Advertisement

Biochemistry (Moscow)

, Volume 80, Issue 6, pp 733–744 | Cite as

Photobiosensors containing luminescent bacteria

  • A. D. IsmailovEmail author
  • L. E. Aleskerova
Review

Abstract

The scientific basis for producing luminescent biosensors containing free and immobilized luminescent bacteria is discussed. Modern technologies for engineering target objects, procedures used to immobilize bacteria in different carriers, as well as procedures for integral and specific biodetection of toxins are presented. Data regarding generation and application of biomonitoring for ecotoxicants derived from natural and genetically engineered photobacterial strains are analyzed. Special attention is given to immobilization of photobacteria in polyvinyl alcohol-containing cryogel. The main physicochemical, biochemical, and technological parameters for stabilizing luminescence in immobilized bacteria are described. Results of the application of immobilized photobacterial preparations both during discrete and continuous biomonitoring for different classes of ecotoxicants are presented.

Key words

bioluminescence biomonitoring luminescent bacteria biosensors immobilization gels polyvinyl alcohol 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Deryabin, D. G. (2009) Bacterial Chemiluminescence: Fundamental and Applied Aspects [in Russian], Nauka, Moscow.Google Scholar
  2. 2.
    Danilov, V. S., and Ismailov, A. D. (1989) Bacterial luciferase as a biosensor of biologically active compounds, in Applied Biosensors (Wise, D., ed.) Boston, pp. 39–78.Google Scholar
  3. 3.
    Mitchell, R. J., and Gu, M. B. (2006) Characterization and optimization of two method in the immobilization of 12 bioluminescent strains, Biosens. Bioelectron., 22, 192–199.PubMedCrossRefGoogle Scholar
  4. 4.
    Parvez, S., Venkataraman, C., and Mukherji, S. (2006) A review on advantages of implementing luminescence inhibition test (Vibrio fischeri) for acute toxicity prediction of chemicals, Environ. Int., 32, 265–268.PubMedCrossRefGoogle Scholar
  5. 5.
    Dizer, H., Wittekindt, E., Fischer, B., and Hansen, P. D. (2002) The cytotoxic and genotoxic potential of surface water and wastewater effluents as determined by bioluminescence, umu-assays and selected biomarkers, Chemosphere, 46, 225–233.PubMedCrossRefGoogle Scholar
  6. 6.
    Yin, J., Li, X., Zhou, C., and Zhang, Y. (2005) Luminescent bacterial sensors made from immobilized films of Photobacterium phosphoreum, Chem. Res. Chinese Univ., 21, 44–47.Google Scholar
  7. 7.
    Yoo, S. K., Lee, J. H., Yun, S. S., Gu, M. B., and Lee, J. H. (2007) Fabrication of a bio-MEMS based cell-chip for toxicity monitoring, Biosens. Bioelectron., 22, 1586–1592.PubMedCrossRefGoogle Scholar
  8. 8.
    Lee, J. H., Mitchell, R. J., Kim, B. C., Cullen, D. C., and Gu, M. B. (2005) A cell array biosensor for environmental toxicity analysis, Biosens. Bioelectron., 21, 500–507.PubMedCrossRefGoogle Scholar
  9. 9.
    Bulich, A. A. (1979) Use of luminescent bacteria for determining toxicity in aquatic environments, in Aquatic Toxicology. American Society for Testing and Materials (Markings, L. L., and Kimerleeds, R. A., eds.) Philadelphia, p. 8.Google Scholar
  10. 10.
    Sun, T. S., and Stahr, H. M. (1993) Evaluation and application of a bioluminescent bacterial genotoxicity test, J. AOAC Int., 76, 893–898.PubMedGoogle Scholar
  11. 11.
    Verschaeve, L., Van Gompel, J., Thilemans, L., Regniers, L., Vanparys, P., and van der Lelie, D. (1999) VITOTOX bacterial genotoxicity and toxicity test for the rapid screening of chemicals, Environ. Mol. Mutagen., 33, 240–248.PubMedCrossRefGoogle Scholar
  12. 12.
    Chun, U.-H., Simonov, N., Chen, Y., and Britzb, M. L. (1996) Continuous pollution monitoring using Photobacterium phosphoreum, Resour. Conserv. Recycl., 18, 25–40.CrossRefGoogle Scholar
  13. 13.
    Park, K. S., Baumstark-Khan, Ch., Rettberg, P., Horneck, G., Rabbow, E., and Gu, M. B. (2005) Immobilization as a technical possibility for long-term storage of bacterial biosensors, Radiat. Environ. Biophys., 44, 69–71.PubMedCrossRefGoogle Scholar
  14. 14.
    Heitzer, A., Malachowsky, K., Thonnard, J. E., Bienkowski, P. R., White, D. C., and Sayler, G. S. (1994) Optical biosensor for environmental on-line monitoring of naphthalene and salicylate bioavailability with an immobilized bioluminescent catabolic reporter bacterium, Appl. Environ. Microbiol., 60, 1487–1494.PubMedCentralPubMedGoogle Scholar
  15. 15.
    Van Dyk, T. K., Majarian, W. R., Konstantinov, K. B., Young, R. M., Dhurjati, P. S., and Larossa, R. A. (1994) Rapid and sensitive pollutant detection by induction of heat shock gene-bioluminescence gene fusions, Appl. Environ. Microbiol., 60, 1414–1420.PubMedCentralPubMedGoogle Scholar
  16. 16.
    Belkin, Sh. (2003) Microbial whole-cell sensing systems of environmental pollutants, Curr. Opin. Microbiol., 6, 206–212.PubMedCrossRefGoogle Scholar
  17. 17.
    Okamoto, K., Ishiura, M., Torii, T., and Aoki, S. (2007) A compact multi-channel apparatus for automated real-time monitoring of bioluminescence, J. Biochem. Biophys. Methods, 70, 535–538.PubMedCrossRefGoogle Scholar
  18. 18.
    Polyak, B., Bassis, E., Novodvorets, A., Belkin, Sh., and Marks, R. S. (2001) Bioluminescent whole cell optical fiber sensor to genotoxicants: system optimization, Sens. Actuators B Chem., 74, 18–26.CrossRefGoogle Scholar
  19. 19.
    Sinitsin, A. P., Raynina, E. I., Lozinskiy, V. I., and Spasov, S. D. (1994) Immobilized Microbial Cells [in Russian], Moscow State University Publishers, Moscow.Google Scholar
  20. 20.
    Brodelius, P., and Vandamme, E. J. (1987) Immobilized cells systems, in Biotechnology. A Comprehensive Treatise (Rehm, H. J., and Reed, G., eds.) Vol. 7a, VCH Verlag, Weinheim, pp. 405–464.Google Scholar
  21. 21.
    Makiguchi, N., Arita, M., and Asai, Y. (1980) Immobilization of a luminous bacterium and light intensity of luminous material, J. Ferment. Technol., 58, 17–21.Google Scholar
  22. 22.
    Arnold, M. A. (1990) Fiber-optic biosensors, J. Biotechnol., 15, 219–228.PubMedCrossRefGoogle Scholar
  23. 23.
    Kohler, S., Belkin, S., and Schmid, R. D. (2000) Reporter gene bioassays in environmental analysis, Fresenius J. Anal. Chem., 366, 769–779.PubMedCrossRefGoogle Scholar
  24. 24.
    Yin, J., Li, X., Zhou, C., and Zhang, Y. (2005) Luminescent bacterial sensors made from immobilized films of Photobacterium phosphoreum, Chem. Res. Chinese Univ., 21, 44–47.Google Scholar
  25. 25.
    Blume, L. J., Gautier, S. M., and Coulet, P. R. (1993) Design of bioluminescence-based fiber optic sensors for flow-injection analysis, J. Biotechnol., 31, 357–368.CrossRefGoogle Scholar
  26. 26.
    Blume, L. J., Gautier, S. M., and Coulet, P. R. (1989) Design of luminescence photobiosensors, J. Biolum. Chemilum., 4, 543–550.CrossRefGoogle Scholar
  27. 27.
    Cho, J., Park, K., Ihm, H., Park, J., Kim, S., Kang, I., Lee, K., Jahng, D., Lee, K., and Kim, S. (2004) A novel continuous toxicity test system using a luminously modified freshwater bacterium, Biosens. Bioelectron., 20, 338–344.PubMedCrossRefGoogle Scholar
  28. 28.
    Lee, B., Lee, J., Shin, D., and Kim, E. (2006) Statistical optimization of bioluminescence Photobacterium phosphoreum KCTC 2852, Environ. Int., 32, 265–268.CrossRefGoogle Scholar
  29. 29.
    Marks, R., Polyak, B., Novodvorets, A., and Belkin, Sh. (2001) Bacterial biosensors for environmental analysis, G. I. T. Laboratory J., 3, 122–123.Google Scholar
  30. 30.
    Premkumar, J. R., Ovadia, L., Marks, R. S., Polyak, B., Rosen, R., and Belkin, Sh. (2001) Antibody-based immobilization of bioluminescent bacterial sensor cells, Talanta, 55, 1029–1038.PubMedCrossRefGoogle Scholar
  31. 31.
    Kim, S. K., Lee, B. S., Lee, J. G., Seo, H. J., and Kim, E. K. (2003) Continuous water toxicity monitoring using immobilized Photobacterium phosphoreum, Biotechnol. Bioproc. Eng., 8, 147–150.CrossRefGoogle Scholar
  32. 32.
    Kim, B. Ch., and Gu, M. B. (2005) A multi-channel continuous water toxicity monitoring system: its evaluation and application to water discharged from a power plant, Environ. Monit. Assess., 109, 123–133.PubMedCrossRefGoogle Scholar
  33. 33.
    Lee, J. H., and Gu, M. B. (2005) An integrated mini biosensor system for continuous water toxicity monitoring, Biosens. Bioelectron., 20, 1744–1749.PubMedCrossRefGoogle Scholar
  34. 34.
    Lozinsky, V. I., and Plieva, F. M. (1998) Poly(vinyl alcohol) cryogels employed as matrices for cell immobilization. Overview of recent research and developments, Enzyme Microb. Technol., 23, 227–242.CrossRefGoogle Scholar
  35. 35.
    Varfolomeev, S. D., Rainina, E. I., Lozinsky, V. I., Kalyuzhnyi, S. B., Sinitsyn, A. P., Makhlis, T. A., Bachurina, G. P., Bokova, I. G., Sklyankina, O. A., and Agafonov, E. V. (1989) Application of poly(vinyl alcohol) cryogel for immobilization of mesophilic and thermophilic microorganisms, in Physiology of Immobilized Cells (de Bont, J. A. M, Visser, J., Mattiasson, B., and Tramper, J., eds.) Elsevier, Wageningen, pp. 325–330.Google Scholar
  36. 36.
    Makiguchi, N., Arita, M., and Asai, Y. (1980) Optimum cultural conditions for strong light production by Photobacterium phosphoreum, J. Gen. Appl. Microbiol., 26, 75–83.CrossRefGoogle Scholar
  37. 37.
    Makiguchi, N., Arita, M., and Asai, Y. (1980) Optimal conditions for frozen storage of immobilized luminous bacteria, J. Ferment. Technol., 58, 333–337.Google Scholar
  38. 38.
    Lozinskiy, V. N. (1998) A cryotropic gelation of polyvinyl alcohol solutions, Uspekhi Khim., 67, 641–655.Google Scholar
  39. 39.
    Bechor, O., Smulski, D. R., Van Dyk, T. K., LaRossa, R. A., and Belkin, S. (2002) Recombinant microorganisms as environmental biosensors: pollutants detection by Escherichia coli bearing fabA::lux fusions, J. Biotechnol., 94, 125–132.PubMedCrossRefGoogle Scholar
  40. 40.
    Philp, J. C., Balmand, S., Hajto, E., Bailey, M. J., Wiles, S., Whiteley, A. S., Lilley, A. K., Hajto, J., and Dunbar, S. A. (2003) Whole cell immobilization biosensors for toxicity assessment of wastewater treatment plant treating phenolics-containing waste, Anal. Chim. Acta, 487, 61–74.CrossRefGoogle Scholar
  41. 41.
    Efremenko, E. N., Sen’ko, O. V., Kuts, V. V., Alenina, K. A., Kholstov, A. V., and Ismailov, A. D. (2010) A luminescent biocatalyst for detection of toxicants [in Russian], Patent No. 2394–10.Google Scholar
  42. 42.
    Efremenko, E. N., Aleskerova, L. E., Alenina, K. A., and Ismailov, A. D. (2014) Toxicological biosensors containing luminescent Photobacterium phosphoreum bacteria immobilized in polyvinyl alcohol-based cryogel, Prikl. Biokhim. Mikrobiol., 5, 490–496.Google Scholar
  43. 43.
    Alenina, K. A., Aleskerova, L. E., Kascheyeva, P. B., and Ismailov, A. D. (2012) The poly(vinyl alcohol)-immobilized photobacteria for toxicology monitoring, Engineering, 4, 118–119.CrossRefGoogle Scholar
  44. 44.
    Ismailov, A. D., Kutz, V. V., and Yefremenko, E. N. (2010) Factors affecting the stability of a light emission at PVA-immobilized cells of Photobacterium phosphoreum, J. Luminesc., 25, 166–167.Google Scholar
  45. 45.
    Aleskerova, L. E., Alenina, K. A., Efremenko, E. N., Mazhul’, M. M., Piskunkova, N. F., and Ismailov, A. D. (2014) ATP pool and bioluminescence activity in psychrophilic Photobacterium phosphoreum bacteria, Mikrobiologiya, 83, 315–321.Google Scholar
  46. 46.
    Kuts, V. V., Alenina, K. A., Sen’ko, O. V., Efremenko, E. N., and Ismailov, A. D. (2011) Bioluminescent analysis of toxicants (an ecological luminometry), Voda Khim. Ekol., 10, 47–53.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.Faculty of BiologyLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations