Biochemistry (Moscow)

, Volume 80, Issue 6, pp 688–700 | Cite as

ESR — A retinal protein with unusual properties from Exiguobacterium sibiricum

  • L. E. PetrovskayaEmail author
  • S. P. Balashov
  • E. P. Lukashev
  • E. S. Imasheva
  • I. Yu. Gushchin
  • A. K. Dioumaev
  • A. B. Rubin
  • D. A. Dolgikh
  • V. I. Gordeliy
  • J. K. Lanyi
  • M. P. Kirpichnikov


This review covers the properties of a retinal protein (ESR) from the psychrotrophic bacterium Exiguobacterium sibiricum that functions as a light-driven proton pump. The presence of a lysine residue at the position corresponding to intramolecular proton donor for the Schiff base represents a unique structural feature of ESR. We have shown that Lys96 successfully facilitates delivery of protons from the cytoplasmic surface to the Schiff base, thus acting as a proton donor in ESR. Since proton uptake during the photocycle precedes Schiff base reprotonation, we conclude that this residue is initially in the uncharged state and acquires a proton for a short time after Schiff base deprotonation and M intermediate formation. Involvement of Lys as a proton donor distinguishes ESR from the related retinal proteins — bacteriorhodopsin (BR), proteorhodopsin (PR), and xanthorhodopsin (XR), in which the donor function is performed by residues with a carboxyl side chain. Like other eubacterial proton pumps (PR and XR), ESR contains a histidine residue interacting with the proton acceptor Asp85. In contrast to PR, this interaction leads to shift of the acceptor’s pK a to more acidic pH, thus providing its ability to function over a wide pH range. The presence of a strong H-bond between Asp85 and His57, the structure of the proton-conducting pathways from cytoplasmic surface to the Schiff base and to extracellular surface, and other properties of ESR were demonstrated by solving its three-dimensional structure, which revealed several differences from known structures of BR and XR. The structure of ESR, its photocycle, and proton transfer reactions are discussed in comparison with homologous retinal proteins.

Key words

retinal protein proteorhodopsin Exiguobacterium sibiricum Schiff base proton acceptor proton donor photocycle 



bacteriorhodopsin from Halobacterium salinarum




retinal protein from Exiguobacterium sibiricum


G-protein-coupled receptors


xanthorhodopsin from Gloeobacter violaceus






xanthorhodopsin from Salinibacter ruber


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rodrigues, D. F., Ivanova, N., He, Z., Huebner, M., Zhou, J., and Tiedje, J. M. (2008) Architecture of thermal adaptation in an Exiguobacterium sibiricum strain isolated from 3 million year old permafrost: a genome and transcriptome approach, BMC Genomics, 9, 547.PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Petrovskaya, L. E., Lukashev, E. P., Chupin, V. V., Sychev, S. V., Lyukmanova, E. N., Kryukova, E. A., Ziganshin, R. H., Spirina, E. V., Rivkina, E. M., Khatypov, R. A., Erokhina, L. G., Gilichinsky, D. A., Shuvalov, V. A., and Kirpichnikov, M. P. (2010) Predicted bacteriorhodopsin from Exiguobacterium sibiricum is a functional proton pump, FEBS Lett., 584, 4193–4196.PubMedCrossRefGoogle Scholar
  3. 3.
    Oesterhelt, D., and Stoeckenius, W. (1973) Functions of a new photoreceptor membrane, Proc. Natl. Acad. Sci. USA, 70, 2853–2857.PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Ovchinnikov, Y. A., Abdulaev, N. G., Feigina, M. Y., Kiselev, A. V., and Lobanov, N. A. (1979) The structural basis of the functioning of bacteriorhodopsin: an overview, FEBS Lett., 100, 219–224.PubMedCrossRefGoogle Scholar
  5. 5.
    Khorana, H. G., Gerber, G. E., Herlihy, W. C., Gray, C. P., Anderegg, R. J., Nihei, K., and Biemann, K. (1979) Amino acid sequence of bacteriorhodopsin, Proc. Natl. Acad. Sci. USA, 76, 5046–5050.PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Drachev, L. A., Jasaitis, A. A., Kaulen, A. D., Kondrashin, A. A., Liberman, E. A., Nemecek, I. B., Ostroumov, S. A., Semenov, A. Y., and Skulachev, V. P. (1974) Direct measurement of electric current generation by cytochrome oxidase, H+-ATPase and bacteriorhodopsin, Nature, 249, 321–324.Google Scholar
  7. 7.
    Kaulen, A. D. (2000) Electrogenic processes and protein conformational changes accompanying the bacteriorhodopsin photocycle, Biochim. Biophys. Acta, 1460, 204–219.PubMedCrossRefGoogle Scholar
  8. 8.
    Henderson, R., and Unwin, P. N. (1975) Three-dimensional model of purple membrane obtained by electron microscopy, Nature, 257, 28–32.PubMedCrossRefGoogle Scholar
  9. 9.
    Henderson, R., Baldwin, J. M., Ceska, T. A., Zemlin, F., Beckmann, E., and Downing, K. H. (1990) Model for the structure of bacteriorhodopsin based on high-resolution electron cryomicroscopy, J. Mol. Biol., 213, 899–929.PubMedCrossRefGoogle Scholar
  10. 10.
    Ni, B., Chang, M., Duschl, A., Lanyi, J., and Needleman, R. (1990) An efficient system for the synthesis of bacterio-rhodopsin in Halobacterium halobium, Gene, 90, 169–172.PubMedCrossRefGoogle Scholar
  11. 11.
    Luecke, H., Schobert, B., Richter, H.-T., Cartailler, J.-P., and Lanyi, J. K. (1999) Structure of bacteriorhodopsin at 1.55 Å resolution, J. Mol. Biol., 291, 899–911.PubMedCrossRefGoogle Scholar
  12. 12.
    Tsuda, M., Glaccum, M., Nelson, B., and Ebrey, T. G. (1980) Light isomerizes the chromophore of bacterio-rhodopsin, Nature, 287, 351–353.PubMedCrossRefGoogle Scholar
  13. 13.
    Mathies, R. A., Lin, S. W., Ames, J. B., and Pollard, W. T. (1991) From femtoseconds to biology: mechanism of bacteriorhodopsin light-driven proton pump, Annu. Rev. Biophys. Biophys. Chem., 20, 491–518.PubMedCrossRefGoogle Scholar
  14. 14.
    Lozier, R. H., Bogomolni, R. A., and Stoeckenius, W. (1975) Bacteriorhodopsin: a light-driven proton pump in Halobacterium halobium, Biophys. J., 15, 955–963.PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Litvin, F. F., Balashov, S. P., and Sineshchekov, V. A. (1975) The investigation of the primary photochemical conversions of bacteriorhodopsin in purple membranes and cells of Halobacterium halobium by the low temperature spectrophotometry method, Bioorg. Khim., 1, 1767–1777.Google Scholar
  16. 16.
    Lozier, R. H., Niederberger, W., Bogomolni, R. A., Hwang, S., and Stoeckenius, W. (1976) Kinetics and stoichiometry of light-induced proton release and uptake from purple membrane fragments, Halobacterium halobium cell envelopes, and phospholipid vesicles containing oriented purple membrane, Biochim. Biophys. Acta, 440, 545–556.PubMedCrossRefGoogle Scholar
  17. 17.
    Subramaniam, S., Greenhalgh, D. A., and Khorana, H. G. (1992) Aspartic acid 85 in bacteriorhodopsin functions both as proton acceptor and negative counter-ion to the Schiff base, J. Biol. Chem., 267, 25730–25733.PubMedGoogle Scholar
  18. 18.
    Otto, H., Marti, T., Holtz, M., Mogi, T., Lindau, M., Khorana, H. G., and Heyn, M. P. (1989) Aspartic acid-96 is the internal proton donor in the reprotonation of the Schiff base of bacteriorhodopsin, Proc. Natl. Acad. Sci. USA, 86, 9228–9232.PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Subramaniam, S., Hirai, T., and Henderson, R. (2002) From structure to mechanism: electron crystallographic studies of bacteriorhodopsin, Phil. Trans. R. Soc. Lond. A, 360, 859–874.CrossRefGoogle Scholar
  20. 20.
    Luecke, H., and Lanyi, J. K. (2003) Structural clues to the mechanism of ion pumping in bacteriorhodopsin, Adv. Protein Chem., 63, 111–130.PubMedGoogle Scholar
  21. 21.
    Schobert, B., Brown, L. S., and Lanyi, J. K. (2003) Crystallographic structures of the M and N intermediates of bacteriorhodopsin: assembly of a hydrogen-bonded chain of water molecules between Asp96 and the retinal Schiff base, J. Mol. Biol., 330, 553–570.PubMedCrossRefGoogle Scholar
  22. 22.
    Wickstrand, C., Dods, R., Royant, A., and Neutze, R. (2014) Bacteriorhodopsin: would the real structural intermediates please stand up? Biochim. Biophys. Acta, 1850, 536–553.PubMedCrossRefGoogle Scholar
  23. 23.
    Beja, O., Aravind, L., Koonin, E. V., Suzuki, M. T., Hadd, A., Nguyen, L. P., Jovanovich, S. B., Gates, C. M., Feldman, R. A., Spudich, J. L., Spudich, E. N., and DeLong, E. F. (2000) Bacterial rhodopsin: evidence for a new type of phototrophy in the sea, Science, 289, 1902–1906.PubMedCrossRefGoogle Scholar
  24. 24.
    Brown, L. S., and Jung, K.-H. (2006) Bacteriorhodopsinlike proteins of eubacteria and fungi: the extent of conservation of the haloarchaeal proton-pumping mechanism, Photochem. Photobiol. Sci., 5, 538–546.PubMedCrossRefGoogle Scholar
  25. 25.
    Vishnivetskaya, T. A., Lucas, S., Copeland, A., Lapidus, A., Glavina del Rio, T., Dalin, E., Tice, H., Bruce, D. C., Goodwin, L. A., Pitluck, S., Saunders, E., Brettin, T., Detter, C., Han, C., Larimer, F., Land, M. L., Hauser, L. J., Kyrpides, N. C., Ovchinnikova, G., Kathariou, S., Ramaley, R. F., Rodrigues, D. F., Hendrix, C., Richardson, P., and Tiedje, J. M. (2011) Complete genome sequence of the thermophilic bacterium Exiguobacterium sp. AT1b, J. Bacteriol., 193, 2880–2881.PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Iverson, V., Morris, R. M., Frazar, C. D., Berthiaume, C. T., Morales, R. L., and Armbrust, E. V. (2012) Untangling genomes from metagenomes: revealing an uncultured class of marine Euryarchaeota, Science, 335, 587–590.PubMedCrossRefGoogle Scholar
  27. 27.
    Balashov, S. P., Petrovskaya, L. E., Lukashev, E. P., Imasheva, E. S., Dioumaev, A. K., Wang, J. M., Sychev, S. V., Dolgikh, D. A., Rubin, A. B., Kirpichnikov, M. P., and Lanyi, J. K. (2012) Aspartate-histidine interaction in the retinal Schiff base counterion of the light-driven proton pump of Exiguobacterium sibiricum, Biochemistry, 51, 5748–5762.PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Dioumaev, A. K., Petrovskaya, L. E., Wang, J. M., Balashov, S. P., Dolgikh, D. A., Kirpichnikov, M. P., and Lanyi, J. K. (2013) Photocycle of Exiguobacterium sibiricum rhodopsin characterized by low-temperature trapping in the IR and time-resolved studies in the visible, J. Phys. Chem. B, 117, 7235–7253.PubMedCrossRefGoogle Scholar
  29. 29.
    Balashov, S. P., Petrovskaya, L. E., Imasheva, E. S., Lukashev, E. P., Dioumaev, A. K., Wang, J. M., Sychev, S. V., Dolgikh, D. A., Rubin, A. B., Kirpichnikov, M. P., and Lanyi, J. K. (2013) Breaking the carboxyl rule: lysine-96 facilitates reprotonation of the Schiff base in the photocycle of a retinal protein from Exiguobacterium sibiricum, J. Biol. Chem., 288, 21254–21265.PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Balashov, S. P. (2000) Protonation reactions and their coupling in bacteriorhodopsin, Biochim. Biophys. Acta, 1460, 75–94.PubMedCrossRefGoogle Scholar
  31. 31.
    Gerwert, K., Freier, E., and Wolf, S. (2014) The role of protein-bound water molecules in microbial rhodopsins, Biochim. Biophys. Acta, 1837, 606–613.PubMedCrossRefGoogle Scholar
  32. 32.
    Khorana, H. G. (1993) Two light-transducing membrane proteins: bacteriorhodopsin and the mammalian rhodopsin, Proc. Natl. Acad. Sci. USA, 90, 1166–1171.PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Isom, D. G., Castaneda, C. A., Cannon, B. R., and Garcia-Moreno, B. E. (2011) Large shifts in pK a values of lysine residues buried inside a protein, Proc. Natl. Acad. Sci. USA, 108, 5260–5265.PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Balashov, S. P., Imasheva, E. S., Govindjee, R., and Ebrey, T. G. (1996) Titration of aspartate-85 in bacteriorhodopsin: what it says about chromophore isomerization and proton release, Biophys. J., 70, 473–481.PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Dioumaev, A. K., Brown, L. S., Shih, J., Spudich, E. N., Spudich, J. L., and Lanyi, J. K. (2002) Proton transfers in the photochemical reaction cycle of proteorhodopsin, Biochemistry, 41, 5348–5358.PubMedCrossRefGoogle Scholar
  36. 36.
    Balashov, S. P., Govindjee, R., Kono, M., Imasheva, E., Lukashev, E., Ebrey, T. G., Crouch, R. K., Menick, D. R., and Feng, Y. (1993) Effect of the arginine-82 to alanine mutation in bacteriorhodopsin on dark adaptation, proton release, and the photochemical cycle, Biochemistry, 32, 10331–10343.PubMedCrossRefGoogle Scholar
  37. 37.
    Brown, L. S., Bonet, L., Needleman, R., and Lanyi, J. K. (1993) Estimated acid dissociation constants of the Schiff base, Asp85, and Arg82 during the bacteriorhodopsin photocycle, Biophys. J., 65, 124–130.PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Partha, R., Krebs, R., Caterino, T. L., and Braiman, M. S. (2005) Weakened coupling of conserved arginine to the proteorhodopsin chromophore and its counter-ion implies structural differences from bacteriorhodopsin, Biochim. Biophys. Acta, 1708, 6–12.PubMedCrossRefGoogle Scholar
  39. 39.
    Bergo, V. B., Sineshchekov, O. A., Kralj, J. M., Partha, R., Spudich, E. N., Rothschild, K. J., and Spudich, J. L. (2009) His-75 in proteorhodopsin, a novel component in light-driven proton translocation by primary pumps, J. Biol. Chem., 284, 2836–2843.PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Luecke, H., Schobert, B., Stagno, J., Imasheva, E. S., Wang, J. M., Balashov, S. P., and Lanyi, J. K. (2008) Crystallographic structure of xanthorhodopsin, the light-driven proton pump with a dual chromophore, Proc. Natl. Acad. Sci. USA, 105, 16561–16565.PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Tsukamoto, T., Kikukawa, T., Kurata, T., Jung, K. H., Kamo, N., and Demura, M. (2013) Salt bridge in the conserved His-Asp cluster in Gloeobacter rhodopsin contributes to trimer formation, FEBS Lett., 587, 322–327.PubMedCrossRefGoogle Scholar
  42. 42.
    Hempelmann, F., Holper, S., Verhoefen, M. K., Woerner, A. C., Kohler, T., Fiedler, S. A., Pfleger, N., Wachtveitl, J., and Glaubitz, C. (2011) His75-Asp97 cluster in green proteorhodopsin, J. Am. Chem. Soc., 133, 4645–4654.PubMedCrossRefGoogle Scholar
  43. 43.
    Luecke, H., Schobert, B., Richter, H.-T., Cartailler, J.-P., and Lanyi, J. K. (1999) Structural changes in bacteriorhodopsin during ion transport at 2 Å resolution, Science, 286, 255–260.PubMedCrossRefGoogle Scholar
  44. 44.
    Gushchin, I., Chervakov, P., Kuzmichev, P., Popov, A. N., Round, E., Borshchevskiy, V., Ishchenko, A., Petrovskaya, L., Chupin, V., Dolgikh, D. A., Arseniev, A. A., Kirpichnikov, M., and Gordeliy, V. (2013) Structural insights into the proton pumping by unusual proteorhodopsin from nonmarine bacteria, Proc. Natl. Acad. Sci. USA, 110, 12631–12636.PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Palczewski, K., Kumasaka, T., Hori, T., Behnke, C. A., Motoshima, H., Fox, B. A., Le Trong, I., Teller, D. C., Okada, T., Stenkamp, R. E., Yamamoto, M., and Miyano, M. (2000) Crystal structure of rhodopsin: a G-protein-coupled receptor, Science, 289, 739–745.PubMedCrossRefGoogle Scholar
  46. 46.
    Pierce, K. L., Premont, R. T., and Lefkowitz, R. J. (2002) Seven-transmembrane receptors, Nat. Rev. Mol. Cell Biol., 3, 639–650.PubMedCrossRefGoogle Scholar
  47. 47.
    Kobilka, B. K. (2011) Structural insights into adrenergic receptor function and pharmacology, Trends Pharmacol. Sci., 32, 213–218.PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Katritch, V., Fenalti, G., Abola, E. E., Roth, B. L., Cherezov, V., and Stevens, R. C. (2014) Allosteric sodium in class A GPCR signaling, Trends Biochem. Sci., 39, 233–244.PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Luecke, H., Schobert, B., Cartailler, J.-P., Richter, H.-T., Rosengarth, A., Needleman, R., and Lanyi, J. K. (2000) Coupling photoisomerization of retinal to directional transport in bacteriorhodopsin, J. Mol. Biol., 300, 1237–1255.PubMedCrossRefGoogle Scholar
  50. 50.
    Shevchenko, V., Gushchin, I., Polovinkin, V., Round, E., Borshchevskiy, V., Utrobin, P., Popov, A., Balandin, T., Buldt, G., and Gordeliy, V. (2014) Crystal structure of Escherichia coli-expressed Haloarcula marismortui bacteriorhodopsin I in the trimeric form, PloS one, 9, e112873.PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Ran, T., Ozorowski, G., Gao, Y., Sineshchekov, O. A., Wang, W., Spudich, J. L., and Luecke, H. (2013) Cross-protomer interaction with the photoactive site in oligomeric proteorhodopsin complexes, Acta Crystallogr., D69, 1965–1980.Google Scholar
  52. 52.
    Mathies, R. A., Lin, S. W., Ames, J. B., and Pollard, W. T. (1991) From femtoseconds to biology: mechanism of bacteriorhodopsin light-driven proton pump, Annu. Rev. Biophys. Biophys. Chem., 20, 491–518.PubMedCrossRefGoogle Scholar
  53. 53.
    Lenz, M. O., Huber, R., Schmidt, B., Gilch, P., Kalmbach, R., Engelhard, M., and Wachtveitl, J. (2006) First steps of retinal photoisomerization in proteorhodopsin, Biophys. J., 91, 255–262.PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Lanyi, J. K. (2006) Proton transfers in the bacteriorhodopsin photocycle, Biochim. Biophys. Acta, 1757, 1012–1018.PubMedCrossRefGoogle Scholar
  55. 55.
    Lanyi, J. K., and Balashov, S. P. (2011) Xanthorhodopsin, in Halophiles and Hypersaline Environments (Ventosa, A., Oren, A., and Ma, Y., eds.) Springer-Verlag, Berlin-Heidelberg, pp. 319–340.CrossRefGoogle Scholar
  56. 56.
    Balashov, S. P., Lu, M., Imasheva, E. S., Govindjee, R., Ebrey, T. G., Othersen III, B., Crouch, R. K., and Menick, D. R. (1999) The proton release group in bacteriorhodopsin controls the rate of the final step of its photocycle at low pH, Biophys. J., 76, A147.Google Scholar
  57. 57.
    Zscherp, C., and Heberle, J. (1997) pH dependence of proton transfer reactions within bacteriorhodopsin: a time resolved ATR/FT-IR study, Biophys. J., 72, A206.Google Scholar
  58. 58.
    Brown, L. S., Varo, G., Needleman, R., and Lanyi, J. K. (1995) Functional significance of a protein conformation change at the cytoplasmic end of helix F during the bacteriorhodopsin photocycle, Biophys. J., 69, 2103–2111.PubMedCentralPubMedCrossRefGoogle Scholar
  59. 59.
    Balashov, S. P., Imasheva, E. S., Ebrey, T. G., Chen, N., Menick, D. R., and Crouch, R. K. (1997) Glutamate-194 to cysteine mutation inhibits fast light-induced proton release in bacteriorhodopsin, Biochemistry, 36, 8671–8676.PubMedCrossRefGoogle Scholar
  60. 60.
    Venter, J. C., Remington, K., Heidelberg, J. F., Halpern, A. L., Rusch, D., Eisen, J. A., Wu, D., Paulsen, I., Nelson, K. E., Nelson, W., Fouts, D. E., Levy, S., Knap, A. H., Lomas, M. W., Nealson, K., White, O., Peterson, J., Hoffman, J., Parsons, R., Baden-Tillson, H., Pfannkoch, C., Rogers, Y.-H., and Smith, H. O. (2004) Environmental genome shotgun sequencing of the Sargasso Sea, Science, 304, 66–74.PubMedCrossRefGoogle Scholar
  61. 61.
    Beja, O., Spudich, E. N., Spudich, J. L., Leclerc, M., and DeLong, E. F. (2001) Proteorhodopsin phototrophy in the ocean, Nature, 411, 786–789.PubMedCrossRefGoogle Scholar
  62. 62.
    Balashov, S. P., Imasheva, E. S., Boichenko, V. A., Anton, J., Wang, J. M., and Lanyi, J. K. (2005) Xanthorhodopsin: a proton pump with a light-harvesting carotenoid antenna, Science, 309, 2061–2064.PubMedCentralPubMedCrossRefGoogle Scholar
  63. 63.
    Sineshchekov, O. A., Jung, K.-H., and Spudich, J. L. (2002) Two rhodopsins mediate phototaxis to low- and high-intensity light in Chlamydomonas reinhardtii, Proc. Natl. Acad. Sci. USA, 99, 8689–8694.PubMedCentralPubMedCrossRefGoogle Scholar
  64. 64.
    Nagel, G., Ollig, D., Fuhrmann, M., Kateriya, S., Mustl, A. M., Bamberg, E., and Hegemann, P. (2002) Channelrhodopsin-1: a light-gated proton channel in green algae, Science, 296, 2395–2398.PubMedCrossRefGoogle Scholar
  65. 65.
    Inoue, K., Ono, H., Abe-Yoshizumi, R., Yoshizawa, S., Ito, H., Kogure, K., and Kandori, H. (2013) A light-driven sodium ion pump in marine bacteria, Nat. Commun., 4, 1678; doi: 1610.1038/ncomms2689.PubMedCrossRefGoogle Scholar
  66. 66.
    Beja, O., and Lanyi, J. K. (2014) Nature’ s toolkit for microbial rhodopsin ion pumps, Proc. Natl. Acad. Sci. USA, 111, 6538–6539.PubMedCentralPubMedCrossRefGoogle Scholar
  67. 67.
    Gordeliy, V. I., Labahn, J., Moukhametzianov, R., Efremov, R., Granzin, J., Schlesinger, R., Buldt, G., Savopol, T., Scheidig, A. J., Klare, J. P., and Engelhard, M. (2002) Molecular basis of transmembrane signaling by sensory rhodopsin II–transducer complex, Nature, 419, 484–487.PubMedCrossRefGoogle Scholar
  68. 68.
    Moukhametzianov, R., Klare, J. P., Efremov, R., Baeken, C., Goppner, A., Labahn, J., Engelhard, M., Buldt, G., and Gordeliy, V. I. (2006) Development of the signal in sensory rhodopsin and its transfer to the cognate transducer, Nature, 440, 115–119.PubMedCrossRefGoogle Scholar
  69. 69.
    Gushchin, I., Reshetnyak, A., Borshchevskiy, V., Ishchenko, A., Round, E., Grudinin, S., Engelhard, M., Buldt, G., and Gordeliy, V. (2011) Active state of sensory rhodopsin II: structural determinants for signal transfer and proton pumping, J. Mol. Biol., 412, 591–600.PubMedCrossRefGoogle Scholar
  70. 70.
    Hampp, N. (2000) Bacteriorhodopsin as a photochromic retinal protein for optical memories, Chem. Rev., 100, 1755–1776.PubMedCrossRefGoogle Scholar
  71. 71.
    Vsevolodov, N. (1998) Biomolecular Electronics. An Introduction via Photosensitive Proteins, Birkhauser, Boston-Basel-Berlin.Google Scholar
  72. 72.
    Korchemskaya, E., Burykin, N., Bugaychuk, S., Maksymova, O., Ebrey, T., and Balashov, S. (2007) Dynamic holography in bacteriorhodopsin/gelatin films: effects of light-dark adaptation at different humidity, Photochem. Photobiol., 83, 403–408.PubMedCrossRefGoogle Scholar
  73. 73.
    Deisseroth, K. (2011) Optogenetics, Nat. Methods, 8, 26–29.PubMedCrossRefGoogle Scholar
  74. 74.
    Boyden, E. S., Zhang, F., Bamberg, E., Nagel, G., and Deisseroth, K. (2005) Millisecond-timescale, genetically targeted optical control of neural activity, Nat. Neurosci., 8, 1263–1268.PubMedCrossRefGoogle Scholar
  75. 75.
    Deisseroth, K., Feng, G. P., Majewska, A. K., Miesenbock, G., Ting, A., and Schnitzer, M. J. (2006) Next-generation optical technologies for illuminating genetically targeted brain circuits, J. Neurosci., 26, 10380–10386.PubMedCentralPubMedCrossRefGoogle Scholar
  76. 76.
    Chow, B. Y., Han, X., Dobry, A. S., Qian, X. F., Chuong, A. S., Li, M. J., Henninger, M. A., Belfort, G. M., Lin, Y. X., Monahan, P. E., and Boyden, E. S. (2010) High-performance genetically targetable optical neural silencing by light-driven proton pumps, Nature, 463, 98–102.PubMedCentralPubMedCrossRefGoogle Scholar
  77. 77.
    Dubrovskii, V. T., Balashov, S. P., Sineshchekov, O. A., Chekulaeva, L. N., and Litvin, F. F. (1982) Photoinduced changes in the quantum yields of the photochemical cycle of conversions of bacteriorhodopsin and transmembrane transport of protons in Halobacterium halobium cells, Biokhimiya, 47, 1036–1046.Google Scholar
  78. 78.
    Kolodner, P., Lukashev, E. P., Ching, Y. C., and Rousseau, D. L. (1996) Electric-field-induced Schiff-base deprotonation in D85N mutant bacteriorhodopsin, Proc. Natl. Acad. Sci. USA, 93, 11618–11621.PubMedCentralPubMedCrossRefGoogle Scholar
  79. 79.
    Slouf, V., Balashov, S. P., Lanyi, J. K., Pullerits, T., and Polivka, T. (2011) Carotenoid response to retinal excitation and photoisomerization dynamics in xanthorhodopsin, Chem. Phys. Lett., 516, 96–101.PubMedCentralPubMedCrossRefGoogle Scholar
  80. 80.
    Kralj, J. M., Douglass, A. D., Hochbaum, D. R., Maclaurin, D., and Cohen, A. E. (2012) Optical recording of action potentials in mammalian neurons using a microbial rhodopsin, Nat. Methods, 90, 90–95.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • L. E. Petrovskaya
    • 1
    Email author
  • S. P. Balashov
    • 2
  • E. P. Lukashev
    • 3
  • E. S. Imasheva
    • 2
  • I. Yu. Gushchin
    • 4
    • 5
    • 6
    • 7
    • 8
  • A. K. Dioumaev
    • 2
  • A. B. Rubin
    • 3
  • D. A. Dolgikh
    • 1
    • 3
  • V. I. Gordeliy
    • 4
    • 5
    • 6
    • 7
    • 8
  • J. K. Lanyi
    • 2
  • M. P. Kirpichnikov
    • 1
    • 3
  1. 1.Shemyakin—Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussia
  2. 2.Department of Physiology and BiophysicsUniversity of CaliforniaIrvineUSA
  3. 3.Biological FacultyLomonosov Moscow State UniversityMoscowRussia
  4. 4.Institut de Biologie StructuraleUniversité Grenoble AlpesGrenobleFrance
  5. 5.Centre National de la Recherche ScientifiqueInstitut de Biologie StructuraleGrenobleFrance
  6. 6.Direction des Sciences du Vivant, Commissariat a l’Énergie AtomiqueInstitut de Biologie StructuraleGrenobleFrance
  7. 7.Laboratory for Advanced Studies of Membrane ProteinsMoscow Institute of Physics and TechnologyDolgoprudniy, Moscow RegionRussia
  8. 8.Institute of Complex Systems (ICS), ICS-6: Structural BiochemistryResearch Centre JülichJülichGermany

Personalised recommendations