Biochemistry (Moscow)

, Volume 80, Issue 4, pp 417–423 | Cite as

Effect of cationic plastoquinone SkQ1 on electron transfer reactions in chloroplasts and mitochondria from pea seedlings

  • V. D. SamuilovEmail author
  • D. B. Kiselevsky


Plastoquinone bound with decyltriphenylphosphonium cation (SkQ1) penetrating through the membrane in nanomolar concentrations inhibited H2O2 generation in cells of epidermis of pea seedling leaves that was detected by the fluorescence of 2′,7′-dichlorofluorescein. Photosynthetic electron transfer in chloroplasts isolated from pea leaves is suppressed by SkQ1 at micromolar concentrations: the electron transfer in chloroplasts under the action of photosystem II or I (with silicomolybdate or methyl viologen as electron acceptors, respectively) is more sensitive to SkQ1 than under the action of photosystem II + I (with ferricyanide or p-benzoquinone as electron acceptors). SkQ1 reduced by borohydride is oxidized by ferricyanide, p-benzoquinone, and, to a lesser extent, by silicomolybdate, but not by methyl viologen. SkQ1 is not effective as an electron acceptor supporting O2 evolution from water in illuminated chloroplasts. The data on suppression of photosynthetic O2 evolution or consumption show that SkQ1, similarly to phenazine methosulfate, causes conversion of the chloroplast redox-chain from non-cyclic electron transfer mode to the cyclic mode without O2 evolution. Oxidation of NADH or succinate in mitochondria isolated from pea roots is stimulated by SkQ1.

Key words

programmed cell death mitochondria-targeted quinones SkQ1 electron transfer retardation in chloroplasts stimulation in mitochondria 











decyltriphenylphosphonium cation


epidermal cells




guard cells




methyl viologen


programmed cell death


phenazine methosulfate


photosystem I(II)


reactive oxygen species














electric potential transmembrane difference


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Skulachev, V. P. (2006) Bioenergetic aspects of apoptosis, necrosis and mitoptosis, Apoptosis, 11, 473–485.CrossRefPubMedGoogle Scholar
  2. 2.
    Samuilov, V. D., Lagunova, E. M., Dzyubinskaya, E. V., Izyumov, D. S., Kiselevsky, D. V., and Makarova, Y. V. (2002) Involvement of chloroplasts in the death of plant cells, Biochemistry (Moscow), 67, 627–634.CrossRefGoogle Scholar
  3. 3.
    Samuilov, V. D., Lagunova, E. M., Kiselevsky, D. B., Dzyubinskaya, E. V., Makarova, Y. V., and Gusev, M. V. (2003) Participation of chloroplasts in plant apoptosis, Biosci. Rep., 23, 103–117.CrossRefPubMedGoogle Scholar
  4. 4.
    Liberman, E. A., and Skulachev, V. P. (1970) Conversion of biomembrane-produced energy into electric form. IV. General discussion, Biochim. Biophys. Acta, 216, 30–42.CrossRefPubMedGoogle Scholar
  5. 5.
    Kelso, G. F., Porteous, C. M., Coulter, C. V., Hughes, G., Porteous, W. K., Ladgerwood, E. C., Smith, R. A., and Murphy, M. P. (2001) Selective targeting of a redox-active ubiquinone to mitochondria within cells. Antioxidant and antiapoptotic properties, J. Biol. Chem., 276, 4588–4596.CrossRefPubMedGoogle Scholar
  6. 6.
    Dhanasekaran, A., Kotamraju, S., Kalivendi, S. V., Matsunaga, T., Shang, T., Keszler, A., Joseph, J., and Kalyanaraman, B. (2004) Supplementation of endothelial cells with mitochondria-targeted antioxidants inhibit peroxide-induced mitochondrial iron uptake, oxidative damage, and apoptosis, J. Biol. Chem., 279, 37575–37587.CrossRefPubMedGoogle Scholar
  7. 7.
    James, A. M., Cocheme, H. M., Smith, R. A., and Murphy, M. P. (2005) Interactions of mitochondria-targeted and untargeted ubiquinones with the mitochondrial respiratory chain and reactive oxygen species. Implications for the use of exogenous ubiquinones as therapies and experimental tools, J. Biol. Chem., 280, 21295–21312.CrossRefPubMedGoogle Scholar
  8. 8.
    Skulachev, V. P. (2007) A biochemical approach to the problem of aging: “megaproject” on membrane-penetrating ions. The first results and prospects, Biochemistry (Moscow), 72, 1385–1399.CrossRefGoogle Scholar
  9. 9.
    Vasil’ev, E. V., Dzyubinskaya, E. V., Kiselevsky, D. B., Shestak, A. A., and Samuilov, V. D. (2011) Programmed cell death in plants: protective effect of mitochondrial-targeted quinines, Biochemistry (Moscow), 76, 1120–1132.CrossRefGoogle Scholar
  10. 10.
    Barsky, E. L., Gubanova, O. N., and Samuilov, V. D. (1991) Inhibition of photosynthetic electron transfer in chloroplasts by carbonyl cyanide m-chlorophenylhydrazone, Biokhimiya, 56, 434–438.Google Scholar
  11. 11.
    Millenaar, F. F., Benschop, J. J., Wagner, A. M., and Lambers, H. (1998) The role of the alternative oxidase in stabilizing the in vivo reduction state of the ubiquinone pool and the activation state of the alternative oxidase, Plant Physiol., 118, 599–607.CrossRefPubMedCentralPubMedGoogle Scholar
  12. 12.
    Arnon, D. I. (1949) Copper enzymes in isolated chloroplasts. Polyphenol oxidase in Beta vulgaris, Plant Physiol., 24, 1–15.CrossRefPubMedCentralPubMedGoogle Scholar
  13. 13.
    Smith, P. K., Krohn, R. I., Hermanson, G. T., Mallia, A. K., Gartner, F. H., Provenzano, M. D., Fujimoto, E. K., Goeke, N. M., Olson, B. J., and Klenk, D. C. (1985) Measurement of protein using bicinchoninic acid, Anal. Biochem., 150, 76–85.CrossRefPubMedGoogle Scholar
  14. 14.
    LeBel, C. P., Ischiropoulos, H., and Bondy, S. C. (1992) Evaluation of the probe 2′,7′-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress, Chem. Res. Toxicol., 5, 227–231CrossRefPubMedGoogle Scholar
  15. 15.
    Wrona, M., Patel, K., and Wardman, P. (2005) Reactivity of 2′,7′-dichlorodihydrofluorescein and dihydrorhodamin 123 and their oxidized forms toward carbonate, nitrogen dioxide, and hydroxyl radicals, Free Radic. Biol. Med., 38, 262–270.CrossRefPubMedGoogle Scholar
  16. 16.
    Vasil’ev, L. A., Dzyubinskaya, E. V., Zinovkin, P. A., Kiselevsky, D. B., Lobesheva, N. V., and Samuilov, V. D. (2009) Chitosan-induced programmed cell death in plants, Biochemistry (Moscow), 74, 1035–1044.CrossRefGoogle Scholar
  17. 17.
    Sagi, M., and Fluhr, R. (2006) Production of reactive oxygen species by plant NADPH oxidases, Plant Physiol., 141, 336–340.CrossRefPubMedCentralPubMedGoogle Scholar
  18. 18.
    Graan, T. (1986) The interaction of silicomolybdate with the photosystem II herbicide-binding site, FEBS Lett., 206, 9–14.CrossRefGoogle Scholar
  19. 19.
    Fujii, T., Yokoyama, E., Inoue, K., and Sakurai, H. (1990) The sites of electron donation of photosystem I to methyl viologen, Biochim. Biophys. Acta, 1015, 41–48.CrossRefGoogle Scholar
  20. 20.
    Braun, G., Driesenaar, A. R. J., Shalgi, E., and Malkin, S. (1992) Manipulation of the imbalance for linear electron flow activities between photosystems I and II of photosynthesis by cyclic electron flow cofactors, Biochim. Biophys. Acta, 1099, 57–66.CrossRefGoogle Scholar
  21. 21.
    Moore, A. L., and Siedow, J. N. (1991) The regulation and nature of the cyanide-resistant alternative oxidase of plant mitochondria, Biochim. Biophys. Acta, 1059, 121–140.CrossRefPubMedGoogle Scholar
  22. 22.
    Severina, I. I., Severin, F. F., Korshunova, G. A., Sumbatyan, N. V., Ilyasova, T. M., Simonyan, R. A., Rogov, A. G., Trendeleva, T. A., Zvyagilskaya, R. A., Dugina, V. B., Domnina, L. V., Fetisova, E. K., Lyamzaev, K. G., Vyssokikh, M. Yu., Chernyak, B. V., Skulachev, M. V., Skulachev, V. P., and Sadovnichii, V. A. (2013) In search of novel highly active mitochondria-targeted antioxidants: thymoquinone and its cationic derivatives, FEBS Lett., 587, 2018–2024.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.Faculty of BiologyLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations