Biochemistry (Moscow)

, Volume 80, Issue 4, pp 449–454 | Cite as

Proteorhodopsin from Dokdonia sp. PRO95 is a light-driven Na+-pump

  • Y. V. Bertsova
  • A. V. Bogachev
  • V. P. SkulachevEmail author


The gene encoding proteorhodopsin AEX55013 from Dokdonia sp. PRO95 was cloned and expressed in Escherichia coli cells. Illumination of the proteorhodopsin-producing E. coli cells in Na+-containing media resulted in alkalinization of the media. This response was accelerated by uncoupler CCCP and inhibited by penetrating anion SCN. Illumination of the cells in a sodium-free medium (made by substituting Na+ with K+) resulted in SCN-stimulated and CCCP-sensitive acidification of the medium. Illumination of the proteorhodopsin-containing E. coli cells caused CCCP-resistant transmembrane sodium export from these cells. We conclude that the proteorhodopsin from the marine flavobacterium Dokdonia sp. PRO95 is a primary light-driven Na+-pump. A high level of the heterologous production in E. coli cells as well as stability and purity of the isolated protein makes this proteorhodopsin an attractive model for studying the mechanism of active sodium transmembrane translocation.

Key words

Na+-translocating proteorhodopsin transmembrane sodium transport flavobacteria 



carbonyl cyanide m-chlorophenylhydrazone


n-dodecyl β-D-maltoside

R-E. coli

E. coli BL21/pRhod_10.1 cells induced for proteorhodopsin synthesis in the presence of retinal


sodium dodecyl sulfate polyacrylamide gel electrophoresis


transmembrane pH difference

\(\Delta \bar \mu _{H^ + } \) and \(\Delta \bar \mu _{Na^ + } \)

transmembrane differences in H+ and Na+ electrochemical potentials, respectively


transmembrane difference in electric potentials


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dimroth, P. (1980) A new sodium-transport system energized by the decarboxylation of oxaloacetate, FEBS Lett., 122, 234–236.CrossRefPubMedGoogle Scholar
  2. 2.
    Dimroth, P., Jockel, P., and Schmid, M. (2001) Coupling mechanism of the oxaloacetate decarboxylase Na+ pump, Biochim. Biophys. Acta, 1505, 1–14.CrossRefPubMedGoogle Scholar
  3. 3.
    Unemoto, T., and Hayashi, M. (1979) NADH:quinone oxidoreductase as a site of Na+-dependent activation in the respiratory chain of marine Vibrio alginolyticus, J. Biochem., 85, 1461–1467.PubMedGoogle Scholar
  4. 4.
    Verkhovsky, M. I., and Bogachev, A. V. (2010) Sodiumtranslocating NADH:quinone oxidoreductase as a redoxdriven ion pump, Biochim. Biophys. Acta, 1797, 738–746.CrossRefPubMedGoogle Scholar
  5. 5.
    Schmehl, M., Jahn, A., Meyer zu Vilsendorf, A., Hennecke, S., Masepohl, B., Schuppler, M., Marxer, M., Oelze, J., and Klipp, W. (1993) Identification of a new class of nitrogen fixation genes in Rhodobacter capsulatus: a putative membrane complex involved in electron transport to nitrogenase, Mol. Gen. Genet., 241, 602–615.CrossRefPubMedGoogle Scholar
  6. 6.
    Muller, V., Imkamp, F., Biegel, E., Schmidt, S., and Dilling, S. (2008) Discovery of a ferredoxin:NAD+-oxidoreductase (Rnf) in Acetobacterium woodii. A novel potential coupling site in acetogens, Ann. N. Y. Acad. Sci., 1125, 137–146.CrossRefPubMedGoogle Scholar
  7. 7.
    Gottschalk, G., and Thauer, R. K. (2001) The Na+-translocating methyltransferase complex from methanogenic archaea, Biochim. Biophys. Acta, 1505, 28–36.CrossRefPubMedGoogle Scholar
  8. 8.
    Kaesler, B., and Schonheit, P. (1989) The role of sodium ions in methanogenesis. Formaldehyde oxidation to CO2 and 2H2 in methanogenic bacteria is coupled with primary electrogenic Na+ translocation at a stoichiometry of 2–3 Na+/CO2, Eur. J. Biochem., 184, 223–232.CrossRefGoogle Scholar
  9. 9.
    Heefner, D. L., and Harold, F. M. (1982) ATP-driven sodium pump in Streptococcus faecalis, Proc. Natl. Acad. Sci. USA, 79, 2798–2802.CrossRefPubMedCentralPubMedGoogle Scholar
  10. 10.
    Kluge, C., Laubinger, W., and Dimroth, P. (1992) The Na+-translocating ATPase of Propionigenium modestum, Biochem. Soc. Trans., 20, 572–577.PubMedGoogle Scholar
  11. 11.
    Malinen, A. M., Belogurov, G. A., Baykov, A. A., and Lahti, R. (2007) Na+-pyrophosphatase: a novel primary sodium pump, Biochemistry, 46, 8872–8878.CrossRefPubMedGoogle Scholar
  12. 12.
    Kakinuma, Y., and Unemoto, T. (1985) Sucrose uptake is driven by the Na+ electrochemical potential in the marine bacterium Vibrio alginolyticus, J. Bacteriol., 163, 1293–1295.PubMedCentralPubMedGoogle Scholar
  13. 13.
    Dibrov, P. A., Kostyrko, V. A., Lazarova, R. L., Skulachev, V. P., and Smirnova, I. A. (1986) The sodium cycle. I. Na+-dependent motility and modes of membrane energization in the marine alkalotolerant Vibrio alginolyticus, Biochim. Biophys. Acta, 850, 449–457.CrossRefPubMedGoogle Scholar
  14. 14.
    Skulachev, V. P. (1989) The sodium cycle: a novel type of bacterial energetics, J. Bioenerg. Biomembr., 21, 635–647.CrossRefPubMedGoogle Scholar
  15. 15.
    Mulkidjanian, A. Y., Dibrov, P., and Galperin, M. Y. (2008) The past and present of the sodium energetics: may the sodium-motive force be with you, Biochim. Biophys. Acta, 1777, 985–992.CrossRefPubMedCentralPubMedGoogle Scholar
  16. 16.
    Grote, M., Engelhard, M., and Hegemann, P. (2014) On ion pumps, sensors and channels — perspectives on microbial rhodopsins between science and history, Biochim. Biophys. Acta, 1837, 533–545.CrossRefPubMedGoogle Scholar
  17. 17.
    Inoue, K., Ono, H., Abe-Yoshizumi, R., Yoshizawa, S., Ito, H., Kogure, K., and Kandori, H. (2013) A light-driven sodium ion pump in marine bacteria, Nat. Commun., 4, 1678.CrossRefPubMedGoogle Scholar
  18. 18.
    Luoto, H. H., Nordbo, E., Baykov, A. A., Lahti, R., and Malinen, A. M. (2013) Membrane Na+-pyrophosphatases can transport protons at low sodium concentrations, J. Biol. Chem., 288, 35489–35499.CrossRefPubMedCentralGoogle Scholar
  19. 19.
    Yoshizawa, S., Kumagai, Y., Kim, H., Ogura, Y., Hayashi, T., Iwasaki, W., DeLong, E. F., and Kogure, K. (2014) Functional characterization of flavobacteria rhodopsins reveals a unique class of light-driven chloride pump in bacteria, Proc. Natl. Acad. Sci. USA, 111, 6732–6737.CrossRefPubMedCentralPubMedGoogle Scholar
  20. 20.
    Kwon, S. K., Kim, B. K., Song, J. Y., Kwak, M. J., Lee, C. H., Yoon, J. H., Oh, T. K., and Kim, J. F. (2013) Genomic makeup of the marine flavobacterium Nonlabens (Donghaeana) dokdonensis and identification of a novel class of rhodopsins, Genome Biol. Evol., 5, 187–199.CrossRefPubMedCentralPubMedGoogle Scholar
  21. 21.
    Riedel, T., Gomez-Consarnau, L., Tomasch, J., Martin, M., Jarek, M., Gonzalez, J. M., Spring, S., Rohlfs, M., Brinkhoff, T., Cypionka, H., Goker, M., Fiebig, A., Klein, J., Goesmann, A., Fuhrman, J. A., and Wagner-Dobler, I. (2013) Genomics and physiology of a marine flavobacterium encoding a proteorhodopsin and a xanthorhodopsin-like protein, PLoS One, 8, e57487.CrossRefPubMedCentralPubMedGoogle Scholar
  22. 22.
    Gourdon, P., Alfredsson, A., Pedersen, A., Malmerberg, E., Nyblom, M., Widell, M., Berntsson, R., Pinhassi, J., Braiman, M., Hansson, O., Bonander, N., Karlsson, G., and Neutze, R. (2008) Optimized in vitro and in vivo expression of proteorhodopsin: a seven-transmembrane proton pump, Protein Expr. Purif., 58, 103–113.CrossRefGoogle Scholar
  23. 23.
    Smith, P. K., Krohn, R. I., Hermanson, G. T., Mallia, A. K., Gartner, F. H., Provenzano, M. D., Fujimoto, E. K., Goeke, N. M., Olson, B. J., and Klenk, D. C. (1985) Measurement of protein using bicinchoninic acid, Anal. Biochem., 150, 76–85.CrossRefPubMedGoogle Scholar
  24. 24.
    Verkhovskaya, M. L., Verkhovsky, M. I., and Wikstrom, M. (1996) The respiration-driven active sodium transport system in E. coli does not function with lithium, FEBS Lett., 388, 217–218.CrossRefPubMedGoogle Scholar
  25. 25.
    Tokuda, H., and Unemoto, T. (1982) Characterization of the respiration-dependent Na+ pump in the marine bacterium Vibrio alginolyticus, J. Biol. Chem., 257, 10007–10014.PubMedGoogle Scholar
  26. 26.
    Bogachev, A. V., Murtasina, R. A., and Skulachev, V. P. (1997) The Na+/e stoichiometry of the Na+-motive NADH:quinone oxidoreductase in Vibrio alginolyticus, FEBS Lett., 409, 475–477.CrossRefPubMedGoogle Scholar
  27. 27.
    Avetisyan, A. V., Kaulen, A. D., Skulachev, V. P., and Feniouk, B. A. (1998) Photophosphorylation in alkalophilic halobacterial cells containing halorhodopsin: chloride-ion cycle? Biochemistry (Moscow), 63, 625–628.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • Y. V. Bertsova
    • 1
  • A. V. Bogachev
    • 1
  • V. P. Skulachev
    • 1
    Email author
  1. 1.Belozersky Institute of Physico-Chemical BiologyLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations