Biochemistry (Moscow)

, Volume 80, Issue 4, pp 391–399 | Cite as

Prospects for using self-assembled nucleic acid structures

  • M. N. Rudchenko
  • A. A. ZamyatninJr.Email author


According to the central dogma in molecular biology, nucleic acids are assigned with key functions on storing and executing genetic information in any living cell. However, features of nucleic acids are not limited only with properties providing template-dependent biosynthetic processes. Studies of DNA and RNA unveiled unique features of these polymers able to make various self-assembled three-dimensional structures that, among other things, use the complementarity principle. Here, we review various self-assembled nucleic acid structures as well as application of DNA and RNA to develop nanomaterials, molecular automata, and nanodevices. It can be expected that in the near future results of these developments will allow designing novel next-generation diagnostic systems and medicinal drugs.

Key words

DNA RNA complementarity aptamers ribozyme deoxyribozyme molecular computing molecular automata 



cluster of differentiation


hepatocyte growth factor receptor


human immunodeficiency virus




systematic evolution of ligands by exponential enrichment


transfer RNA


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Crick, F. H. (1970) Central dogma of molecular biology, Nature, 227, 561–563.CrossRefPubMedGoogle Scholar
  2. 2.
    Watson, J. D., and Crick, F. H. (1953) Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid, Nature, 171, 737–738.CrossRefPubMedGoogle Scholar
  3. 3.
    Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E., and Mello, C. C. (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans, Nature, 391, 806–811.CrossRefPubMedGoogle Scholar
  4. 4.
    Siomi, H., and Siomi, M. C. (2009) On the road to reading the RNA-interference code, Nature, 457, 396–404.CrossRefPubMedGoogle Scholar
  5. 5.
    Higgs, P. G. (2000) RNA secondary structure: physical and computational aspects, Q. Rev. Biophys., 33, 199–253.CrossRefPubMedGoogle Scholar
  6. 6.
    Motorin, Y., and Helm, M. (2011) RNA nucleotide methylation, Wiley Interdiscipl. Rev. RNA, 2, 611–631.CrossRefGoogle Scholar
  7. 7.
    Limbach, P. A., Crain, P. F., and McCloskey, J. A. (1994) Summary: the modified nucleosides of RNA, Nucleic Acids Res., 22, 2183–2196.CrossRefPubMedCentralPubMedGoogle Scholar
  8. 8.
    Wu, G., Yu, A. T., Kantartzis, A., and Yu, Y. T. (2011) Functions and mechanisms of spliceosomal small nuclear RNA pseudouridylation, Wiley Interdiscipl. Rev. RNA, 2, 571–581.CrossRefGoogle Scholar
  9. 9.
    Bogdanov, A. A., Zinovkin, R. A., and Zamyatnin, A. A., Jr. (2011) RNA editing: breaking the dogma, Biochemistry (Moscow), 76, 867–868.CrossRefGoogle Scholar
  10. 10.
    Bernhardt, H. S. (2012) The RNA world hypothesis: the worst theory of the early evolution of life (except for all the others), Biol. Direct., 7, 23.CrossRefPubMedCentralPubMedGoogle Scholar
  11. 11.
    Gilbert, W. (1986) Origin of life: the RNA world, Nature, 319, 618.CrossRefGoogle Scholar
  12. 12.
    Kul’bachinskiy, A. I. (2006) Methods for selection of aptamers to protein targets, Uspekhi Biol. Khim., 46, 193–224.Google Scholar
  13. 13.
    Shangguan, D., Li, Y., Tang, Z., Cao, Z. C., Chen, H. W., Mallikaratchy, P., Sefah, K., Yang, C. J., and Tan, W. (2006) Aptamers evolved from live cells as effective molecular probes for cancer study, Proc. Natl. Acad. Sci. USA, 103, 11838–11843.CrossRefPubMedCentralPubMedGoogle Scholar
  14. 14.
    Sampson, T. (2003) Aptamers and SELEX: the technology, World Patent Inform., 25, 123–129.CrossRefGoogle Scholar
  15. 15.
    Burke, D. H., and Gold, L. (1997) RNA aptamers to the adenosine moiety of S-adenosyl methionine: structural inferences from variations on a theme and the reproducibility of SELEX, Nucleic Acids Res., 25, 2020–2024.CrossRefPubMedCentralPubMedGoogle Scholar
  16. 16.
    Lauhon, C. T., and Szostak, J. W. (1995) RNA aptamers that bind flavin and nicotinamide redox cofactors, J. Am. Chem. Soc., 117, 1246–1257.CrossRefPubMedGoogle Scholar
  17. 17.
    Klug, S. J., and Famulok, M. (1994) All you wanted to know about SELEX, Mol. Biol. Rep., 20, 97–107.CrossRefPubMedGoogle Scholar
  18. 18.
    Djordjevic, M. (2007) SELEX experiments: new prospects, applications and data analysis in inferring regulatory pathways, Biomol. Eng., 24, 179–189.CrossRefPubMedGoogle Scholar
  19. 19.
    Cox, J. C., Hayhurst, A., Hesselberth, J., Bayer, T. S., Georgiou, G., and Ellington, A. D. (2002) Automated selection of aptamers against protein targets translated in vitro: from gene to aptamer, Nucleic Acids Res., 30, 108.CrossRefGoogle Scholar
  20. 20.
    Nagarkatti, R., Bist, V., Sun, S., Fortes de Araujo, F., Nakhasi, H. L., and Debrabant, A. (2012) Development of an aptamer-based concentration method for the detection of Trypanosoma cruzi in blood, PLoS One, 7, 43533.CrossRefGoogle Scholar
  21. 21.
    Labib, M., Zamay, A. S., Kolovskaya, O. S., Reshetneva, I. T., Zamay, G. S., Kibbee, R. J., Sattar, S. A., Zamay, T. N., and Berezovski, M. V. (2012) Aptamer-based impedimetric sensor for bacterial typing, Anal. Chem., 84, 8114–8117.CrossRefPubMedGoogle Scholar
  22. 22.
    Reshetnikov, R. V., Golovin, A. V., and Kopylov, A. M. (2010) Comparison of models of thrombin-binding 15-mer DNA aptamer by molecular dynamics simulation, Biochemistry (Moscow), 75, 1017–1024.CrossRefGoogle Scholar
  23. 23.
    Barbu, M., and Stojanovic, M. N. (2012) A fresh look at adenosine-binding DNA motifs, Chembiochem, 13, 658–660.CrossRefPubMedGoogle Scholar
  24. 24.
    Zhu, J., Nguyen, T., Pei, R., Stojanovic, M., and Lin, Q. (2012) Specific capture and temperature-mediated release of cells in an aptamer-based microfluidic device, Lab. Chip., 12, 3504–3513.CrossRefPubMedCentralGoogle Scholar
  25. 25.
    Zhu, J., Shang, J., Jia, Y., Pei, R., Stojanovic, M., and Lin, Q. (2014) Spatially selective release of aptamer-captured cells by temperature mediation, IET Nanobiotechnol., 8, 2–9.CrossRefPubMedGoogle Scholar
  26. 26.
    Kim, J., Hilton, J. P., Yang, K. A., Pei, R., Stojanovic, M., and Lin, Q. (2013) Nucleic acid isolation and enrichment on a microchip, Sens. Actuators A. Phys., 195, 183–190.CrossRefPubMedCentralPubMedGoogle Scholar
  27. 27.
    Ramalingam, D., Duclair, S., Datta, S. A., Ellington, A., Rein, A., and Prasad, V. R. (2011) RNA aptamers directed to human immunodeficiency virus type 1 Gag polyprotein bind to the matrix and nucleocapsid domains and inhibit virus production, J. Virol., 85, 305–314.CrossRefPubMedCentralPubMedGoogle Scholar
  28. 28.
    Boltz, A., Piater, B., Toleikis, L., Guenther, R., Kolmar, H., and Hock, B. (2011) Bi-specific aptamers mediating tumor cell lysis, J. Biol. Chem., 286, 21896–21905.CrossRefPubMedCentralPubMedGoogle Scholar
  29. 29.
    Debbage, P. (2009) Targeted drugs and nanomedicine: present and future, Curr. Pharm. Des., 15, 153–172.CrossRefPubMedGoogle Scholar
  30. 30.
    Schrama, D., Reisfeld, R. A., and Becker, J. C. (2006) Antibody targeted drugs as cancer therapeutics, Nature Rev. Drug Discov., 5, 147–159.CrossRefGoogle Scholar
  31. 31.
    Jagannathan, V., Roulet, E., Delorenzi, M., and Bucher, P. (2006) HTPSELEX — a database of high-throughput SELEX libraries for transcription factor binding sites, Nucleic Acids Res., 34, 90–94.CrossRefGoogle Scholar
  32. 32.
    Chen, J. H., and Seeman, N. C. (1991) Synthesis from DNA of a molecule with the connectivity of a cube, Nature, 350, 631–633.CrossRefPubMedGoogle Scholar
  33. 33.
    Winfree, E., Liu, F., Wenzler, L. A., and Seeman, N. C. (1998) Design and self-assembly of two-dimensional DNA crystals, Nature, 394, 539–544.CrossRefPubMedGoogle Scholar
  34. 34.
    Seeman, N. C. (2005) From genes to machines: DNA nanomechanical devices, Trends Biochem. Sci., 30, 119–125.CrossRefPubMedCentralPubMedGoogle Scholar
  35. 35.
    Castro, C. E., Kilchherr, F., Kim, D. N., Shiao, E. L., Wauer, T., Wortmann, P., Bathe, M., and Dietz, H. (2011) A primer to scaffolded DNA origami, Nature Methods, 8, 221–229.CrossRefPubMedGoogle Scholar
  36. 36.
    Winfree, E. (2000) Algorithmic self-assembly of DNA: theoretical motivations and 2D assembly experiments, J. Biomol. Struct. Dyn., 17, 263–270.CrossRefPubMedGoogle Scholar
  37. 37.
    Wang, H. (1965) Games, logic and computers, Sci. Am., 98–106.Google Scholar
  38. 38.
    Rothemund, P. W., Ekani-Nkodo, A., Papadakis, N., Kumar, A., Fygenson, D. K., and Winfree, E. (2004) Design and characterization of programmable DNA nanotubes, J. Am. Chem. Soc., 126, 16344–16352.CrossRefPubMedGoogle Scholar
  39. 39.
    Douglas, S. M., Dietz, H., Liedl, T., Hogberg, B., Graf, F., and Shih, W. M. (2009) Self-assembly of DNA into nanoscale three-dimensional shapes, Nature, 459, 414–418.CrossRefPubMedCentralGoogle Scholar
  40. 40.
    Rothemund, P. W. (2006) Folding DNA to create nanoscale shapes and patterns, Nature, 440, 297–302.CrossRefPubMedGoogle Scholar
  41. 41.
    Lund, K., Manzo, A. J., Dabby, N., Michelotti, N., Johnson-Buck, A., Nangreave, J., Taylor, S., Pei, R., Stojanovic, M. N., Walter, N. G., Winfree, E., and Yan, H. (2010) Molecular robots guided by prescriptive landscapes, Nature, 465, 206–210.CrossRefPubMedCentralPubMedGoogle Scholar
  42. 42.
    Andersen, E. S., Dong, M., Nielsen, M. M., Jahn, K., Subramani, R., Mamdouh, W., Golas, M. M., Sander, B., Stark, H., Oliveira, C. L., Pedersen, J. S., Birkedal, V., Besenbacher, F., Gothelf, K. V., and Kjems, J. (2009) Self-assembly of a nanoscale DNA box with a controllable lid, Nature, 459, 73–76.CrossRefPubMedGoogle Scholar
  43. 43.
    Douglas, S. M., Marblestone, A. H., Teerapittayanon, S., Vazquez, A., Church, G. M., and Shih, W. M. (2009) Rapid prototyping of 3D DNA-origami shapes with caDNAno, Nucleic Acids Res., 37, 5001–5006.CrossRefPubMedCentralPubMedGoogle Scholar
  44. 44.
    Macdonald, J., Li, Y., Sutovic, M., Lederman, H., Pendri, K., Lu, W., Andrews, B. L., Stefanovic, D., and Stojanovic, M. N. (2006) Medium scale integration of molecular logic gates in an automaton, Nano Lett., 6, 2598–2603.CrossRefPubMedGoogle Scholar
  45. 45.
    Pei, R., Macdonald, J., and Stojanovic, M. N. (2012) Development of trainable deoxyribozyme-based game playing automaton, Methods Mol. Biol., 848, 419–437.CrossRefPubMedGoogle Scholar
  46. 46.
    Douglas, S. M., Bachelet, I., and Church, G. M. (2012) A logic-gated nanorobot for targeted transport of molecular payloads, Science, 335, 831–834.CrossRefPubMedGoogle Scholar
  47. 47.
    Shin, J. S., and Pierce, N. A. (2004) A synthetic DNA walker for molecular transport, J. Am. Chem. Soc., 126, 10834–10835.CrossRefPubMedGoogle Scholar
  48. 48.
    Faulhammer, D., Lipton, R. J., and Landweber, L. F. (1999) Counting DNA: estimating the complexity of a test tube of DNA, Biosystems, 52, 193–196.CrossRefPubMedGoogle Scholar
  49. 49.
    Fu, P. (2007) Biomolecular computing: is it ready to take off? Biotechnol. J., 2, 91–101.CrossRefPubMedGoogle Scholar
  50. 50.
    Hush, N. S. (2003) An overview of the first half-century of molecular electronics, Ann. NY Acad. Sci., 1006, 1–20.CrossRefPubMedGoogle Scholar
  51. 51.
    Head, T. (1987) Formal language theory and DNA: an analysis of the generative capacity of specific recombinant behaviors, Bull. Math. Biol., 49, 737–759.CrossRefPubMedGoogle Scholar
  52. 52.
    Head, T. (1992) Splicing schemes and DNA, in Lindenmayer Systems: Impacts on Theoretical Computer Science and Developmental Biology, Springer-Verlag, Berlin, pp. 371–383.CrossRefGoogle Scholar
  53. 53.
    Adleman, L. M. (1994) Molecular computation of solutions to combinatorial problems, Science, 266, 1021–1024.CrossRefGoogle Scholar
  54. 54.
    Rubin, F. (1974) A search procedure for Hamilton paths and circuits, J. ACM, 21, 5404–5411.CrossRefGoogle Scholar
  55. 55.
    Garey, M., and Johnson, D. (1979) Computers and Intractability: A Guide to the Theory of NP Completeness, WH Freeman, NY.Google Scholar
  56. 56.
    Ouyang, Q., Kaplan, P. D., Liu, S., and Libchaber, A. (1997) DNA solution of the maximal clique problem, Science, 278, 446–449.CrossRefPubMedGoogle Scholar
  57. 57.
    Braich, R. S., Chelyapov, N., Johnson, C., Rothemund, P. W., and Adleman, L. (2002) Solution of a 20-variable 3-SAT problem on a DNA computer, Science, 296, 499–502.CrossRefPubMedGoogle Scholar
  58. 58.
    Pool, R. (1995) A boom in plans for DNA computing, Science, 268, 498–499.CrossRefPubMedGoogle Scholar
  59. 59.
    Lipton, R. J. (1995) DNA solution of hard computational problems, Science, 268, 542–545.CrossRefPubMedGoogle Scholar
  60. 60.
    Woese, C. R. (1967) The Genetic Code: The Molecular Basis for Genetic Expression, Harper and Row, NY.Google Scholar
  61. 61.
    Rothstein, M. (1977) Recent developments in the age-related alteration of enzymes: a review, Mech. Ageing Dev., 6, 241–257.CrossRefPubMedGoogle Scholar
  62. 62.
    North, G. (1989) Nobel prizes: chemistry. RNA’s catalytic role, Nature, 341, 556.PubMedGoogle Scholar
  63. 63.
    Altman, S. (2000) The road to RNase P, Nature Struct. Biol., 7, 827–828.CrossRefPubMedGoogle Scholar
  64. 64.
    Schubert, S., and Kurreck, J. (2004) Ribozyme- and deoxyribozyme-strategies for medical applications, Curr. Drug Targets, 5, 667–681.CrossRefPubMedGoogle Scholar
  65. 65.
    Flores, R., Navarro, J. A., de la Pena, M., Navarro, B., Ambros, S., and Vera, A. (1999) Viroids with hammerhead ribozymes: some unique structural and functional aspects with respect to other members of the group, Biol. Chem., 380, 849–854.CrossRefPubMedGoogle Scholar
  66. 66.
    Forster, A. C., and Symons, R. H. (1987) Self-cleavage of plus and minus RNAs of a virusoid and a structural model for the active sites, Cell, 49, 211–220.CrossRefPubMedGoogle Scholar
  67. 67.
    Rodnina, M. V. (2013). The ribosome as a versatile catalyst: reactions at the peptidyl transferase center, Curr. Opin. Struct. Biol., 23, 595–602.CrossRefPubMedGoogle Scholar
  68. 68.
    Wochner, A., Attwater, J., Coulson, A., and Holliger, P. (2011) Ribozyme-catalyzed transcription of an active ribozyme, Science, 332, 209–212.CrossRefGoogle Scholar
  69. 69.
    Szostak, J. W. (2012) The eightfold path to non-enzymatic RNA replication, J. Syst. Chem., 3, 2.CrossRefGoogle Scholar
  70. 70.
    Frommer, J., Appel, B., and Muller, S. (2014) Ribozymes that can be regulated by external stimuli, Curr. Opin. Biotechnol., 18, 35–41.Google Scholar
  71. 71.
    Kore, A. R., Vaish, N. K., Kutzke, U., and Eckstein, F. (1998) Sequence specificity of the hammerhead ribozyme revisited; the NHH rule, Nucleic Acids Res., 26, 4116–4120.CrossRefPubMedCentralPubMedGoogle Scholar
  72. 72.
    Ferre-D’Amare, A. R. (2004) The hairpin ribozyme, Biopolymers, 73, 71–78.CrossRefPubMedGoogle Scholar
  73. 73.
    Robertson, M. P., and Ellington, A. D. (1999) In vitro selection of an allosteric ribozyme that transduces analytes to amplicons, Nature Biotechnol., 17, 62–66.CrossRefGoogle Scholar
  74. 74.
    Fujita, Y., Ishikawa, J., Furuta, H., and Ikawa, Y. (2010) Generation and development of RNA ligase ribozymes with modular architecture through “design and selection”, Molecules, 15, 5850–5865.CrossRefPubMedGoogle Scholar
  75. 75.
    Kruger, K., Grabowski, P. J., Zaug, A. J., Sands, J., Gottschling, D. E., and Cech, T. R. (1982) Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena, Cell, 31, 147–157.CrossRefPubMedGoogle Scholar
  76. 76.
    Cheng, L. K., and Unrau, P. J. (2010) Closing the circle: replicating RNA with RNA, Cold Spring Harb. Perspect. Biol., 2.Google Scholar
  77. 77.
    Bagheri, S., and Kashani-Sabet, M. (2004) Ribozymes in the age of molecular therapeutics, Curr. Mol. Med., 4, 489–506.CrossRefGoogle Scholar
  78. 78.
    Sarver, N., Cantin, E. M., Chang, P. S., Zaia, J. A., Ladne, P. A., Stephens, D. A., and Rossi, J. J. (1990) Ribozymes as potential anti-HIV-1 therapeutic agents, Science, 247, 1222–1225.CrossRefPubMedGoogle Scholar
  79. 79.
    Sarkar, I., Hauber, I., Hauber, J., and Buchholz, F. (2007) HIV-1 proviral DNA excision using an evolved recombinase, Science, 316, 1912–1915.CrossRefPubMedGoogle Scholar
  80. 80.
    Wilson, C., and Szostak, J. W. (1995) In vitro evolution of a self-alkylating ribozyme, Nature, 374, 777–782.CrossRefPubMedGoogle Scholar
  81. 81.
    Ding, S. W. (2010) RNA-based antiviral immunity, Nature Rev. Immunol., 10, 632–644.CrossRefGoogle Scholar
  82. 82.
    Zaher, H. S., and Unrau, P. J. (2007) Selection of an improved RNA polymerase ribozyme with superior extension and fidelity, RNA, 13, 1017–1026.CrossRefPubMedCentralPubMedGoogle Scholar
  83. 83.
    Motorin, Y., and Helm, M. (2010) tRNA stabilization by modified nucleotides, Biochemistry, 49, 4934–4944.CrossRefPubMedGoogle Scholar
  84. 84.
    Motorin, Y., and Helm, M. (2011) RNA nucleotide methylation, Wiley Interdiscipl. Rev. RNA, 2, 611–631.CrossRefGoogle Scholar
  85. 85.
    Breaker, R. R., and Joyce, G. F. (1994) A DNA enzyme that cleaves RNA, Chem. Biol., 1, 223–229.CrossRefPubMedGoogle Scholar
  86. 86.
    Breaker, R. R. (1997) DNA enzymes, Nature Biotechnol., 15, 427–431.CrossRefGoogle Scholar
  87. 87.
    Santoro, S. W., and Joyce, G. F. (1997) A general purpose RNA-cleaving DNA enzyme, Proc. Natl. Acad. Sci. USA, 94, 4262–4266.CrossRefPubMedCentralPubMedGoogle Scholar
  88. 88.
    Li, Y., and Breaker, R. R. (1999) Deoxyribozymes: new players in the ancient game of biocatalysis, Curr. Opin. Struct. Biol., 9, 315–323.CrossRefPubMedGoogle Scholar
  89. 89.
    Rudchenko, M., Taylor, S., Pallavi, P., Dechkovskaia, A., Khan, S., Butler, V. P., Jr., Rudchenko, S., and Stojanovic, M. N. (2013) Autonomous molecular cascades for evaluation of cell surfaces, Nature Nanotechnol., 8, 580–586.CrossRefGoogle Scholar
  90. 90.
    Stojanovic, M. N., and Stefanovic, D. (2003) A deoxyribozyme-based molecular automaton, Nature Biotechnol., 21, 1069–1074.CrossRefGoogle Scholar
  91. 91.
    Zola, H., Swart, B., Banham, A., Barry, S., Beare, A., Bensussan, A., Boumsell, L., Buckley, C., Buhring, H. J., Clark, G., Engel, P., Fox, D., Jin, B. Q., Macardle, P. J., Malavasi, F., Mason, D., Stockinger, H., and Yang, X. (2007) CD molecules 2006 — human cell differentiation molecules, J. Immunol. Methods, 319, 1–5.CrossRefPubMedGoogle Scholar
  92. 92.
    Benenson, Y., Paz-Elizur, T., Adar, R., Keinan, E., Livneh, Z., and Shapiro, E. (2001) Programmable and autonomous computing machine made of biomolecules, Nature, 414, 430–434.CrossRefPubMedGoogle Scholar
  93. 93.
    Benenson, Y., Gil, B., Ben-Dor, U., Adar, R., and Shapiro, E. (2004) An autonomous molecular computer for logical control of gene expression, Nature, 429, 423–429.CrossRefPubMedGoogle Scholar
  94. 94.
    Soloveichik, D., and Winfree, E. (2005) The computational power of Benenson automata, Theor. Comput. Sci., 344, 279–297.CrossRefGoogle Scholar
  95. 95.
    Alvarez-Lorenzo, C., and Concheiro, A. (2014) Smart drug delivery systems: from fundamentals to the clinic, Chem. Commun., 50, 7743–7765.CrossRefGoogle Scholar
  96. 96.
    Klasa, R. J., Gillum, A. M., Klem, R. E., and Frankel, S. R. (2002) Oblimersen Bcl-2 antisense: facilitating apoptosis in anticancer treatment, Antisense Nucleic Acid Drug Dev., 12, 193–213.CrossRefPubMedGoogle Scholar
  97. 97.
    Kahan-Hanum, M., Douek, Y., Adar, R., and Shapiro, E. (2013) A library of programmable DNAzymes that operate in a cellular environment, Sci. Rep., 3, 1535.CrossRefPubMedCentralPubMedGoogle Scholar
  98. 98.
    Grassi, G., and Grassi, M. (2013) First-in-human trial of Dz13 for nodular basal-cell carcinoma, Lancet, 381, 1797–1798.CrossRefPubMedGoogle Scholar
  99. 99.
    Seeman, N. C. (2004) Nanotechnology and the double helix, Sci. Am., 290, 64–69.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.Research DivisionHospital for Special SurgeryNew YorkUSA
  2. 2.Institute of Molecular MedicineSechenov First Moscow State Medical UniversityMoscowRussia
  3. 3.Belozersky Institute of Physico-Chemical BiologyLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations