Advertisement

Biochemistry (Moscow)

, Volume 80, Issue 4, pp 424–432 | Cite as

pH Might play a role in regulating the function of paired amphipathic helices domains of human Sin3B by altering structure and thermodynamic stability

  • Tauheed Hasan
  • Mashook Ali
  • Daman Saluja
  • Laishram Rajendrakumar SinghEmail author
Article

Abstract

Human Sin3B (hSin3B), a transcription regulator, is a scaffold protein that binds to different transcription factors and regulates transcription. It consists of six conserved domains that include four paired amphipathic helices (PAH 1–4), histone deacetylase interaction domain (HID), and highly conserved region (HCR). Interestingly, the PAH domains of hSin3B are significantly homologous to each other, yet each one interacts with a specific set of unique transcription factors. Though various partners interacting with hSin3B PAH domains have been characterized, there is no structural information available on the individual PAH domains of hSin3B. Here we characterize the structure and stability of different PAH domains of hSin3B at both nuclear and physiological pH values by using different optical probes. We found that the native state structure and stability of different PAH domains are different at nuclear pH where hSin3B performs its biological function. We also found that PAH2 and PAH3 behave differently at both nuclear and physiological pH in terms of native state structure and thermodynamic stability, while the structural identity of PAH1 remains unaltered at both pH values. The study indicates that the structural heterogeneity of different PAH domains might be responsible for having a unique set of interacting transcription factors.

Key words

protein structure thermodynamic stability circular dichroism transcription regulator scaffold protein 

Abbreviations

HCR

highly conserved region

HID

histone deacetylase interaction domain

PAH

paired amphipathic helices domain

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Grzenda, A., Lomberk, G., Zhang, J.-S., and Urrutia, R. (2009) Sin3: master scaffold and transcriptional corepressor, Biochim. Biophys. Acta (BBA)-Gene Regul. Mechanisms, 1789, 443–450.CrossRefGoogle Scholar
  2. 2.
    Kadamb, R., Mittal, S., Bansal, N., Batra, H., and Saluja, D. (2013) Sin3: insight into its transcription regulatory functions, Europ. J. Cell Biol., 92, 237–246.CrossRefPubMedGoogle Scholar
  3. 3.
    McDonel, P., Costello, I., and Hendrich, B. (2009) Keeping things quiet: roles of NuRD and Sin3 co-repressor complexes during mammalian development, Int. J. Biochem. Cell Biol., 41, 108–116.CrossRefPubMedCentralPubMedGoogle Scholar
  4. 4.
    Hassig, C. A., Fleischer, T. C., Billin, A. N., Schreiber, S. L., and Ayer, D. E. (1997) Histone deacetylase activity is required for full transcriptional repression by mSin3A, Cell, 89, 341–347.CrossRefGoogle Scholar
  5. 5.
    Le Guezennec, X., Vermeulen, M., and Stunnenberg, H. G. (2006) Molecular characterization of Sin3 PAH-domain interactor specificity and identification of PAH partners, Nucleic Acids Res., 34, 3929–3937.CrossRefPubMedCentralPubMedGoogle Scholar
  6. 6.
    Sahu, S. C., Swanson, K. A., Kang, R. S., Huang, K., Brubaker, K., Ratcliff, K., and Radhakrishnan, I. (2008) Conserved themes in target recognition by the PAH1 and PAH2 domains of the Sin3 transcriptional corepressor, J. Mol. Biol., 375, 1444–1456.CrossRefPubMedCentralPubMedGoogle Scholar
  7. 7.
    Ayer, D. E., Lawrence, Q. A., and Eisenman, R. N. (1995) Mad-Max transcriptional repression is mediated by ternary complex formation with mammalian homologs of yeast repressor Sin3, Cell, 80, 767–776.CrossRefGoogle Scholar
  8. 8.
    Yang, Q., Kong, Y., Rothermel, B., Garry, D. J., Bassel-Duby, R., and Williams, R. S. (2000) The winged-helix/forkhead protein myocyte nuclear factor beta (MNF-beta) forms a co-repressor complex with mammalian sin3B, Biochem. J., 345, 335–343.CrossRefPubMedCentralPubMedGoogle Scholar
  9. 9.
    Alland, L., Muhle, R., Hou, H., Potes, J., Chin, L., Schreiber-Agus, N., and DePinho, R. A. (1997) Role for N-CoR and histone deacetylase in Sin3-mediated transcriptional repression, Nature, 387, 49–55.CrossRefPubMedGoogle Scholar
  10. 10.
    Rayman, J. B., Takahashi, Y., Indjeian, V. B., Dannenberg, J.-H., Catchpole, S., Watson, R. J., te Riele, H., and Dynlacht, B. D. (2002) E2F mediates cell cycle-dependent transcriptional repression in vivo by recruitment of an HDAC1/mSin3B corepressor complex, Genes Devel., 16, 933–947.CrossRefPubMedCentralPubMedGoogle Scholar
  11. 11.
    Spronk, C. A. E. M., Tessari, M., Kaan, A. M., Jansen, J. F. A., Vermeulen, M., Stunnenberg, H. G., and Vuister, G. W. (2000) The Mad1-Sin3B interaction involves a novel helical fold, Nature Struct. Mol. Biol., 7, 1100–1104.CrossRefGoogle Scholar
  12. 12.
    Olsson, A., Olsson, I., and Dhanda, R. S. (2008) Transcriptional repression by leukemia-associated ETO family members can be independent of oligomerization and coexpressed hSIN3B and N-CoR, Biochim. Biophys. Acta (BBA)-Gene Regul. Mechanisms, 1779, 590–598.CrossRefGoogle Scholar
  13. 13.
    Silverstein, R. A., and Ekwall, K. (2005) Sin3: a flexible regulator of global gene expression and genome stability, Curr. Genet., 47, 1–17.CrossRefPubMedGoogle Scholar
  14. 14.
    Van Ingen, H., Baltussen, M. A. H., Aelen, J., and Vuister, G. W. (2006) Role of structural and dynamical plasticity in Sin3: the free PAH2 domain is a folded module in mSin3B, J. Mol. Biol., 358, 485–497.CrossRefPubMedGoogle Scholar
  15. 15.
    Swanson, K. A., Knoepfler, P. S., Huang, K., Kang, R. S., Cowley, S. M., Laherty, C. D., Eisenman, R. N., and Radhakrishnan, I. (2004) HBP1 and Mad1 repressors bind the Sin3 corepressor PAH2 domain with opposite helical orientations, Nature Struct. Mol. Biol., 11, 738–746.CrossRefGoogle Scholar
  16. 16.
    Kumar, G. S., Xie, T., Zhang, Y., and Radhakrishnan, I. (2011) Solution structure of the mSin3A PAH2-Pf1 SID1 complex: a Mad1/Mxd1-like interaction disrupted by MRG15 in the Rpd3S/Sin3S complex, J. Mol. Biol., 408, 987–1000.CrossRefPubMedCentralPubMedGoogle Scholar
  17. 17.
    Van Ingen, H., Lasonder, E., Jansen, J. F. A., Kaan, A. M., Spronk, C. A. E. M., Stunnenberg, H. G., and Vuister, G. W. (2004) Extension of the binding motif of the Sin3 interacting domain of the Mad family proteins, Biochemistry, 43, 46–54.CrossRefPubMedGoogle Scholar
  18. 18.
    Saluta, M., and Bell, P. A. (1998) Troubleshooting GST fusion protein expression in E. coli, Life Sci. News, 1.Google Scholar
  19. 19.
    Marty, A., Boiret, M., and Deumie, M. (1986) How to illustrate ligand-protein binding in a class experiment: an elementary fluorescent assay, J. Chem. Ed., 63, 365.CrossRefGoogle Scholar
  20. 20.
    Lakowicz, J. R. (2007) Principles of Fluorescence Spectroscopy, Springer.Google Scholar
  21. 21.
    Szabo, A. G., Lynn, K., Krajcarski, D., and Rayner, D. M. (1979) Tyrosine fluorescence at 345 nm in proteins lacking tryptophan, J. Luminesc., 18, 582–586.CrossRefGoogle Scholar
  22. 22.
    Szabo, A. G., Lynn, K. R., Krajcarski, D. T., and Rayner, D. M. (1978) Tyrosinate fluorescence maxima at 345 nm in proteins lacking tryptophan at pH 7, FEBS Lett., 94, 249–252.CrossRefPubMedGoogle Scholar
  23. 23.
    Ruan, K., Li, J., Liang, R., Xu, C., Yu, Y., Lange, R., and Balny, C. (2002) A rare protein fluorescence behavior where the emission is dominated by tyrosine: case of the 33-kDa protein from spinach photosystem II. Biochem. Biophys. Res. Commun., 293, 593–597.CrossRefPubMedGoogle Scholar
  24. 24.
    Becktel, W. J., and Schellman, J. A. (1987) Protein stability curves, Biopolymers, 26, 1859–1877.CrossRefPubMedGoogle Scholar
  25. 25.
    Barnes, V. L., Strunk, B. S., Lee, I., Huttemann, M., and Pile, L. A. (2010) Loss of the SIN3 transcriptional core-pressor results in aberrant mitochondrial function, BMC Biochem., 11, 26.CrossRefPubMedCentralPubMedGoogle Scholar
  26. 26.
    Backues, S. K., Lynch-Day, M. A., and Klionsky, D. J. (2012) The Ume6-Sin3-Rpd3 complex regulates ATG8 transcription to control autophagosome size, Autophagy, 8, 1835–1836.CrossRefPubMedCentralPubMedGoogle Scholar
  27. 27.
    Kong, Q., Zeng, W., Wu, J., Hu, W., Li, C., and Mao, B. (2010) RNF220, an E3 ubiquitin ligase that targets Sin3B for ubiquitination, Biochem. Biophys. Res. Commun., 393, 708–713.CrossRefPubMedGoogle Scholar
  28. 28.
    Khochbin, S., Verdel, A., Lemercier, C., and Seigneurin-Berny, D. (2001) Functional significance of histone deacetylase diversity, Curr. Opin. Genet. Devel., 11, 162–166.CrossRefGoogle Scholar
  29. 29.
    Vega, A. V., Avila, G., and Matthews, G. (2013) Interaction between the transcriptional corepressor Sin3B and voltage-gated sodium channels modulates functional channel expression, Sci. Rep., 3.Google Scholar
  30. 30.
    Cunningham, J., Estrella, V., Lloyd, M., Gillies, R., Frieden, B. R., and Gatenby, R. (2012) Intracellular electric field and pH optimize protein localization and movement, PloS One, 7, e36894.CrossRefPubMedCentralPubMedGoogle Scholar
  31. 31.
    Nomura, M., Uda-Tochio, H., Murai, K., Mori, N., and Nishimura, Y. (2005) The neural repressor NRSF/REST binds the PAH1 domain of the Sin3 corepressor by using its distinct short hydrophobic helix, J. Mol. Biol., 354, 903–915.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • Tauheed Hasan
    • 1
  • Mashook Ali
    • 1
  • Daman Saluja
    • 1
  • Laishram Rajendrakumar Singh
    • 1
    Email author
  1. 1.Dr. B. R. Ambedkar Center for Biomedical ResearchUniversity of DelhiDelhiIndia

Personalised recommendations