Biochemistry (Moscow)

, Volume 80, Issue 6, pp 647–653 | Cite as

Different effects of identical symmetry-related mutations near the bacteriochlorophyll dimer in the photosynthetic reaction center of Rhodobacter sphaeroides

  • L. G. Vasilieva
  • T. Y. Fufina
  • A. G. Gabdulkhakov
  • V. A. Shuvalov
Article
  • 44 Downloads

Abstract

In the bacterial photosynthetic reaction center (RC), asymmetric protein environment of the bacteriochlorophyll (BChl) dimer largely determines the photophysical and photochemical properties of the primary electron donor. Previously, we noticed significant differences in properties of Rhodobacter sphaeroides RCs with identical mutations in symmetry-related positions — I(M206)H and I(L177)H. The substitution I(L177)H resulted in covalent binding of BChl PA with the L-subunit, as well as in 6-coordination of BChl BB, whereas in RC I(M206)H no such changes of pigment-protein interactions were found. In addition, the yield of RC I(M206)H after its isolation from membranes was significantly lower than the yield of RC I(L177)H. This study shows that replacement of amino acid residues in the M203–M206 positions near BChls PB and BA by symmetry-related residues from the L-subunit near BChls PA and BB leads to further decrease in RC amount in the membranes associated obviously with poor assembly of the complex. Introduction of a new hydrogen bond between BChl PB and its protein environment by means of the F(M197)H mutation stabilized the mutant RC but did not affect its low yield. We suggest that the mutation I(M206)H and substitution of amino acid residues in M203–M205 positions could disturb glycolipid binding on the RC surface near BChl BA that is important for stable assembly of the complex in the membrane.

Key words

bacterial photosynthesis Rhodobacter sphaeroides photosynthetic reaction center site-directed mutagenesis bacteriochlorophyll magnesium atom coordination pigment-protein interactions 

Abbreviations

BA and BB

monomer bacteriochlorophyll

BChl

bacteriochlorophyll

LDAO

lauryldimethylamine N-oxide

P

special pair of bacteriochlorophylls

PA and PB

bacteriochlorophylls of the special pair

RC

reaction center

WT

wild type

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allen, J. P., Feher, G., Yeates, T. O., Komiya, H., and Rees, D. S. (1987) Structure of reaction center from Rhodobacter sphaeroides R-26: the cofactors, PNAS, 84, 5730–5734.PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Deisenhofer, J., and Michel, H. (1989) Nobel lecture. The photosynthetic reaction center from the purple bacterium Rhodopseudomonas viridis, EMBO, 8, 2149–2170.Google Scholar
  3. 3.
    Ermler, U., Fritzsch, G., Buchanan, S. K., and Michel, H. (1994) Structure of the photosynthetic reaction center from Rhodobacter sphaeroides at 2.65 Å resolution: cofactors and protein-cofactor interactions, Structure, 2, 925–936.PubMedCrossRefGoogle Scholar
  4. 4.
    Camara-Artigas, A., Magee, C., Goetsch, A., and Allen, J. P. (2002) The structure of the heterodimer reaction center from Rhodobacter sphaeroides at 2.55 Å resolution, Photosynth. Res., 74, 87–93.PubMedCrossRefGoogle Scholar
  5. 5.
    Vasilieva, L. G., Fufina, T. Y., Gabdulkhakov, A. G., Leonova, M. M., Khatypov, R. A., and Shuvalov, V. A. (2012) The site-directed mutation I(L177)H in Rhodobacter sphaeroides reaction center affects coordination of PA and BB bacteriochlorophylls, Biochim. Biophys. Acta, 1817, 1407–1417.Google Scholar
  6. 6.
    Potter, J. A., Fyfe, P. K., Frolov, D., Wakeham, M. C., van Grondelle, R., Robert, B., and Jones, M. R. (2005) Strong effects of an individual water molecule on the rate of primary charge separation in the Rhodobacter sphaeroides reaction center, J. Biol. Chem., 280, 27155–27164.PubMedCrossRefGoogle Scholar
  7. 7.
    Yakovlev, A. G., Jones, M. R., Potter, J. A., Fyfe, P. K., Vasilieva, L. G., Shkuropatov, A. Y., and Shuvalov, V. A. (2005) Primary charge separation between P* and BA: electron-transfer pathways in native and mutant GM203L bacterial reaction centers, Chem. Phys., 319, 297–307.CrossRefGoogle Scholar
  8. 8.
    Jones, M. R. (2007) Lipids in photosynthetic reaction centers: structural roles and functional holes, Progr. Lipid Res., 46, 56–87.CrossRefGoogle Scholar
  9. 9.
    Leonova, M. M., Fufina, T. Y., Shuvalov, V. A., and Vasilieva, L. G. (2014) Study of pigment-protein interactions in the photosynthetic reaction center of the purple bacteria, in Modern Problems in Photosynthesis (Allakhverdiev, S. I., Rubin, A. B., and Shuvalov, V. A., eds.) [in Russian], Institute of Computer Studies, Moscow-Izhevsk, pp. 157–196.Google Scholar
  10. 10.
    Robles, S. J., Breton, J., and Youvan, D. C. (1990) Partial symmetrization of the photosynthetic reaction center, Science, 248, 1402–1405.PubMedCrossRefGoogle Scholar
  11. 11.
    Taguchi, A. K. W., Stocker, J. W., Alden, R. G., Causgrove, T. P., Peloquin, J. M., Boxer, S. J., and Woodbury, N. W. (1992) Biochemical characterization and electron-transfer reactions of syml, a Rhodobacter capsulatus reaction center symmetry mutant which affects the initial electron donor, Biochemistry, 31, 10345–10355.PubMedCrossRefGoogle Scholar
  12. 12.
    Hughes, A. V., Rees, P., Heathcote, P., and Jones, M. R. (2006) Kinetic analysis of the thermal stability of the photosynthetic reaction center from Rhodobacter sphaeroides, Biophys. J., 90, 4155–4166.PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Jones, M. R. (2009) in Advances in Photosynthesis and Respiration, Vol. 28 (Hunter, C. N., Daldal, F., Thurnauer, M. C., and Beatty, J. T., eds.) Springer, pp. 295–321.Google Scholar
  14. 14.
    Holden-Dye, K., Crouch, L. I., Williams, C. M., Bone, R. A., Cheng, J., Bohles, F., Heathcote, P., and Jones, M. R. (2011) Opposing structural changes in two symmetrical polypeptides bring about opposing changes to the thermal stability of a complex integral membrane protein, Arch. Biochem. Biophys., 505, 160–170.PubMedCrossRefGoogle Scholar
  15. 15.
    Bolgarina, T. I., Khatypov, R. A., Vasilieva, L. G., Shkuropatov, A. Y., and Shuvalov, V. A. (2004) Substitution of the Ile M206 by His in reaction center of Rhodobacter sphaeroides affects structure of the special pair bacteriochlorophyll, Doklady Biol. Sci., 394, 265–268.Google Scholar
  16. 16.
    Khatypov, R. A., Vasilieva, L. G., Fufina, T. U., Bolgarina, T. I., and Shuvalov, V. A. (2005) Biochemistry (Moscow), 70, 1256–1261.CrossRefGoogle Scholar
  17. 17.
    Fufina, T. Y., Vasilieva, L. G., Khatypov, R. A., Shkuropatov, A. Y., and Shuvalov, V. A. (2007) Substitution of isoleucine L177 by histidine in Rhodobacter sphaeroides reaction center results in the covalent binding of PA bacteriochlorophyll to the L subunit, FEBS Lett., 581, 5769–5773.PubMedCrossRefGoogle Scholar
  18. 18.
    Fufina, T. Y., Vasilieva, L. G., Khatypov, R. A., and Shuvalov, V. A. (2011) Properties of the Rhodobacter sphaeroides photosynthetic reaction center with double amino acid substitution I(L177)H + H(M182)L, Biochemistry (Moscow), 76, 450–454.CrossRefGoogle Scholar
  19. 19.
    Van der Rest, M., and Gingras, G. (1974) The pigment complement of the photosynthetic reaction center isolated from Rhodospirillum rubrum, J. Biol. Chem., 249, 6446–6453.PubMedGoogle Scholar
  20. 20.
    Nolding, B. (2004) Methods in Modern Biophysics, Springer-Verlag, Berlin-Heidelberg.CrossRefGoogle Scholar
  21. 21.
    Taguchi, A. K., Eastman, J. E., Gallo, D. M., Sheagley, E., Xiao, W., and Woodbury, N. W. (1996) Asymmetry requirements in the photosynthetic reaction center of Rhodobacter capsulatus, Biochemistry, 35, 3175–3186.PubMedCrossRefGoogle Scholar
  22. 22.
    El-Kabbani, O., Chang, C. H., Tiede, D., Norris, J., and Schiffer, M. (1991) Comparison of reaction centers from Rhodobacter sphaeroides and Rhodopseudomonas viridis: overall architecture and protein-pigment interactions, Biochemistry, 30, 5361–5369.PubMedCrossRefGoogle Scholar
  23. 23.
    Wakeham, M. C., Jones, M. R., Sessions, R. B., and Fyfe, P. K. (2001) Is there a conserved interaction between cardiolipin and the type II bacterial reaction center? Biophys. J., 80, 1395–1405.PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Wakeham, M. C., Frolov, D., Fyfe, P. K., van Grondelle, R., and Jones, M. R. (2003) Acquisition of photosynthetic capacity by a reaction center that lacks the Q(A) ubiquinone; possible insights into the evolution of reaction centers, Biochim. Biophys. Acta, 1607, 53–63.PubMedCrossRefGoogle Scholar
  25. 25.
    Sandberg, L., and Edholm, O. (2001) Calculated solvation free energies of amino acids in a dipolar approximation, J. Phys. Chem., 105, 273–281.CrossRefGoogle Scholar
  26. 26.
    Fufina, T. Y., Vasilieva, L. G., Khatypov, R. A., and Shuvalov, V. A. (2013) Spectral properties of the Rhodobacter sphaeroides mutant photoreaction center with double amino acid substitution I(L177)H + H(L173)L, in Materials of the 15th Int. Conf. “Photosynthesis: Research for Food, Fuel, and Future, Adv. Top. Sci. Technol. China, pp. 46–49.CrossRefGoogle Scholar
  27. 27.
    Vasilieva, L. G., Fufina, T. Y., Gabdulkhakov, A. G., Khatypov, R. A., and Shuvalov, V. A. (2014) Relocation BChl axial ligands in Rhodobacter sphaeroides mutant reaction centers, in Abstr. Int. Meet. “Photosynthesis Research for Sustainability”, Pushchino, Russia, p. 52.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • L. G. Vasilieva
    • 1
  • T. Y. Fufina
    • 1
  • A. G. Gabdulkhakov
    • 2
  • V. A. Shuvalov
    • 1
  1. 1.Institute of Basic Problems of BiologyPushchino, Moscow RegionRussia
  2. 2.Institute of Protein ResearchPushchino, Moscow RegionRussia

Personalised recommendations