives for cancer therapy, Anti-cancer Agents Med. Chem., 8, 683–697.CrossRefGoogle Scholar
  15. 15.
    Mironov, A. F., and Grin, M. A. (2008) Synthesis of chlorin and bacteriochlorin conjugates for photodynamic and boron neutron capture therapy, J. Porphyrins Phthalocyanines, 12, 1163–1172.CrossRefGoogle Scholar
  16. 16.
    Peer, D., Karp, J. M., Hong, S., Farokhzad, O. C., Margalit, R., and Langer, R. (2007) Nano-carriers as an emerging platform for cancer therapy, Nat. Nanotech., 2, 751–760.CrossRefGoogle Scholar
  17. 17.
    Ghosh, P., Han, G., De, M., Kim, C. K., and Rotello, V. M. (2008) Gold nanoparticles in delivery applications, Adv. Drug Delivery Rev., 60, 1307–1315.CrossRefGoogle Scholar
  18. 18.
    Rana, S., Bajaj, A., Mout, R., and Rotello, V. M. (2012) Monolayer coated gold nanoparticles for delivery applications, Adv. Drug Delivery Rev., 64, 200–216.CrossRefGoogle Scholar
  19. 19.
    Dreaden, E. C., Alkilany, A. M., Huang, X., Murphy, C. J., and El-Sayed, M. A. (2012) The golden age: gold nanoparticles for biomedicine, Chem. Soc. Rev., 41, 2740–2779.PubMedCrossRefGoogle Scholar
  20. 20.
    Bardhan, R., Lal, S., Joshi, A., and Halas, N. J. (2011) Theranostic nano-shells: from probe design to imaging and treatment of cancer, Acc. Chem. Res., 44, 936–946.PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Xia, Y., Li, W., Cobley, C. M., Chen, J., Xia, X., Zhang, Q., Yang, M., Cho, E. C., and Brown, P. K. (2011) Gold nanocages: from synthesis to theranostic applications, Acc. Chem. Res., 44, 914–924.PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Cheng, Y. C., Samia, A., Meyers, J. D., Panagopoulos, I., Fei, B., and Burda, C. (2008) Highly efficient drug delivery with gold nanoparticle vectors for in vivo photodynamic therapy of cancer, J. Am. Chem. Soc., 130, 10643–10647.PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Cheng, Y., Samia, A. C., Li, J., Kenney, M. E., Resnick, A., and Burda, C. (2009) Delivery and efficacy of a cancer drug as a function of the bond to the gold nanoparticle surface, Langmuir, 26, 2248–2255.CrossRefGoogle Scholar
  24. 24.
    Cheng, Y., Meyers, J. D., Broome, A.-M., Kenney, M. E., Basilion, J. P., and Burda, C. (2011) Deep penetration of a PDT drug into tumors by noncovalent drug-gold nanoparticle conjugates, J. Am. Chem. Soc., 133, 2583–2591.PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Srivatsan, A., Jenkins, S. V., Jeon, M., Wu, Z., Kim, C., Chen, J., and Pandey, R. K. (2014) Gold nanocage-photosensitizer conjugates for dual-modal image-guided enhanced photodynamic therapy, Theranostics, 4, 163–174.PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Mieszawska, A. J., Mulder, W. J. M., Fayad, Z. A., and Cormode, D. P. (2013) Multifunctional gold nanoparticles for diagnosis and therapy of disease, Mol. Pharm., 10, 831–847.PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Galper, M. W., Saung, M. T., Fuster, V., Roessl, E., Thran, A., Proksa, R., Fayad, Z. A., and Cormode, D. P. (2012) Effect of computed tomography scanning parameters on gold nanoparticle and iodine contrast, Invest. Radiol., 47, 475–481.PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Liu, C. J., Wang, C. H., Chen, S. T., Chen, H. H., Leng, W. H., Chien, C. C., Wang, C. L., Kempson, I. M., Hwu, Y., Lai, T. C., Hsiao, M., Yang, C. S., Chen, Y. J., and Margaritondo, G. (2010) Enhancement of cell radiation sensitivity by pegylated gold nanoparticles, Phys. Med. Biol., 55, 931–945.PubMedCrossRefGoogle Scholar
  29. 29.
    Chen, X., Chen, Y., Yan, M., and Qiu, M. (2012) Nanosecond photothermal effects in plasmonic nanostructures, ACS Nano, 6, 2550–2557.PubMedCrossRefGoogle Scholar
  30. 30.
    Chen, H., Shao, L., Ming, T., Sun, Z., Zhao, C., Yang, B., and Wang, J. (2010) Understanding the photothermal conversion efficiency of gold nanocrystals, Small, 6, 2272–2280.PubMedCrossRefGoogle Scholar
  31. 31.
    Huang, X., Kang, B., Qian, W., Mackey, M. A., Chen, P. C., Oyelere, A. K., El-Sayed, I. H., and El-Sayed, M. A. (2010) Comparative study of photothermolysis of cancer cells with nuclear-targeted or cytoplasm-targeted gold nanospheres: continuous wave or pulsed lasers, J. Biomed. Opt., 15, 0580–2.Google Scholar
  32. 32.
    Mironov, A. F., Kozyrev, A. N., and Brandis, A. S. (1992) Sensitizers of second generation for photodynamic therapy of cancer based on chlorophyll and bacteriochlorophyll derivatives, Proc. SPIE, 1922, 204–208.Google Scholar
  33. 33.
    Mironov, A. F., Grin, M. A., Tsiprovskiy, A. G., Dzardanov, D. V., Golovin, K. V., Feofanov, A. V., and Yakubovskaya, R. I. (2004) Bacteriochlorophyll a-based hydrazides possessing photodynamic activity and method for their preparation, Patent RF 2223274 [in Russian].Google Scholar
  34. 34.
    Mironov, A. F., Grin, M. A., Tsiprovskiy, A. G., Kachala, V. V., Karmakova, T. A., Plyutinskaya, A. D., and Yakubovskaya, R. I. (2003) New bacteriochlorin derivatives with a fused N-aminoimide ring, J. Porphyrins Phthalocyanines, 7, 725–730.CrossRefGoogle Scholar
  35. 35.
    Mironov, A. F., and Efremov, A. V. (1996) Synthesis of bacteriochlorophyll a, Patent RF 2144085 [in Russian].Google Scholar
  36. 36.
    Tsygankov, A. A., Laurinavichene, T. V., and Gogotov, I. N. (1994) Laboratory scale photobioreactor, Biotechnol. Tech., 8, 575–578.CrossRefGoogle Scholar
  37. 37.
    Tsygankov, A. A., Laurinavichene, T. V., Bukatin, V. E., Gogotov, I. N., and Hall, D. O. (1997) Biomass production by continuous cultures of Rhodobacter capsulatus grown in various bioreactors, Biochem. Microbiol., 33, 485–490.Google Scholar
  38. 38.
    Patrusheva, E. V., Fedorov, A. C., Belera, V. V., Minkevich, I. G., and Tsygankov, A. A. (2007) Synthesis of bacteriochlorophyll a by the purple nonsulfur bacterium Rhodobacter capsulatus, Appl. Biochem. Microbiol., 43, 187–192.CrossRefGoogle Scholar
  39. 39.
    Sharonov, G. V., Karmakova, T. A., Kassies, R., Pljutinskaya, A. D., Refregiers, M., Yakubovskaya, R. I., Mironov, A. F., Grin, M. A., Maurizot, J.-C., Vigny, P., Otto, C., and Feofanov, A. V. (2006) Cycloimide bacteriochlorin p derivatives: photodynamic properties, cellular and tissue distribution, Free Radicals Biol. Med., 40, 407–419.CrossRefGoogle Scholar
  40. 40.
    Turkevich, J., Stevenson, P. C., and Hillier, J. (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold, Discuss. Faraday Soc., 11, 55–75.CrossRefGoogle Scholar
  41. 41.
    Frens, G. (1973) Controlled nucleation for regulation of particle size in monodisperse gold suspensions, Nat. Phys. Sci., 241, 20–22.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • I. V. Pantiushenko
    • 1
  • P. G. Rudakovskaya
    • 2
    • 3
  • A. V. Starovoytova
    • 4
  • A. A. Mikhaylovskaya
    • 4
  • M. A. Abakumov
    • 5
  • M. A. Kaplan
    • 4
  • A. A. Tsygankov
    • 6
  • A. G. Majouga
    • 2
    • 3
  • M. A. Grin
    • 1
    Email author
  • A. F. Mironov
    • 1
  1. 1.Lomonosov Moscow State University of Fine Chemical TechnologiesMoscowRussia
  2. 2.Lomonosov Moscow State UniversityMoscowRussia
  3. 3.National University of Science and Technology MISiSMoscowRussia
  4. 4.Cyb Scientific Research Center of Radiology, Hertsen Federal Medical Research CenterMinistry of Health of the Russian FederationObninsk, Kaluga RegionRussia
  5. 5.Department of Medical NanobiotechnologyPirogov Russian National Research Medical UniversityMoscowRussia
  6. 6.Institute of Basic Biological ProblemsRussian Academy of SciencesPushchino, Moscow RegionRussia

Personalised recommendations