Biochemistry (Moscow)

, Volume 80, Issue 5, pp 532–541 | Cite as

Mitodiversity

  • V. A. Popkov
  • E. Y. Plotnikov
  • K. G. Lyamzaev
  • D. N. Silachev
  • L. D. Zorova
  • I. B. Pevzner
  • S. S. Jankauskas
  • S. D. Zorov
  • V. A. Babenko
  • D. B. Zorov
Article

Abstract

Here, in addition to the previously coined term “mitobiota”, we introduce the term “mitodiversity” for various phenotypic and genetic heterogeneities of mitochondria within the same cell or organ. Based on data on the mitochondrial transmembrane potential determined both in situ and in vitro under normal conditions and after organ ischemia/reperfusion, such heterogeneity is most evident under pathologic conditions. Herein, a part of the mitochondrial population with transmembrane potential typical of the normal state is sustained even under a pathological condition that, perhaps, underlies the development of ways of reversing pathology back to the normal state. The membrane potentials of isolated mitochondria were shown to directly correlate with the magnitude of side-scattered light depicting internal structure of mitochondria. We analyzed possible interpretations of data on mitochondrial membrane potential obtained using fluorescent probes. We suggest a possible mechanism underlying retention of fluorescent probes inside the cells and mitochondria.

Key words

mitochondria heterogeneity diversity chondriome population analysis membrane potential ischemia pathology lesion 

Abbreviations

mtDNA

mitochondrial DNA

TMRE

tetramethylrhodamine ethyl ester

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zorov, D. B., Krasnikov, B. F., Kuzminova, A. E., Vysokikh, M., and Zorova, L. D. (1997) Mitochondria revisited. Alternative functions of mitochondria, Biosci. Rep., 17, 507–520.CrossRefPubMedGoogle Scholar
  2. 2.
    Zorov, D. B., Isaev, N. K., Plotnikov, E. Yu., Zorova, L. D., Stel’mashuk, E. V., Vasil’eva, A. K., Arkhangel’skaya, A. A., and Khryapenkova, T. G. (2007) Mitochondria as a multi-faced Janus, Biochemistry (Moscow), 72, 1115–1126.CrossRefGoogle Scholar
  3. 3.
    Zorov, D. B. (1996) Mitochondrial damage as a source of diseases and aging: a strategy of how to fight these, Biochim. Biophys. Acta, 1275, 10–15.CrossRefPubMedGoogle Scholar
  4. 4.
    Bakeeva, L. E., Chentsov, Yu. S., and Skulachev, V. P. (1978) Mitochondrial framework (reticulum mitochondriale) in rat diaphragm muscle, Biochim. Biophys. Acta, 501, 349–369.CrossRefPubMedGoogle Scholar
  5. 5.
    Amchenkova, A. A., Bakeeva, L. E., Chentsov, Y. S., Skulachev, V. P., and Zorov, D. B. (1988) Coupling membranes as energy-transmitting cables. I. Filamentous mitochondria in fibroblasts and mitochondrial clusters in cardiomyocytes, J. Cell Biol., 107, 481–495.CrossRefPubMedGoogle Scholar
  6. 6.
    Smith, R. A., and Ord, M. J. (1983) Mitochondrial form and function relationships in vivo: their potential in toxicology and pathology, Int. Rev. Cytol., 83, 63–134.CrossRefPubMedGoogle Scholar
  7. 7.
    Wakabayashi, T., Asano, M., and Kurono, C. (1975) Mechanism of the formation of megamitochondria induced by copper-chelating agents. I. On the formation process of megamitochondria in cuprizone-treated mouse liver, Acta Pathol. Jpn., 25, 15–37.PubMedGoogle Scholar
  8. 8.
    Vorobjev, I. A., and Zorov, D. B. (1983) Diazepam inhibits cell respiration and induces fragmentation of mitochondrial reticulum, FEBS Lett., 163, 311–314.CrossRefPubMedGoogle Scholar
  9. 9.
    Hansford, R. G., and Zorov, D. B. (1998) Role of mitochondrial calcium transport in the control of substrate oxidation, Mol. Cell Biochem., 184, 359–369.CrossRefPubMedGoogle Scholar
  10. 10.
    Zorov, D. B., Plotnikov, E. Yu., Silachev, D. N., Zorova, L. D., Pevzner, I. B., Zorov, S. D., Babenko, V. A., Yankauskas, S. S., Popkov, V. A., and Savina, P. S. (2014) Microbiota and mitobiota. Putting an equal sign between mitochondria and bacteria, Biochemistry (Moscow), 79, 1017–1031.CrossRefGoogle Scholar
  11. 11.
    Zorov, D. B., Isaev, N. K., Plotnikov, E. Yu., Silachev, D. N., Zorova, L. D., Pevzner, I. B., Morosanova, M. A., Yankauskas, S. S., Zorov, S. D., and Babenko, V. A. (2013) Perspectives of mitochondrial medicine, Biochemistry (Moscow), 78, 979–990.CrossRefGoogle Scholar
  12. 12.
    Wikstrom, J. D., Twig, G., and Shirihai, O. S. (2009) What can mitochondrial heterogeneity tell us about mitochondrial dynamics and autophagy, Int. J. Biochem. Cell Biol., 41, 1914–1927.CrossRefPubMedGoogle Scholar
  13. 13.
    Palmer, J. W., Tandler, B., and Hoppel, C. L. (1977) Biochemical properties of subsarcolemmal and interfibrillar mitochondria isolated from rat cardiac muscle, J. Biol. Chem., 252, 8731–8739.PubMedGoogle Scholar
  14. 14.
    Dolman, N. J., Gerasimenko, J. V., Gerasimenko, O. V., Voronina, S. G., Petersen, O. H., and Tepikin, A. V. (2005) Stable Golgi-mitochondria complexes and formation of Golgi Ca2+ gradients in pancreatic acinar cells, J. Biol. Chem., 280, 15794–15799.CrossRefPubMedGoogle Scholar
  15. 15.
    Wikstrom, J. D., Katzman, S. M., Mohamed, H., Twig, G., Graf, S. A., Heart, E., Molina, A. J., Corkey, B. E., de Vargas, L. M., Danial, N. N., Collins, S., and Shirihai, O. (2007) β-Cell mitochondria exhibit membrane potential heterogeneity that can be altered by stimulatory or toxic fuel levels, Diabetes, 56, 2569–2578.CrossRefPubMedGoogle Scholar
  16. 16.
    Rizzuto, R., Pinton, P., Carrington, W., Fay, F. S., Fogarty, K. E., Lifshitz, L. M., Tuft, R. A., and Pozzan, T. (1988) Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses, Science, 280, 1763–1766.CrossRefGoogle Scholar
  17. 17.
    Kuznetsov, A. V., and Margreiter, R. (2009) Heterogeneity of mitochondria and mitochondrial function within cells as another level of mitochondrial complexity, Int. J. Mol. Sci., 10, 1911–1929.CrossRefPubMedCentralPubMedGoogle Scholar
  18. 18.
    Wolken, G. G., Kostal, V., and Arriaga, E. A. (2011) Capillary isoelectric focusing of individual mitochondria, Anal. Chem., 83, 612–618.CrossRefPubMedCentralPubMedGoogle Scholar
  19. 19.
    Csordas, G., Varnai, P., Golenar, T., Roy, S., Purkins, G., Schneider, T. G., Balla, T., and Hajnoczky, G. (2010) Imaging interorganelle contacts and local calcium dynamics at the ER-mitochondrial interface, Mol. Cell, 39, 121–132.CrossRefPubMedCentralPubMedGoogle Scholar
  20. 20.
    Fuller, K. M., Duffy, C. F., and Arriaga, E. A. (2002) Determination of the cardiolipin content of individual mitochondria by capillary electrophoresis with laser-induced fluorescence detection, Electrophoresis, 23, 1571–1576.CrossRefPubMedGoogle Scholar
  21. 21.
    Taylor, T. H., Frost, N. W., Bowser, M. T., and Arriaga, E. A. (2014) Analysis of individual mitochondria via fluorescent immunolabeling with Anti-TOM22 antibodies, Anal. Bioanal. Chem., 406, 1683–1691.CrossRefPubMedCentralPubMedGoogle Scholar
  22. 22.
    Izyumov, D. S., Domnina, L. V., Nepryakhina, O. K., Avetisyan, A. V., Golyshev, S. A., Ivanova, O. Yu., Korotetskaya, M. V., Lyamzaev, K. G., Pletyushkina, O. Yu., Popova, E. N., and Chernyak, B. V. (2010) Mitochondria as a source of reactive oxygen intermediates during oxidative stress. Examination done by using mitochondria-targeted “Skulachev’s ion”-based antioxidants, Biochemistry (Moscow), 75, 123–129.CrossRefGoogle Scholar
  23. 23.
    Zorov, D. B., Filburn, C. R., Klotz, L. O., Zweier, J. L., and Sollott, S. J. (2000) Reactive oxygen species (ROS)-induced ROS release: a new phenomenon accompanying induction of the mitochondrial permeability transition in cardiac myocytes, Exp. Med., 192, 1001–1014.CrossRefGoogle Scholar
  24. 24.
    Belousov, V. V., Fradkov, A. F., Lukyanov, K. A., Staroverov, D. B., Shakhbazov, K. S., Terskikh, A. V., and Lukyanov, S. (2006) Genetically encoded fluorescent indicator for intracellular hydrogen peroxide, Nature Methods, 3, 281–286.CrossRefPubMedGoogle Scholar
  25. 25.
    Khryapenkova, T. G., Plotnikov, E. Yu., Korotetskaya, M. V., Sukhikh, G. T., and Zorov, D. B. (2008) Heterogeneity of mitochondrial potential as a marker for isolation of a pure cardiomyoblast population, Klet. Tekhnol. Biol. Med., 4, 188–195.Google Scholar
  26. 26.
    Sousa, A. P., Amaral, A., Baptista, M., Tavares, R., Caballero Campo, P., Caballero Peregrin, P., Freitas, A., Paiva, A., Almeida-Santos, T., and Ramalho-Santos, J. (2011) Not all sperm are equal: functional mitochondria characterize a subpopulation of human sperm with better fertilization potential, PLoS One, 6, e18112.CrossRefPubMedCentralPubMedGoogle Scholar
  27. 27.
    Chen, H. C., Chomyn, A., and Chan, D. C. (2005) Disruption of fusion results in mitochondrial heterogeneity and dysfunction, J. Biol. Chem., 280, 26185–26192.CrossRefPubMedGoogle Scholar
  28. 28.
    Dorn, G. W., 2nd, and Kitsis, R. N. (2015) The mitochondrial dynamism-mitophagy-cell death interactome: multiple roles performed by members of a mitochondrial molecular ensemble, Circ. Res., 116, 167–182.CrossRefPubMedGoogle Scholar
  29. 29.
    Jakobs, S., Stoldt, S., and Neumann, D. (2011) Light microscopic analysis of mitochondrial heterogeneity in cell populations and within single cells, Adv. Biochem. Eng. Biotechnol., 124, 1–19.PubMedGoogle Scholar
  30. 30.
    Anand, R. K., and Chiu, D. T. (2012) Analytical tools for characterizing heterogeneity in organelle content, Curr. Opin. Chem. Biol., 16, 391–399.CrossRefPubMedCentralPubMedGoogle Scholar
  31. 31.
    Jakobs, S., and Wurm, C. A. (2014) Super-resolution microscopy of mitochondria, Curr. Opin. Chem. Biol., 20, 9–15.CrossRefPubMedGoogle Scholar
  32. 32.
    Plotnikov, E. Y., Kazachenko, A. V., Vyssokikh, M. Y., Vasileva, A. K., Tcvirkun, D. V., Isaev, N. K., Kirpatovsky, V. I., and Zorov, D. B. (2007) The role of mitochondria in oxidative and nitrosative stress during ischemia/reperfusion in the rat kidney, Kidney Int., 72, 1493–1502.CrossRefPubMedGoogle Scholar
  33. 33.
    Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J. Y., White, D. J., Hartenstein, V., Eliceiri, K., Tomancak, P., and Cardona, A. (2012) Fiji: an open-source platform for biologicalimage analysis, Nature Methods, 9, 676–682.CrossRefPubMedGoogle Scholar
  34. 34.
    Zack, G. W., Rogers, W. E., and Latt, S. A. (1977) Automatic measurement of sister chromatid exchange frequency, J. Histochem. Cytochem., 25, 741–753.CrossRefPubMedGoogle Scholar
  35. 35.
    Shanbhag, A. G. (1994) Utilization of information measure as a means of image thresholding, Graph. Models Image Process (Academic Press), 56, 414–419.CrossRefGoogle Scholar
  36. 36.
    Biase, F. H., Cao, X., and Zhong, S. (2014) Cell fate inclination within 2-cell and 4-cell mouse embryos revealed by single-cell RNA sequencing, Genome Res., 24, 1787–1796.CrossRefPubMedCentralPubMedGoogle Scholar
  37. 37.
    Van Blerkom, J., Davis, P., Mathwig, V., and Alexander, S. (2002) Domains of high-polarized and low-polarized mitochondria may occur in mouse and human oocytes and early embryos, Hum. Reprod., 17, 393–406.CrossRefPubMedGoogle Scholar
  38. 38.
    Zorov, D. B., Kobrinsky, E., Juhaszova, M., and Sollott, S. J. (2004) Examining intracellular organelle function using fluorescent probes: from animalcules to quantum dots, Circ. Res., 95, 239–252.CrossRefPubMedGoogle Scholar
  39. 39.
    Summerhayes, I. C., Lampidis, T. J., Bernal, S. D., Nadakavukaren, J. J., Nadakavukaren, K. K., Shepherd, E. L., and Chen, L. B. (1982) Unusual retention of rhodamine 123 by mitochondria in muscle and carcinoma cells, Proc. Natl. Acad. Sci. USA, 79, 5292–5296.CrossRefPubMedCentralPubMedGoogle Scholar
  40. 40.
    Zorov, D. B., Juhaszova, M., and Sollott, S. J. (2006) Mitochondrial ROS-induced ROS release: an update and review, Biochim. Biophys. Acta, 1757, 509–517.CrossRefPubMedGoogle Scholar
  41. 41.
    D’Herde, K., De Prest, B., Mussche, S., Schotte, P., Beyaert, R., Coster, R. V., and Roels, F. (2000) Ultrastructural localization of cytochrome c in apoptosis demonstrates mitochondrial heterogeneity, Cell Death Differ., 7, 331–337.CrossRefPubMedGoogle Scholar
  42. 42.
    Krysko, D. V., Roels, F., Leybaert, L., and D’Herde, K. (2001) Mitochondrial transmembrane potential changes support the concept of mitochondrial heterogeneity during apoptosis, J. Histochem. Cytochem., 49, 1277–1284.CrossRefPubMedGoogle Scholar
  43. 43.
    Hackenbrock, C. R. (1968) Ultrastructural bases for metabolically linked mechanical activity in mitochondria. II. Electron transport-linked ultrastructural transformations in mitochondria, J. Cell Biol., 37, 345–369.CrossRefPubMedCentralPubMedGoogle Scholar
  44. 44.
    Hackenbrock, C. R. (1972) Energy-linked ultrastructural transformations in isolated liver mitochondria and mitoplasts. Preservation of configurations by freeze-cleaving compared to chemical fixation, J. Cell. Biol., 53, 450–465.CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • V. A. Popkov
    • 1
  • E. Y. Plotnikov
    • 2
  • K. G. Lyamzaev
    • 2
  • D. N. Silachev
    • 2
  • L. D. Zorova
    • 3
  • I. B. Pevzner
    • 2
  • S. S. Jankauskas
    • 2
  • S. D. Zorov
    • 1
  • V. A. Babenko
    • 1
  • D. B. Zorov
    • 2
  1. 1.Faculty of Bioengineering and BioinformaticsLomonosov Moscow State UniversityMoscowRussia
  2. 2.Belozersky Institute of Physico-Chemical BiologyLomonosov Moscow State UniversityMoscowRussia
  3. 3.International Laser CenterLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations