Biochemistry (Moscow)

, Volume 80, Issue 5, pp 610–619 | Cite as

Low concentrations of uncouplers of oxidative phosphorylation prevent inflammatory activation of endothelial cells by tumor necrosis factor

  • V. P. Romaschenko
  • R. A. Zinovkin
  • I. I. Galkin
  • V. V. Zakharova
  • A. A. Panteleeva
  • A. V. Tokarchuk
  • K. G. Lyamzaev
  • O. Yu. Pletjushkina
  • B. V. Chernyak
  • E. N. Popova
Article

Abstract

In endothelial cells, mitochondria play an important regulatory role in physiology as well as in pathophysiology related to excessive inflammation. We have studied the effect of low doses of mitochondrial uncouplers on inflammatory activation of endothelial cells using the classic uncouplers 2,4-dinitrophenol and 4,5,6,7-tetrachloro-2-trifluoromethylbenzimidazole, as well as the mitochondria-targeted cationic uncoupler dodecyltriphenylphosphonium (C12TPP). All of these uncouplers suppressed the expression of E-selectin, adhesion molecules ICAM1 and VCAM1, as well as the adhesion of neutrophils to endothelium induced by tumor necrosis factor (TNF). The antiinflammatory action of the uncouplers was at least partially mediated by the inhibition of NFκB activation due to a decrease in phosphorylation of the inhibitory subunit IκBα. The dynamic concentration range for the inhibition of ICAM1 expression by C12TPP was three orders of magnitude higher compared to the classic uncouplers. Probably, the decrease in membrane potential inhibited the accumulation of penetrating cations into mitochondria, thus lowering the uncoupling activity and preventing further loss of mitochondrial potential. Membrane potential recovery after the removal of the uncouplers did not abolish its antiinflammatory action. Thus, mild uncoupling could induce TNF resistance in endothelial cells. We found no significant stimulation of mitochondrial biogenesis or autophagy by the uncouplers. However, we observed a decrease in the relative amount of fragmented mitochondria. The latter may significantly change the signaling properties of mitochondria. Earlier we showed that both classic and mitochondria-targeted antioxidants inhibited the TNF-induced NFκB-dependent activation of endothelium. The present data suggest that the antiinflammatory effect of mild uncoupling is related to its antioxidant action.

Key words

inflammation endothelium adhesion molecules mitochondria uncoupling of oxidative phosphorylation penetrating cations of SkQ family 

Abbreviations

C12TPP

dodecyltriphenylphosphonium

DNP

2,4-dinitrophenol

FCS

fetal calf serum

mtDNA

mitochondrial DNA

NAC

N-acetylcysteine

nDNA

nuclear DNA

ROS

reactive oxygen species

SkQ1

plastoquinolyl-10(6′-decyltriphenyl)phosphonium

TMRM

tetramethylrhodamine methyl ester

TNF

tumor necrosis factor

TTFB

4,5,6,7-tetrachloro-2-trifluoromethylbenzimidazole

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bruunsgaard, H., Skinhoj, P., Pedersen, A. N., Schroll, M., and Pedersen, B. K. (2000) Ageing, tumor necrosis factor-α (TNF-α) and atherosclerosis, Clin. Exp. Immunol., 121, 255–260.CrossRefPubMedCentralPubMedGoogle Scholar
  2. 2.
    Chung, H. Y., Sung, B., Jung, K. J., Zou, Y., and Yu, B. P. (2006) The molecular inflammatory process in aging, Antioxid. Redox Signal., 8, 572–581.CrossRefPubMedGoogle Scholar
  3. 3.
    Csiszar, A., Ungvari, Z., Koller, A., Edwards, J. G., and Kaley, G. (2003) Aging-induced proinflammatory shift in cytokine expression profile in coronary arteries, FASEB J., 17, 1183–1185.PubMedGoogle Scholar
  4. 4.
    Dandona, P., Aljada, A., and Bandyopadhyay, A. (2004) Inflammation: the link between insulin resistance, obesity and diabetes, Trends Immunol., 25, 4–7.CrossRefPubMedGoogle Scholar
  5. 5.
    Springer, T. A. (1994) Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm, Cell, 76, 301–314.CrossRefPubMedGoogle Scholar
  6. 6.
    Roebuck, K. A., and Finnegan, A. (1999) Regulation of intercellular adhesion molecule-1 (CD54) gene expression, J. Leukoc. Biol., 66, 876–888.PubMedGoogle Scholar
  7. 7.
    Park, J., Choi, H., Min, J. S., Park, S. J., Kim, J. H., Park, H. J., Kim, B., Chae, J. I., Yim, M., and Lee, D. S. (2013) Mitochondrial dynamics modulate the expression of proinflammatory mediators in microglial cells, J. Neurochem., 127, 221–232.CrossRefPubMedGoogle Scholar
  8. 8.
    West, A. P., Shadel, G. S., and Ghosh, S. (2011) Mitochondria in innate immune responses, Nature Rev. Immunol., 11, 389–402.CrossRefGoogle Scholar
  9. 9.
    Davidson, S. M., and Duchen, M. R. (2007) Endothelial mitochondria: contributing to vascular function and disease, Circ. Res., 100, 1128–1141.CrossRefPubMedGoogle Scholar
  10. 10.
    Culic, O., Gruwel, M. L., and Schrader, J. (1997) Energy turnover of vascular endothelial cells, Am. J. Physiol., 273, 205–213.Google Scholar
  11. 11.
    Addabbo, F., Ratliff, B., Park, H. C., Kuo, M. C., Ungvari, Z., Csiszar, A., Krasnikov, B., Sodhi, K., Zhang, F., Nasjletti, A., and Goligorsky, M. S. (2009) The Krebs cycle and mitochondrial mass are early victims of endothelial dysfunction: proteomic approach, Am. J. Pathol., 174, 34–43.CrossRefPubMedCentralPubMedGoogle Scholar
  12. 12.
    Madamanchi, N. R., and Runge, M. S. (2007) Mitochondrial dysfunction in atherosclerosis, Circ. Res., 100, 460–473.CrossRefPubMedGoogle Scholar
  13. 13.
    Schulz, E., Dopheide, J., Schuhmacher, S., Thomas, S. R., Chen, K., Daiber, A., Wenzel, P., Munzel, T., and Keaney, J. F., Jr. (2008) Suppression of the JNK pathway by induction of a metabolic stress response prevents vascular injury and dysfunction, Circulation, 118, 1347–1357.CrossRefPubMedCentralPubMedGoogle Scholar
  14. 14.
    Wrzosek, A., Lukasiak, A., Gwozdz, P., Malinska, D., Kozlovski, V. I., Szewczyk, A., Chlopicki, S., and Dolowy, K. (2009) Large-conductance K+ channel opener CGS7184 as a regulator of endothelial cell function, Eur. J. Pharmacol., 602, 105–111.CrossRefPubMedGoogle Scholar
  15. 15.
    Poburko, D., Lee, C. H., and van Breemen, C. (2004) Vascular smooth muscle mitochondria at the cross roads of Ca2+ regulation, Cell Calcium, 35, 509–521.CrossRefPubMedGoogle Scholar
  16. 16.
    Joo, H. K., Lee, Y. R., Lim, S. Y., Lee, E. J., Choi, S., Cho, E. J., Park, M. S., Ryoo, S., Park, J. B., and Jeon, B. H. (2012) Peripheral benzodiazepine receptor regulates vascular endothelial activations via suppression of the voltagedependent anion channel-1, FEBS Lett., 586, 1349–1355.CrossRefPubMedGoogle Scholar
  17. 17.
    Feletou, M., and Vanhoutte, P. M. (2006) Endothelial dysfunction: a multifaceted disorder (The Wiggers Award Lecture), Am. J. Physiol. Heart Circ. Physiol., 291, 985–1002.CrossRefGoogle Scholar
  18. 18.
    Galkin, I. I., Pletjushkina, O. Yu., Zinovkin, R. A., Zakharova, V. V., Biryukov, I. S., Chernyak, B. V., and Popova, E. N. (2014) Mitochondria-targeted antioxidants prevent the tumor necrosis factor induced apoptosis of endothelial cells, Biochemistry (Moscow), 79, 124–130.CrossRefGoogle Scholar
  19. 19.
    Rahman, A., Kefer, J., Bando, M., Niles, W. D., and Malik, A. B. (1998) E-selectin expression in human endothelial cells by TNF-α-induced oxidant generation and NF-κB activation, Am. J. Physiol., 275, L533–544.PubMedGoogle Scholar
  20. 20.
    Deshpande, S. S., Angkeow, P., Huang, J., Ozaki, M., and Irani, K. (2000) Rac1 inhibits TNF-α-induced endothelial cell apoptosis: dual regulation by reactive oxygen species, FASEB J., 14, 1705–1714.CrossRefPubMedGoogle Scholar
  21. 21.
    Zinovkin, R. A., Romaschenko, V. P., Galkin, I. I., Zakharova, V. V., Pletjushkina, O. Y., Chernyak, B. V., and Popova, E. N. (2014) Role of mitochondrial reactive oxygen species in age-related inflammatory activation of endothelium, Aging (Albany N. Y.), 6, 671–674.Google Scholar
  22. 22.
    Brigelius-Flohe, R., and Flohe, L. (2011) Basic principles and emerging concepts in the redox control of transcription factors, Antioxid. Redox Signal., 15, 2335–2381.CrossRefPubMedCentralPubMedGoogle Scholar
  23. 23.
    Korshunov, S. S., Skulachev, V. P., and Starkov, A. A. (1997) High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria, FEBS Lett., 416, 15–18.CrossRefPubMedGoogle Scholar
  24. 24.
    Severin, F. F., Severina, I. I., Antonenko, Y. N., Rokitskaya, T. I., Cherepanov, D. A., Mokhova, E. N., Vyssokikh, M. Y., Pustovidko, A. V., Markova, O. V., Yaguzhinsky, L. S., Korshunova, G. A., Sumbatyan, N. V., Skulachev, M. V., and Skulachev, V. P. (2010) Penetrating cation/fatty acid anion pair as a mitochondria-targeted protonophore, Proc. Natl. Acad. Sci. USA, 107, 663–668.CrossRefPubMedCentralPubMedGoogle Scholar
  25. 25.
    Skulachev, V. P., Antonenko, Y. N., Cherepanov, D. A., Chernyak, B. V., Izyumov, D. S., Khailova, L. S., Klishin, S. S., Korshunova, G. A., Lyamzaev, K. G., Pletjushkina, O. Y., Roginsky, V. A., Rokitskaya, T. I., Severin, F. F., Severina, I. I., Simonyan, R. A., Skulachev, M. V., Sumbatyan, N. V., Sukhanova, E. I., Tashlitsky, V. N., Trendeleva, T. A., Vyssokikh, M. Y., and Zvyagilskaya, R. A. (2010) Prevention of cardiolipin oxidation and fatty acid cycling as two antioxidant mechanisms of cationic derivatives of plastoquinone (SkQs), Biochim. Biophys. Acta, 1797, 878–889.CrossRefPubMedGoogle Scholar
  26. 26.
    Duval, C., Negre-Salvayre, A., Dogilo, A., Salvayre, R., Penicaud, L., and Casteilla, L. (2002) Increased reactive oxygen species production with antisense oligonucleotides directed against uncoupling protein 2 in murine endothelial cells, Biochem. Cell Biol., 80, 757–764.CrossRefPubMedGoogle Scholar
  27. 27.
    Fink, B. D., Reszka, K. J., Herlein, J. A., Mathahs, M. M., and Sivitz, W. I. (2005) Respiratory uncoupling by UCP1 and UCP2 and superoxide generation in endothelial cell mitochondria, Am. J. Physiol. Endocrinol. Metab., 288, 71–79.CrossRefGoogle Scholar
  28. 28.
    Lee, K. U., Lee, I. K., Han, J., Song, D. K., Kim, Y. M., Song, H. S., Kim, H. S., Lee, W. J., Koh, E. H., Song, K. H., Han, S. M., Kim, M. S., Park, I. S., and Park, J. Y. (2005) Effects of recombinant adenovirus-mediated uncoupling protein 2 overexpression on endothelial function and apoptosis, Circ. Res., 96, 1200–1207.CrossRefPubMedGoogle Scholar
  29. 29.
    Park, J. Y., Park, K. G., Kim, H. J., Kang, H. G., Ahn, J. D., Kim, H. S., Kim, Y. M., Son, S. M., Kim, I. J., Kim, Y. K., Kim, C. D., Lee, K. U., and Lee, I. K. (2005) The effects of the overexpression of recombinant uncoupling protein 2 on proliferation, migration and plasminogen activator inhibitor 1 expression in human vascular smooth muscle cells, Diabetologia, 48, 1022–1028.CrossRefPubMedGoogle Scholar
  30. 30.
    Ungvari, Z., Orosz, Z., Labinskyy, N., Rivera, A., Xiangmin, Z., Smith, K., and Csiszar, A. (2007) Increased mitochondrial H2O2 production promotes endothelial NF-κB activation in aged rat arteries, Am. J. Physiol. Heart Circ. Physiol., 293, 37–47.CrossRefGoogle Scholar
  31. 31.
    Barbour, J. A., and Turner, N. (2014) Mitochondrial stress signaling promotes cellular adaptations, Int. J. Cell Biol., 2014, 156020.CrossRefPubMedCentralPubMedGoogle Scholar
  32. 32.
    Tilstra, J. S., Clauson, C. L., Niedernhofer, L. J., and Robbins, P. D. (2011) NF-κB in aging and disease, Aging Dis., 2, 449–465.PubMedCentralPubMedGoogle Scholar
  33. 33.
    Popova, E. N., Pletjushkina, O. Y., Dugina, V. B., Domnina, L. V., Ivanova, O. Y., Izyumov, D. S., Skulachev, V. P., and Chernyak, B. V. (2010) Scavenging of reactive oxygen species in mitochondria induces myofibroblast differentiation, Antioxid. Redox Signal., 13, 1297–1307.CrossRefPubMedGoogle Scholar
  34. 34.
    Izyumov, D. S., Domnina, L. V., Nepryakhina, O. K., Avetisyan, A. V., Golyshev, S. A., Ivanova, O. Yu., Korotetskaya, M. V., Lyamzayev, K. G., Pletjushkina, O. Yu., Popova, E. N., and Chernyak, B. V. (2010) Mitochondria as sources of reactive oxygen species during oxidative stress. The study with novel mitochondria-targeted antioxidants on the basis of “Skulachev ions”, Biochemistry (Moscow), 75, 123–129.CrossRefGoogle Scholar
  35. 35.
    Agapova, L. S., Chernyak, B. V., Domnina, L. V., Dugina, V. B., Efimenko, A. Yu., Fetisova, E. K., Ivanova, O. Yu., Kalinina, N. I., Lichinitser, M. R., Lukashev, A. N., Khromova, N. V., Kopnin, B. P., Korotetskaya, M. V., Pletjushkina, O. Yu., Popova, E. N., Shagieva, G. S., Skulachev, M. V., Stepanova, E. V., Titova, E. V., Tkachuk, V. A., Vasilyev, Yu. M., and Skulachev, V. P. (2008) Mitochondriatargeted plastoquinone derivative as a tool interrupting the aging program. 3. SkQ1 suppresses tumor development from p53-deficient cells, Biochemistry (Moscow), 73, 1300–1316.CrossRefGoogle Scholar
  36. 36.
    Caldeira da Silva, C. C., Cerqueira, F. M., Barbosa, L. F., Medeiros, M. H., and Kowaltowski, A. J. (2008) Mild mitochondrial uncoupling in mice affects energy metabolism, redox balance and longevity, Aging Cell, 7, 552–560.CrossRefPubMedGoogle Scholar
  37. 37.
    Cerqueira, F. M., Laurindo, F. R., and Kowaltowski, A. J. (2011) Mild mitochondrial uncoupling and calorie restriction increase fasting eNOS, akt and mitochondrial biogenesis, PLoS One, 6, e18433.CrossRefPubMedCentralPubMedGoogle Scholar
  38. 38.
    Lyamzaev, K. G., Izyumov, D. S., Avetisyan, A. V., Yang, F., Pletjushkina, O. Y., and Chernyak, B. V. (2004) Inhibition of mitochondrial bioenergetics: the effects on structure of mitochondria in the cell and on apoptosis, Acta Biochim. Pol., 51, 553–562.PubMedGoogle Scholar
  39. 39.
    Pletjushkina, O. Y., Lyamzaev, K. G., Popova, E. N., Nepryakhina, O. K., Ivanova, O. Y., Domnina, L. V., Chernyak, B. V., and Skulachev, V. P. (2006) Effect of oxidative stress on dynamics of mitochondrial reticulum, Biochim. Biophys. Acta, 1757, 518–524.CrossRefPubMedGoogle Scholar
  40. 40.
    Bradley, J. R. (2008) TNF-mediated inflammatory disease, J. Pathol., 214, 149–160.CrossRefPubMedGoogle Scholar
  41. 41.
    Hirata, Y., Nagata, D., Suzuki, E., Nishimatsu, H., Suzuki, J.-I., and Nagai, R. (2010) Diagnosis and treatment of endothelial dysfunction in cardiovascular disease, Int. Heart J., 51, 1–6.CrossRefPubMedGoogle Scholar
  42. 42.
    Plotnikov, E. Yu., Silachev, D. N., Jankauskas, S. S., Rokitskaya, T. I., Chuprykina, A. A., Pevzner, I. B., Zorova, L. D., Isaev, N. K., Antonenko, Yu. N., Skulachev, V. P., and Zorov, D. B. (2012) Partial uncoupling of respiration and phosphorylation as one of the pathways of implementation of the nephro- and neuroprotective effects of penetrating cations of the SkQ family, Biochemistry (Moscow), 77, 1029–1037.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • V. P. Romaschenko
    • 1
    • 2
  • R. A. Zinovkin
    • 1
    • 3
    • 4
  • I. I. Galkin
    • 1
  • V. V. Zakharova
    • 1
    • 2
  • A. A. Panteleeva
    • 1
  • A. V. Tokarchuk
    • 1
    • 2
  • K. G. Lyamzaev
    • 1
    • 4
  • O. Yu. Pletjushkina
    • 1
    • 4
  • B. V. Chernyak
    • 1
    • 4
  • E. N. Popova
    • 1
    • 4
  1. 1.Belozersky Institute of Physico-Chemical BiologyLomonosov Moscow State UniversityMoscowRussia
  2. 2.Faculty of Bioengineering and BioinformaticsLomonosov Moscow State UniversityMoscowRussia
  3. 3.Faculty of BiologyLomonosov Moscow State UniversityMoscowRussia
  4. 4.Institute of MitoengineeringLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations