Biochemistry (Moscow)

, Volume 80, Issue 6, pp 745–751 | Cite as

Photodynamic inactivation of gramicidin channels in bilayer lipid membranes: Protective efficacy of singlet oxygen quenchers depends on photosensitizer location

  • T. I. RokitskayaEmail author
  • A. M. Firsov
  • E. A. Kotova
  • Y. N. Antonenko


The impact of double bonds in fatty acyl tails of unsaturated lipids on the photodynamic inactivation of ion channels formed by the pentadecapeptide gramicidin A in a planar bilayer lipid membrane was studied. The presence of unsaturated acyl tails protected gramicidin A against photodynamic inactivation, with efficacy depending on the depth of a photosensitizer in the membrane. The protective effect of double bonds was maximal with membrane-embedded chlorin e6-monoethylenediamine monoamide dimethyl ester, and minimal — in the case of water-soluble tri-sulfonated aluminum phthalocyanine (AlPcS3) known to reside at the membrane surface. By contrast, the protective effect of the hydrophilic singlet oxygen scavenger ascorbate was maximal for AlPcS3 and minimal for amide of chlorin e6 dimethyl ester. The depth of photosensitizer position in the lipid bilayer was estimated from the quenching of photosensitizer fluorescence by iodide. Thus, the protective effect of a singlet oxygen scavenger against photodynamic inactivation of the membrane-inserted peptide is enhanced upon location of the photosensitizer and scavenger molecules in close vicinity to each other.

Key words

photodynamic action gramicidin A photosensitizer unsaturated lipids ascorbate singlet oxygen bilayer lipid membrane 



tri-sulfonated aluminum phthalocyanine


bilayer lipid membrane






photodynamic action


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Krasnovsky, A. A., Jr. (1998) Singlet molecular oxygen in photobiochemical systems: IR phosphorescence studies, Membr. Cell Biol., 12, 665–690.PubMedGoogle Scholar
  2. 2.
    Ehrenberg, B., Anderson, J. L., and Foote, C. S. (1998) Kinetics and yield of singlet oxygen photosensitized by hypericin in organic and biological media, Photochem. Photobiol., 68, 135–140.PubMedCrossRefGoogle Scholar
  3. 3.
    Kearns, D. R. (1971) Physical and chemical properties of singlet molecular oxygen, Chem. Rev., 71, 395–427.CrossRefGoogle Scholar
  4. 4.
    Lavi, A., Weitman, H., Holmes, R. T., Smith, K. M., and Ehrenberg, B. (2002) The depth of porphyrin in a membrane and the membrane’s physical properties affect the photosensitizing efficiency, Biophys. J., 82, 2101–2110.PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Bronshtein, I., Afri, M., Weitman, H., Frimer, A. A., Smith, K. M., and Ehrenberg, B. (2004) Porphyrin depth in lipid bilayers as determined by iodide and parallax fluorescence quenching methods and its effect on photosensitizing efficiency, Biophys. J., 87, 1155–1164.PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Dror, S. B., Bronshtein, I., Garini, Y., O’Neal, W. G., Jacobi, P. A., and Ehrenberg, B. (2009) The localization and photosensitization of modified chlorin photosensitizers in artificial membranes, Photochem. Photobiol. Sci., 8, 354–361.PubMedCrossRefGoogle Scholar
  7. 7.
    Lissi, E. A., Encinas, M. V., Lemp, E., and Rubio, M. A. (1993) Singlet oxygen O2(1-Delta-G) bimolecular processes — solvent and compartmentalization effects, Chem. Rev., 93, 699–723.CrossRefGoogle Scholar
  8. 8.
    Wilkinson, F., Helman, W. P., and Ross, A. B. (1995) Rate constants for the decay and reactions of the lowest electronically excited singlet-state of molecular-oxygen in solution — an expanded and revised compilation, J. Phys. Chem. Ref. Data, 24, 663–1021.CrossRefGoogle Scholar
  9. 9.
    Davies, M. J. (2005) The oxidative environment and protein damage, Biochim. Biophys. Acta, 1703, 93–109.PubMedCrossRefGoogle Scholar
  10. 10.
    Giulivi, C., Sarcansky, M., Rosenfeld, E., and Boveris, A. (1990) The photodynamic effect of rose bengal on proteins of the mitochondrial inner membrane, Photochem. Photobiol., 52, 745–751.PubMedCrossRefGoogle Scholar
  11. 11.
    Moreno, G., Poussin, K., Ricchelli, F., and Salet, C. (2001) The effects of singlet oxygen produced by photodynamic action on the mitochondrial permeability transition differ in accordance with the localization of the sensitizer, Arch. Biochem. Biophys., 386, 243–250.PubMedCrossRefGoogle Scholar
  12. 12.
    Rodrigues, T., De Franca, L. P., Kawai, C., De Faria, P.A., Mugnol, K. C., Braga, F. M., Tersariol, I. L., Smaili, S. S., and Nantes, I. L. (2007) Protective role of mitochondrial unsaturated lipids on the preservation of the apoptotic ability of cytochrome c exposed to singlet oxygen, J. Biol. Chem., 282, 25577–25587.PubMedCrossRefGoogle Scholar
  13. 13.
    Strassle, M., and Stark, G. (1992) Photodynamic inactivation of an ion channel: gramicidin A, Photochem. Photobiol., 55, 461–463.PubMedCrossRefGoogle Scholar
  14. 14.
    Rokitskaya, T. I., Antonenko, Y. N., and Kotova, E. A. (1993) The interaction of phthalocyanine with planar lipid bilayers - photodynamic inactivation of gramicidin channels, FEBS Lett., 329, 332–335.PubMedCrossRefGoogle Scholar
  15. 15.
    Kunz, L., Zeidler, U., Haegele, K., Przybylski, M., and Stark, G. (1995) Photodynamic and radiolytic inactivation of ion channels formed by gramicidin A: oxidation and fragmentation, Biochemistry, 34, 11895–11903.PubMedCrossRefGoogle Scholar
  16. 16.
    Rokitskaya, T. I., Antonenko, Y. N., and Kotova, E. A. (1997) Effect of the dipole potential of a bilayer lipid membrane on gramicidin channel dissociation kinetics, Biophys. J., 73, 850–854.PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Rokitskaya, T. I., Block, M., Antonenko, Y. N., Kotova, E. A., and Pohl, P. (2000) Photosensitizer binding to lipid bilayers as a precondition for the photoinactivation of membrane channels, Biophys. J., 78, 2572–2580.PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Shapovalov, V. L., Rokitskaya, T. I., Kotova, E. A., Krokhin, O. V., and Antonenko, Y. N. (2001) Effect of fluoride anions on gramicidin photoinactivation sensitized by sulfonated aluminum phthalocyanines, Photochem. Photobiol., 74, 1–7.PubMedCrossRefGoogle Scholar
  19. 19.
    Antonenko, Yu. N., Kotova, E. A., and Rokitskaya, T. I. (2005) Photodynamic action as a basis for relaxation method of the study of gramicidin channels, Biol. Membr. (Moscow), 22, 275–289.Google Scholar
  20. 20.
    Pashkovskaya, A. A., Sokolenko, E. A., Sokolov, V. S., Kotova, E. A., and Antonenko, Y. N. (2007) Photodynamic activity and binding of sulfonated metallophthalocyanines to phospholipid membranes: contribution of metal-phosphate coordination, Biochim. Biophys. Acta, 1768, 2459–2465.PubMedCrossRefGoogle Scholar
  21. 21.
    Pashkovskaya, A. A., Maizlish, V. E., Shaposhnikov, G. P., Kotova, E. A., and Antonenko, Y. N. (2008) Role of electrostatics in the binding of charged metallophthalocyanines to neutral and charged phospholipid membranes, Biochim. Biophys. Acta, 1778, 541–548.PubMedCrossRefGoogle Scholar
  22. 22.
    Antonenko, Y. N., Kotova, E. A., Omarova, E. O., Rokitskaya, T. I., Ol’shevskaya, V. A., Kalinin, V. N., Nikitina, R. G., Osipchuk, J. S., Kaplan, M. A., Ramonova, A. A., Moisenovich, M. M., Agapov, I. I., and Kirpichnikov, M. P. (2014) Photodynamic activity of the boronated chlorin e6 amide in artificial and cellular membranes, Biochim. Biophys. Acta, 1838, 793–801.PubMedCrossRefGoogle Scholar
  23. 23.
    Rokitskaya, T. I., Kotova, E. A., Agapov, I. I., Moisenovich, M. M., and Antonenko, Y. N. (2014) Unsaturated lipids protect the integral membrane peptide gramicidin A from singlet oxygen, FEBS Lett., 588, 1590–1595.PubMedCrossRefGoogle Scholar
  24. 24.
    Moisenovich, M. M., Ol’shevskaya, V. A., Rokitskaya, T. I., Ramonova, A. A., Nikitina, R. G., Savchenko, A. N., Tatarskiy, V. V., Jr., Kaplan, M. A., Kalinin, V. N., Kotova, E. A., Uvarov, O. V., Agapov, I. I., Antonenko, Y. N., and Shtil, A. A. (2010) Novel photosensitizers trigger rapid death of malignant human cells and rodent tumor transplants via lipid photodamage and membrane permeabilization, PLoS One, 5, E127–7.CrossRefGoogle Scholar
  25. 25.
    Mueller, P., Rudin, D. O., Tien, H. T., and Wescott, W. C. (1963) Methods for the formation of single bimolecular lipid membranes in aqueous solution, J. Phys. Chem., 67, 534–535.CrossRefGoogle Scholar
  26. 26.
    Rokitskaya, T. I., Antonenko, Y. N., and Kotova, E. A. (1996) Photodynamic inactivation of gramicidin channels: a flash-photolysis study, Biochim. Biophys. Acta, 1275, 221–226.PubMedCrossRefGoogle Scholar
  27. 27.
    Pashkovskaya, A., Kotova, E., Zorlu, Y., Dumoulin, F., Ahsen, V., Agapov, I., and Antonenko, Y. (2010) Light-triggered liposomal release: membrane permeabilization by photodynamic action, Langmuir, 26, 5726–5733.PubMedCrossRefGoogle Scholar
  28. 28.
    Kotova, E. A., Kuzevanov, A. V., Pashkovskaya, A. A., and Antonenko, Y. N. (2011) Selective permeabilization of lipid membranes by photodynamic action via formation of hydrophobic defects or pre-pores, Biochim. Biophys. Acta, 1808, 2252–2257.PubMedCrossRefGoogle Scholar
  29. 29.
    Ytzhak, S., and Ehrenberg, B. (2014) The effect of photodynamic action on leakage of ions through liposomal membranes that contain oxidatively modified lipids, Photochem. Photobiol., 90, 796–800.PubMedGoogle Scholar
  30. 30.
    Kuznetsova, N. A., Gretsova, N. S., Derkacheva, V. M., Kaliya, O. L., and Lukyanets, E. A. (2003) Sulfonated phthalocyanines: aggregation and singlet oxygen quantum yield in aqueous solutions, J. Porphyr. Phthalocyanines, 7, 147–154.CrossRefGoogle Scholar
  31. 31.
    Zorin, V., Michalovsky, I., Zorina, T., and Khludeyev, I. (1996) The distribution of chlorin e6 derivatives in biological systems — investigation of pH-effect, Proc. SPIE, 2625, 146–155.Google Scholar
  32. 32.
    Vilensky, A., and Feitelson, J. (1999) Reactivity of singlet oxygen with tryptophan residues and with melittin in liposome systems, Photochem. Photobiol., 70, 841–846.PubMedCrossRefGoogle Scholar
  33. 33.
    Sokolov, V. S., Block, M., Stozhkova, I. N., and Pohl, P. (2000) Membrane photopotential generation by interfacial differences in the turnover of a photodynamic reaction, Biophys. J., 79, 2121–2131.PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Sokolov, V. S., and Pohl, P. (2009) Membrane transport of singlet oxygen monitored by dipole potential measurements, Biophys. J., 96, 77–85.PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Krasnovsky, A. A., Kagan, V. E., and Minin, A. A. (1983) Quenching of singlet oxygen luminescence by fatty acids and lipids - contribution of physical and chemical mechanisms, FEBS Lett., 155, 233–236.CrossRefGoogle Scholar
  36. 36.
    Bamberg, E., and Lauger, P. (1973) Channel formation kinetics of gramicidin A in lipid bilayer membranes, J. Membr. Biol., 11, 177–194.PubMedCrossRefGoogle Scholar
  37. 37.
    Nagle, J. F., and Tristram-Nagle, S. (2000) Structure of lipid bilayers, Biochim. Biophys. Acta, 1469, 159–195.PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Rose, R. C. (1987) Solubility properties of reduced and oxidized ascorbate as determinants of membrane permeation, Biochim. Biophys. Acta, 924, 254–256.PubMedCrossRefGoogle Scholar
  39. 39.
    Moan, J., and Berg, K. (1991) The photodegradation of porphyrins in cells can be used to estimate the lifetime of singlet oxygen, Photochem. Photobiol., 53, 549–553.PubMedCrossRefGoogle Scholar
  40. 40.
    Krasnovsky, A. A., Jr. (2006) Photodynamic regulation of biological processes: primary mechanisms, in Problems of Regulation in Biological Systems (Rubin, A. B., ed.) Moscow-Izhevsk.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • T. I. Rokitskaya
    • 1
    Email author
  • A. M. Firsov
    • 1
  • E. A. Kotova
    • 1
  • Y. N. Antonenko
    • 1
  1. 1.Belozersky Institute of Physico-Chemical BiologyLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations