Biochemistry (Moscow)

, Volume 80, Issue 5, pp 629–635 | Cite as

Pure mitochondrial DNA does not activate human neutrophils in vitro

  • A. S. Prikhodko
  • A. K. Shabanov
  • L. A. Zinovkina
  • E. N. Popova
  • M. A. Aznauryan
  • N. O. Lanina
  • M. V. Vitushkina
  • R. A. Zinovkin


Excessive activation of the innate immune system often leads to fatal consequences and can be considered as one of the phenoptotic events. After traumatic injury, various components of mitochondria are released into the circulation and stimulate myeloid cells of the innate immunity. Presumably, mitochondrial DNA (mtDNA) might activate immune cells (Zhang, Q., et al. (2010) Nature, 464, 104–107). In the present study, we investigated the role of mtDNA as a direct activator of human neutrophils, as well as a prognostic marker in patients with severe trauma. Quantitative determination of mtDNA in the plasma of these patients revealed its significant increase (p < 0.02) in the group of survivors compared to nonsurvivors. Highly purified mtDNA was not able to induce activation of human neutrophils, thus possibly indicating the existence of additional factor(s) ensuring the recognition of mtDNA as a damage-associated molecular pattern.

Key words

trauma extracellular DNA mitochondrial DNA neutrophil activation damage-associated molecular patterns (DAMPs) 



damage-associated molecular patterns


extracellular DNA




injury severity score


matrix metalloproteinase 9 (gelatinase)


mitochondrial DAMP


mitochondrial DNA


nuclear DNA


phosphorylated form of p38 MAPK


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zhang, Q., Raoof, M., Chen, Y., Sumi, Y., Sursal, T., Junger, W., Brohi, K., Itagaki, K., and Hauser, C. J. (2010) Circulating mitochondrial DAMPs cause inflammatory responses to injury, Nature, 464, 104–107.CrossRefPubMedCentralPubMedGoogle Scholar
  2. 2.
    Krysko, D. V., Agostinis, P., Krysko, O., Garg, A. D., Bachert, C., Lambrecht, B. N., and Vandenabeele, P. (2011) Emerging role of damage-associated molecular patterns derived from mitochondria in inflammation, Trends Immunol., 32, 157–164.CrossRefPubMedGoogle Scholar
  3. 3.
    Tsang, J. C., and Lo, Y. M. (2007) Circulating nucleic acids in plasma/serum, Pathology, 39, 197–207.CrossRefPubMedGoogle Scholar
  4. 4.
    Gu, X., Yao, Y., Wu, G., Lv, T., Luo, L., and Song, Y. (2013) The plasma mitochondrial DNA is an independent predictor for post-traumatic systemic inflammatory response syndrome, PLoS One, 8, e72834.CrossRefPubMedCentralPubMedGoogle Scholar
  5. 5.
    Yamanouchi, S., Kudo, D., Yamada, M., Miyagawa, N., Furukawa, H., and Kushimoto, S. (2013) Plasma mitochondrial DNA levels in patients with trauma and severe sepsis: time course and the association with clinical status, J. Crit. Care, 28, 1027–1031.CrossRefPubMedGoogle Scholar
  6. 6.
    Lo, Y. M., Rainer, T. H., Chan, L. Y., Hjelm, N. M., and Cocks, R. A. (2000) Plasma DNA as a prognostic marker in trauma patients, Clin. Chem., 46, 319–323.PubMedGoogle Scholar
  7. 7.
    Lam, N. Y., Rainer, T. H., Chiu, R. W., Joynt, G. M., and Lo, Y. M. (2004) Plasma mitochondrial DNA concentrations after trauma, Clin. Chem., 50, 213–216.CrossRefPubMedGoogle Scholar
  8. 8.
    Khubutia, M. Sh., Shabanov, A. K., Skulachev, M. V., Bulava, G. V., Savchenko, I. M., Grebenchikov, O. A., Sergeev, A. A., Zorov, D. B., and Zinovkin, R. A. (2013) Mitochondrial and nuclear DNA in patients with severe polytrauma, Gen. Reanimatol., 9, 30–35.Google Scholar
  9. 9.
    Popova, E. N., Pletjushkina, O. Y., Dugina, V. B., Domnina, L. V., Ivanova, O. Y., Izyumov, D. S., Skulachev, V. P., and Chernyak, B. V. (2010) Scavenging of reactive oxygen species in mitochondria induces myofibroblast differentiation, Antioxid. Redox Signal., 13, 1297–1307.CrossRefPubMedGoogle Scholar
  10. 10.
    Zhang, Q., Itagaki, K., and Hauser, C. J. (2010) Mitochondrial DNA is released by shock and activates neutrophils via p38 map kinase, Shock, 34, 55–59.CrossRefPubMedGoogle Scholar
  11. 11.
    Alvarez, M. E., Bass, J. I. F., Geffner, J. R., Calotti, P. X. F., Costas, M., Coso, O. A., Gamberale, R., Vermeulen, M. E., Salamone, G., and Martinez, D. (2006) Neutrophil signaling pathways activated by bacterial DNA stimulation, J. Immunol., 177, 4037–4046.CrossRefPubMedGoogle Scholar
  12. 12.
    Zu, Y.-L., Qi, J., Gilchrist, A., Fernandez, G. A., Vazquez-Abad, D., Kreutzer, D. L., Huang, C.-K., and Ramadan, I. (1998) p38 mitogen-activated protein kinase activation is required for human neutrophil function triggered by TNF-α or FMLP stimulation, J. Immunol., 160, 1982–1989.PubMedGoogle Scholar
  13. 13.
    Laktionov, P. P., Tamkovich, S. N., Rykova, E. Y., Bryzgunova, O. E., Starikov, A. V., Kuznetsova, N. P., Sumarokov, S. V., Kolomiets, S. A., Sevostianova, N. V., and Vlassov, V. V. (2004) Extracellular circulating nucleic acids in human plasma in health and disease, Nucleosides Nucleotides Nucleic Acids, 23, 879–883.CrossRefPubMedGoogle Scholar
  14. 14.
    Shaked, G., Douvdevani, A., Yair, S., Zlotnik, A., and Czeiger, D. (2014) The role of cell-free DNA measured by a fluorescent test in the management of isolated traumatic head injuries, Scand. J. Trauma Resusc. Emerg. Med., 22, 21.CrossRefPubMedCentralPubMedGoogle Scholar
  15. 15.
    Myers, M. B., Mittelstaedt, R. A., and Heflich, R. H. (2009) Using phiX174 DNA as an exogenous reference for measuring mitochondrial DNA copy number, Biotechniques, 47, 867–869.PubMedGoogle Scholar
  16. 16.
    Leifer, C. A., Kennedy, M. N., Mazzoni, A., Lee, C., Kruhlak, M. J., and Segal, D. M. (2004) TLR9 is localized in the endoplasmic reticulum prior to stimulation, J. Immunol., 173, 1179–1183.CrossRefPubMedCentralPubMedGoogle Scholar
  17. 17.
    Lindau, D., Mussard, J., Wagner, B. J., Ribon, M., Ronnefarth, V. M., Quettier, M., Jelcic, I., Boissier, M. C., Rammensee, H. G., and Decker, P. (2013) Primary blood neutrophils express a functional cell surface Toll-like receptor 9, Eur. J. Immunol., 43, 2101–2113.CrossRefPubMedGoogle Scholar
  18. 18.
    Rouhiainen, A., Tumova, S., Valmu, L., Kalkkinen, N., and Rauvala, H. (2007) Pivotal advance: analysis of proinflammatory activity of highly purified eukaryotic recombinant HMGB1 (amphoterin), J. Leukoc. Biol., 81, 49–58.CrossRefPubMedGoogle Scholar
  19. 19.
    Collins, L. V., Hajizadeh, S., Holme, E., Jonsson, M., and Tarkowski, A. (2004) Endogenously oxidized mitochondrial DNA induces in vivo and in vitro inflammatory responses, J. Leukoc. Biol., 75, 995–1000.CrossRefPubMedGoogle Scholar
  20. 20.
    Shimada, K., Crother, T. R., Karlin, J., Dagvadorj, J., Chiba, N., Chen, S., Ramanujan, V. K., Wolf, A. J., Vergnes, L., Ojcius, D. M., Rentsendorj, A., Vargas, M., Guerrero, C., Wang, Y., Fitzgerald, K. A., Underhill, D. M., Town, T., and Arditi, M. (2012) Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis, Immunity, 36, 401–414.CrossRefPubMedCentralPubMedGoogle Scholar
  21. 21.
    Spelbrink, J. N., Li, F. Y., Tiranti, V., Nikali, K., Yuan, Q. P., Tariq, M., Wanrooij, S., Garrido, N., Comi, G., Morandi, L., Santoro, L., Toscano, A., Fabrizi, G. M., Somer, H., Croxen, R., Beeson, D., Poulton, J., Suomalainen, A., Jacobs, H. T., Zeviani, M., and Larsson, C. (2001) Human mitochondrial DNA deletions associated with mutations in the gene encoding Twinkle, a phage T7 gene 4-like protein localized in mitochondria, Nature Genet., 28, 223–231.CrossRefPubMedGoogle Scholar
  22. 22.
    Parisi, M. A., and Clayton, D. A. (1991) Similarity of human mitochondrial transcription factor 1 to high mobility group proteins, Science, 252, 965–969.CrossRefPubMedGoogle Scholar
  23. 23.
    Crouser, E. D., Shao, G., Julian, M. W., Macre, J. E., Shadel, G. S., Tridandapani, S., Huang, Q., and Wewers, M. D. (2009) Monocyte activation by necrotic cells is promoted by mitochondrial proteins and formyl peptide receptors, Crit. Care Med., 37, 2000–2009.CrossRefPubMedCentralPubMedGoogle Scholar
  24. 24.
    Julian, M. W., Shao, G., Bao, S., Knoell, D. L., Papenfuss, T. L., VanGundy, Z. C., and Crouser, E. D. (2012) Mitochondrial transcription factor A serves as a danger signal by augmenting plasmacytoid dendritic cell responses to DNA, J. Immunol., 189, 433–443.CrossRefPubMedCentralPubMedGoogle Scholar
  25. 25.
    Hartmann, G., and Krieg, A. M. (1999) CpG DNA and LPS induce distinct patterns of activation in human monocytes, Gene Ther., 6, 893–903.CrossRefPubMedGoogle Scholar
  26. 26.
    Pollack, Y., Kasir, J., Shemer, R., Metzger, S., and Szyf, M. (1984) Methylation pattern of mouse mitochondrial DNA, Nucleic Acids Res., 12, 4811–4824.CrossRefPubMedCentralPubMedGoogle Scholar
  27. 27.
    Skulachev, V. P. (1999) Phenoptosis: programmed death of an organism, Biochemistry (Moscow), 64, 1418–1426.Google Scholar
  28. 28.
    Hill, S., and Van Remmen, H. (2014) Mitochondrial stress signaling in longevity: a new role for mitochondrial function in aging, Redox Biol., 2, 936–944.CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • A. S. Prikhodko
    • 1
  • A. K. Shabanov
    • 2
  • L. A. Zinovkina
    • 1
  • E. N. Popova
    • 3
  • M. A. Aznauryan
    • 1
  • N. O. Lanina
    • 1
  • M. V. Vitushkina
    • 4
  • R. A. Zinovkin
    • 3
    • 4
  1. 1.Faculty of Bioengineering and BioinformaticsLomonosov Moscow State UniversityMoscowRussia
  2. 2.Sklifosovsky Research Institute of Emergency CareMoscowRussia
  3. 3.Belozersky Institute of Physico-Chemical BiologyLomonosov Moscow State UniversityMoscowRussia
  4. 4.Faculty of BiologyLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations