Advertisement

Biochemistry (Moscow)

, Volume 80, Issue 4, pp 433–440 | Cite as

Identification and biochemical characterization of a new antibacterial and antifungal peptide derived from the insect Sphodromantis viridis

  • Hadi Zare-Zardini
  • Asghar Taheri-Kafrani
  • Mahtab OrdooeiEmail author
  • Leila Ebrahimi
  • Behnaz Tolueinia
  • Mojgan Soleimanizadeh
Article

Abstract

Antimicrobial peptides are members of the immune system that protect the host from infection. In this study, a potent and structurally novel antimicrobial peptide was isolated and characterized from praying mantis Sphodromantis viridis. This 14-amino acid peptide was purified by RP-HPLC. Tandem mass spectrometry was used for sequencing this peptide, and the results showed that the peptide belongs to the Mastoparan family. The peptide was named Mastoparan-S. Mastoparan-S demonstrated that it has antimicrobial activities against a broad spectrum of microorganisms (Gram-positive and Gram-negative bacteria and fungi), and it was found to be more potent than common antibiotics such as kanamycin. Mastoparan-S showed higher antimicrobial activity against Gram-negative bacteria compared to Gram-positive ones and fungi. The minimum inhibitory concentration (MIC) values of Mastoparan-S are 15.1–28.3 μg/ml for bacterial and 19.3–24.6 μg/ml for fungal pathogens. In addition, this newly described peptide showed low hemolytic activity against human red blood cells. The in vitro cytotoxicity of Mastoparan-S was also evaluated on monolayer of normal human cells (HeLa) by MTT assay, and the results illustrated that Mastoparan-S had significant cytotoxicity at concentrations higher than 40 μg/ml and had no any cytotoxicity at the MIC (−30 μg/ml). The findings of the present study reveal that this newly described peptide can be introduced as an appropriate candidate for treatment of topical infection.

Key words

antimicrobial peptides cytotoxicity Sphodromantis viridis immune system hemolytic activity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bulet, P., Hetru, C., Dimarcq, J.-L., and Hoffmann, D. (1999) Antimicrobial peptides in insects; structure and function, Dev. Comp. Immunol., 23, 329–344.CrossRefPubMedGoogle Scholar
  2. 2.
    Irving, P., Troxler, L., and Hetru, C. (2004) Is innate enough? The innate immune response in Drosophila, C. R. Biologies, 327, 557–570.CrossRefPubMedGoogle Scholar
  3. 3.
    Tassanakajon, A., Somboonwiwat, K., and Amparyup, P. (2015) Sequence diversity and evolution of antimicrobial peptides in invertebrates, Dev. Comp. Immunol., 48, 324–341.CrossRefPubMedGoogle Scholar
  4. 4.
    Tzou, P., De Gregorio, E., and Lemaitre, B. (2002) How Drosophila combats microbial infection: a model to study innate immunity and host-pathogen interactions, Curr. Opin. Microbiol., 5, 102–110.CrossRefPubMedGoogle Scholar
  5. 5.
    Yang, J., Furukawa, S., Sagisaka, A., Ishibashi, J., Taniai, K., Shono, T., and Yamakawa, M. (1999) cDNA cloning and gene expression of cecropin D, an antibacterial protein in the silkworm Bombyx mori, Comp. Biochem. Physiol. B, 122, 409–414.CrossRefPubMedGoogle Scholar
  6. 6.
    Padhi, A., Sengupta, M., Sengupta, S., Roehm, K. H., and Sonawane, A. (2014) Antimicrobial peptides and proteins in mycobacterial therapy: current status and future prospects, Tuberculosis, 94, 363–373.CrossRefPubMedGoogle Scholar
  7. 7.
    Pei, Z., Sun, X., Tang, Y., Zhang, D., Gao, Y., and Ma, H. (2014) Cloning, expression, and purification of a new antimicrobial peptide gene from Musca domestica larva, Gene, 549, 41–45.CrossRefPubMedGoogle Scholar
  8. 8.
    Che, Q., Zhou, Y., Yang, H., Li, J., Xu, X., and Lai, R. (2008) A novel antimicrobial peptide from amphibian skin secretions of Odorrana grahami, Peptides, 29, 529–535.CrossRefPubMedGoogle Scholar
  9. 9.
    Rollins-Smith, L. A. (2009) The role of amphibian antimicrobial peptides in protection of amphibians from pathogens linked to global amphibian declines, Biochim. Biophys. Acta (Biomembranes), 1788, 1593–1599.CrossRefGoogle Scholar
  10. 10.
    Chen, W., Yang, B., Zhou, H., Sun, L., Dou, J., Qian, H., Huang, W., Mei, Y., and Han, J. (2011) Structure-activity relationships of a snake cathelicidin-related peptide BF-15, Peptides, 32, 2497–2503.CrossRefPubMedGoogle Scholar
  11. 11.
    McQuade, R., Roxas, B., Viswanathan, V. K., and Vedantam, G. (2012) Clostridium difficile clinical isolates exhibit variable susceptibility and proteome alterations upon exposure to mammalian cationic antimicrobial peptides, Anaerobe, 18, 614–620.CrossRefPubMedGoogle Scholar
  12. 12.
    Nan, Y. H., Lee, S. H., Kim, H. J., and Shin, S. Y. (2010) Mammalian cell toxicity and candidacidal mechanism of Arg- or Lys-containing Trp-rich model antimicrobial peptides and their d-enantiomeric peptides, Peptides, 31, 1826–1831.CrossRefGoogle Scholar
  13. 13.
    Hetru, C. (1994) Antimicrobial Peptides (Boman, H., Marsh, J., and Goode, J. A., eds.) John Wiley & Sons, N. Y.Google Scholar
  14. 14.
    Brown, M. J. F. (2010) Parasites and insects: aspects of social behavior, in Encyclopedia of Animal Behavior (Breed, M. D., and Moore, J., eds.) Academic Press, Oxford, pp. 632–635.CrossRefGoogle Scholar
  15. 15.
    Erler, S., Lhomme, P., Rasmont, P., and Lattorff, H. M. G. (2014) Rapid evolution of antimicrobial peptide genes in an insect host-social parasite system, Infect. Genet. Evol., 23, 129–137.CrossRefPubMedGoogle Scholar
  16. 16.
    Chesnokova, L. S., Slepenkov, S. V., and Witt, S. N. (2004) The insect antimicrobial peptide, l-pyrrhocoricin, binds to and stimulates the ATPase activity of both wild-type and lidless DnaK, FEBS Lett., 565, 65–69.CrossRefPubMedGoogle Scholar
  17. 17.
    Li, Y., Xiang, Q., Zhang, Q., Huang, Y., and Su, Z. (2012) Overview on the recent study of antimicrobial peptides: origins, functions, relative mechanisms and application, Peptides, 37, 207–215.CrossRefPubMedGoogle Scholar
  18. 18.
    Dassanayake, R. S., Silva Gunawardene, Y. I. N., and Tobe, S. S. (2007) Evolutionary selective trends of insect/mosquito antimicrobial defensin peptides containing cysteine-stabilized α/β motifs, Peptides, 28, 62–75.CrossRefPubMedGoogle Scholar
  19. 19.
    Ahn, H.-S., Cho, W., Kang, S.-H., Ko, S.-S., Park, M.-S., Cho, H., and Lee, K. H. (2006) Design and synthesis of novel antimicrobial peptides on the basis of α-helical domain of tenecin 1, an insect defensin protein, and structure-activity relationship study, Peptides, 27, 640–648.CrossRefPubMedGoogle Scholar
  20. 20.
    Mak, P., Zdybicka-Barabas, A., and Cytrynska, M. (2010) A different repertoire of Galleria mellonella antimicrobial peptides in larvae challenged with bacteria and fungi, Dev. Comp. Immunol., 34, 1129–1136.CrossRefPubMedGoogle Scholar
  21. 21.
    Lehrer, R. I., and Ganz, T. (1999) Antimicrobial peptides in mammalian and insect host defence, Curr. Opin. Immunol., 11, 23–27.CrossRefPubMedGoogle Scholar
  22. 22.
    Wipfler, B., Wieland, F., DeCarlo, F., and Hornschemeyer, T. (2012) Cephalic morphology of Hymenopus coronatus (Insecta: Mantodea) and its phylogenetic implications, Arthropod Struct. Dev., 41, 87–100.CrossRefGoogle Scholar
  23. 23.
    Hurd, L. E. (2009) Chap. 157. Mantodea: (Praying Mantids), in Encyclopedia of Insects (Resh, V. H., and Carde, R. T., eds.) 2nd Edn., Academic Press, San Diego, pp. 597–599.CrossRefGoogle Scholar
  24. 24.
    Matsuda, R. (1976) 27. The Mantodea, in Morphology and Evolution of the Insect Abdomen (Matsuda, R., ed.) Pergamon, pp. 187–191.CrossRefGoogle Scholar
  25. 25.
    Carle, T., Toh, Y., Yamawaki, Y., Watanabe, H., and Yokohari, F. (2014) The antennal sensilla of the praying mantis Tenodera aridifolia: a new flagellar partition based on the antennal macro-, micro- and ultrastructures, Arthropod Struct. Dev., 43, 103–116.CrossRefPubMedGoogle Scholar
  26. 26.
    Popkiewicz, B., and Prete, F. R. (2013) Macroscopic characteristics of the praying mantis electroretinogram, J. Insect Physiol., 59, 812–823.CrossRefPubMedGoogle Scholar
  27. 27.
    Koehler, R., and Predel, R. (2010) CAPA-peptides of praying mantids (Mantodea), Peptides, 31, 377–383.CrossRefPubMedGoogle Scholar
  28. 28.
    Memarpoor-Yazdi, M., Zare-Zardini, H., and Asoodeh, A. (2013) A novel antimicrobial peptide derived from the insect Paederus dermatitis, Int. J. Pept. Res. Ther., 19, 99–108.CrossRefGoogle Scholar
  29. 29.
    Zardini, H. Z., Amiri, A., Shanbedi, M., Maghrebi, M., and Baniadam, M. (2012) Enhanced antibacterial activity of amino acids-functionalized multi walled carbon nanotubes by a simple method, Colloids Surf. B Biointerfaces, 92, 196–202.CrossRefPubMedGoogle Scholar
  30. 30.
    Lupu, A. R., and Popescu, T. (2013) The noncellular reduction of MTT tetrazolium salt by TiO2 nanoparticles and its implications for cytotoxicity assays, Toxicol. in vitro, 27, 1445–1450.CrossRefPubMedGoogle Scholar
  31. 31.
    Simmaco, M., Mignogna, G., and Barra, D. (1998) Antimicrobial peptides from amphibian skin: what do they tell us? Biopolymers, 47, 435–450.CrossRefPubMedGoogle Scholar
  32. 32.
    McGillivary, G., Ray, W. C., Bevins, C. L., Munson, R. S., Jr., and Bakaletz, L. O. (2007) A member of the cathelicidin family of antimicrobial peptides is produced in the upper airway of the chinchilla and its mRNA expression is altered by common viral and bacterial co-pathogens of otitis media, Mol. Immunol., 44, 2446–2458.CrossRefPubMedCentralPubMedGoogle Scholar
  33. 33.
    Boman, H. G. (1991) Antibacterial peptides: key components needed in immunity, Cell, 65, 205–207.CrossRefPubMedGoogle Scholar
  34. 34.
    Saido-Sakanaka, H., Ishibashi, J., Momotani, E., Amano, F., and Yamakawa, M. (2004) In vitro and in vivo activity of antimicrobial peptides synthesized based on the insect defensin, Peptides, 25, 19–27.CrossRefPubMedGoogle Scholar
  35. 35.
    Ho, C. L., and Hwang, L. L. (1991) Structure and biological activities of a new mastoparan isolated from the venom of the hornet Vespa basalis, Biochem. J., 274, 453–450.PubMedCentralPubMedGoogle Scholar
  36. 36.
    Nakajima, T., Yasuhara, T., Uzu, S., Wakamatsu, K., Miyazawa, T., Fukuda, K., and Tsukamoto, Y. (1985) Wasp venom peptides; wasp kinins, new cytotrophic peptide families and their physicochemical properties, Peptides, 6, 425–430.CrossRefGoogle Scholar
  37. 37.
    Ohara-Imaizumi, M., Nakamichi, Y., Ozawa, S., Katsuta, H., Ishida, H., and Nagamatsu, S. (2001) Mastoparan stimulates GABA release from MIN6 cells: relationship between SNARE proteins and mastoparan action, Biochem. Biophys. Res. Commun., 289, 1025–1030.CrossRefPubMedGoogle Scholar
  38. 38.
    Wu, T.-M., Chou, T.-C., Ding, Y.-A., and Li, M.-L. (1999) Stimulation of TNF-[agr], IL-1[bgr] and nitrite release from mouse cultured spleen cells and lavaged peritoneal cells by mastoparan-M, Immunol. Cell. Biol., 77, 476–482.CrossRefGoogle Scholar
  39. 39.
    Amin, R. H., Chen, H. Q., Veluthakal, R., Silver, R. B., Li, J., Li, G., and Kowluru, A. (2003) Mastoparan-induced insulin secretion from insulin-secreting βTC3 and INS-1 cells: evidence for its regulation by Rho subfamily of G proteins, Endocrinology, 144, 4508–4518.CrossRefGoogle Scholar
  40. 40.
    Straub, S. G., James, R. F., Dunne, M. J., and Sharp, G. W. (1998) Glucose augmentation of mastoparan-stimulated insulin secretion in rat and human pancreatic islets, Diabetes, 47, 1053–1057.CrossRefPubMedGoogle Scholar
  41. 41.
    Yang, M. J., Lin, W.-Y., Lu, K.-H., and Tu, W.-C. (2011) Evaluating antioxidative activities of amino acid substitutions on mastoparan-B, Peptides, 32, 2037–2043.CrossRefPubMedGoogle Scholar
  42. 42.
    Mendes, M. A., de Souza, B. M., and Palma, M. S. (2005) Structural and biological characterization of three novel mastoparan peptides from the venom of the neotropical social wasp Protopolybia exigua (Saussure), Toxicon, 45, 101–106.CrossRefPubMedGoogle Scholar
  43. 43.
    Ho, C. L., and Hwang, L. L. (1991) Structure and biological activities of a new mastoparan isolated from the venom of the hornet Vespa basalis, Biochem. J., 274, 453–456.PubMedCentralPubMedGoogle Scholar
  44. 44.
    Lee, S. Y., Park, N. G., and Choi, M.-U. (1998) Effects of mastoparan B and its analogs on the phospholipase D activity in L1210 cells, FEBS Lett., 432, 50–54.CrossRefPubMedGoogle Scholar
  45. 45.
    Russell, A. L., Kennedy, A. M., Spuches, A. M., Venugopal, D., Bhonsle, J. B., and Hicks, R. P. (2010) Spectroscopic and thermodynamic evidence for antimicrobial peptide membrane selectivity, Chem. Phys. Lipids, 163, 488–497.CrossRefPubMedGoogle Scholar
  46. 46.
    Sample, C. J., Hudak, K. E., Barefoot, B. E., Koci, M. D., Wanyonyi, M. S., Abraham, S., Staats, H. F., and Ramsburg, E. A. (2013) A mastoparan-derived peptide has broad-spectrum antiviral activity against enveloped viruses, Peptides, 48, 96–105.CrossRefPubMedCentralPubMedGoogle Scholar
  47. 47.
    Leal Denis, M. F., Incicco, J. J., Espelt, M. V., Verstraeten, S. V., Pignataro, O. P., Lazarowski, E. R., and Schwarzbaum, P. J. (2013) Kinetics of extracellular ATP in mastoparan 7-activated human erythrocytes, Biochim. Biophys. Acta (General Subjects), 1830, 4692–4707.CrossRefGoogle Scholar
  48. 48.
    Zhang, P., Ray, R., Singh, B. R., and Ray, P. (2013) Mastoparan-7 rescues botulinum toxin-A poisoned neurons in a mouse spinal cord cell culture model, Toxicon, 76, 37–43.CrossRefPubMedGoogle Scholar
  49. 49.
    Walsh, E. G., Maher, S., Devocelle, M., O’Brien, P. J., Baird, A. W., and Brayden, D. J. (2011) High content analysis to determine cytotoxicity of the antimicrobial peptide, melittin and selected structural analogs, Peptides, 32, 1764–1773.CrossRefPubMedGoogle Scholar
  50. 50.
    Koyama, Y., Motobu, M., Hikosaka, K., Yamada, M., Nakamura, K., Saido-Sakanaka, H., Asaoka, A., Yamakawa, M., Isobe, T., Shimura, K., Kong, C. B., Hayashidani, H., Nakai, Y., and Hirota, Y. (2006) Cytotoxicity and antigenicity of antimicrobial synthesized peptides derived from the beetle Allomyrina dichotoma defensin in mice, Int. Immunopharmacol., 6, 748–753.Google Scholar
  51. 51.
    Maher, S., and McClean, S. (2006) Investigation of the cytotoxicity of eukaryotic and prokaryotic antimicrobial peptides in intestinal epithelial cells in vitro, Biochem. Pharmacol., 71, 1289–1298.CrossRefGoogle Scholar
  52. 52.
    Dawson, R. M., and Liu, C.-Q. (2011) Analogues of peptide SMAP-29 with comparable antimicrobial potency and reduced cytotoxicity, Int. J. Antimicrob. Agents, 37, 432–437.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • Hadi Zare-Zardini
    • 1
    • 2
    • 3
  • Asghar Taheri-Kafrani
    • 3
  • Mahtab Ordooei
    • 4
    Email author
  • Leila Ebrahimi
    • 5
  • Behnaz Tolueinia
    • 6
  • Mojgan Soleimanizadeh
    • 7
  1. 1.Young Researchers and Elite Club, Yazd BranchIslamic Azad UniversityYazdIran
  2. 2.Hematology and Oncology Research CenterShahid Sadoughi University of Medical Sciences and Health ServicesYazdIran
  3. 3.Department of Biotechnology, Faculty of Advanced Sciences and TechnologiesUniversity of IsfahanIsfahanIran
  4. 4.Pediatric Endocrinologist, Yazd Diabetes Research CenterShahid Sadoughi University of Medical SciencesYazdIran
  5. 5.Blood Transfusion Research CenterHigh Institute for Research and Education in Transfusion MedicineTehranIran
  6. 6.Department of Biology, Faculty of Sciences, Iranshahr BranchPayam Noor University of Sistan and BaluchestanIranshahrIran
  7. 7.Biotechnology Department, Agriculture FacultyFerdowsi University of MashhadMashhadIran

Personalised recommendations