Biochemistry (Moscow)

, Volume 80, Issue 3, pp 374–378 | Cite as

Normal level of sepsis-associated phenylcarboxylic acids in human serum

  • N. V. BeloborodovaEmail author
  • V. V. Moroz
  • A. A. Osipov
  • A. Yu. Bedova
  • A. Yu. Olenin
  • M. L. Getsina
  • O. V. Karpova
  • E. G. Olenina


Previous studies showed that large amounts of phenylcarboxylic acids (PhCAs) are accumulated in a septic patient’s blood due to increased endogenous and microbial phenylalanine and tyrosine biotransformation. Frequently, biochemical aromatic amino acid transformation into PhCAs is considered functionally insignificant for people without monogenetic hereditary diseases. The blood of healthy people contains the same PhCAs that are typical for septic patients as shown in this paper. The overall serum PhCAs level was 6 μM on average as measured by gas chromatography with flame ionization detection. This level is a stable biochemical parameter indicating the normal metabolism of aromatic amino acids. The concentrations of PhCAs in the metabolic profile of healthy people are distributed as follows: phenylacetic ≈ p-hydroxyphenyllactic > p-hydroxyphenylacetic > phenyllactic ≈ phenylpropionic > benzoic. We conclude that maintaining of stable PhCAs level in the serum is provided as the result of integration of human endogenous metabolic pathways and microbiota.

Key words

tyrosine metabolism sepsis phenylcarboxylic acids phenyllactic acid p-hydroxyphenyllactic acid phenylpropionic acid benzoic acid microbiota 



benzoic acid


3,4-dihydroxybenzoic acid


gas chromatography with flame ionization detection


gas chromatography coupled with mass spectrometry


interquartile range


phenylacetic acid


phenylcarboxylic acids


p-hydroxyphenylacetic acid


p-hydroxyphenylpropionic acid


p-hydroxyphenyllactic acid


phenyllactic acid


phenylpropionic acid


percentile range




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Beloborodova, N. V., Olenin, A. Yu., Khodakova, A. S., Chernevckaya, Ek. A., and Khabib, O. N. (2012) The origin and clinical significance of low molecular weight phenolic metabolites in human serum, Anesteziol. Reanimatol., 5, 65–72.Google Scholar
  2. 2.
    Simon, R., Wetzel, W., Winsey, K., Levenson, S. M., and Demetriou, A. A. (1987) Supplemental dietary tyrosine in sepsis and acute hemorrhagic shock, Arch. Surg., 122, 78–81.CrossRefPubMedGoogle Scholar
  3. 3.
    Williams, R. A., Mamotte, C. D., and Burnett, J. R. (2008) Phenylketonuria: an inborn error of phenylalanine metabolism, Clin. Biochem. Rev., 29, 31–41.PubMedCentralPubMedGoogle Scholar
  4. 4.
    Kitagawa, T. (2012) Hepatorenal tyrosinemia, Proc. Jpn. Acad. Ser. B Phys. Biol. Sci., 88, 192–200.CrossRefPubMedCentralPubMedGoogle Scholar
  5. 5.
    Beloborodova, N. V., Khodakova, A. S., Bairamov, I. T., and Olenin, A. Y. (2009) Microbial origin of phenylcarboxylic acids in the human body, Biochemistry (Moscow), 74, 1350–1355.CrossRefGoogle Scholar
  6. 6.
    Khodakova, A., and Beloborodova, N. (2007) Microbial metabolites in the blood of patients with sepsis, Crit. Care, 11(Suppl. 4), 5.CrossRefGoogle Scholar
  7. 7.
    Beloborodova, N. V., Osipov, A. A., and Bedova, A. Yu. (2013) Biological properties of certain low molecular weight aromatic microbial metabolites associated with sepsis, Antibiot. Khimioterap., 7/8, 36–49.Google Scholar
  8. 8.
    Beloborodova, N. V. (2012) Integration of metabolism in man and his microbiome in critical conditions, Obshch. Reanimatol., 4, 42–54.CrossRefGoogle Scholar
  9. 9.
    Cueva, C., Moreno-Arribas, M. V., Martin-Alvarez, P. J., Bills, G., Vicente, M. F., Basilio, A., Rivas, C. L., Requena, T., Rodriguez, J. M., and Bartolome, B. (2010) Antimicrobial activity of phenolic acids against commensal, probiotic and pathogenic bacteria, Res. Microbiol., 161, 372–382.CrossRefPubMedGoogle Scholar
  10. 10.
    Dieuleveux, V., Lemarinier, S., and Gueguen, M. (1998) Antimicrobial spectrum and target site of D-3-phenyllactic acid, Int. J. Food Microbiol., 40, 177–183.CrossRefPubMedGoogle Scholar
  11. 11.
    Fedotcheva, N. I., Kazakov, R. E., Kondrashova, M. N., and Beloborodova, N. V. (2008) Toxic effects of microbial phenolic acids on the functions of mitochondria, Toxicol. Lett., 180, 182–188.CrossRefPubMedGoogle Scholar
  12. 12.
    Beloborodova, N., Bairamov, I., Olenin, A., Shubina, V., Teplova, V., and Fedotcheva, N. (2012) Effect of phenolic acids of microbial origin on production of reactive oxygen species in mitochondria and neutrophils, J. Biomed. Sci., 19, 89.CrossRefPubMedCentralPubMedGoogle Scholar
  13. 13.
    Schmidt, S., Westhoff, T. H., Krauser, P., Zidek, W., and van der Giet, M. (2008) The uraemic toxin phenylacetic acid increases the formation of reactive oxygen species in vascular smooth muscle cells, Nephrol. Dial. Transplant., 23, 65–71.CrossRefPubMedGoogle Scholar
  14. 14.
    Jenner, A. M., Rafter, J., and Halliwell, B. (2005) Human fecal water content of phenolics: the extent of colonic exposure to aromatic compounds, Free Radic. Biol. Med., 38, 763–772.CrossRefPubMedGoogle Scholar
  15. 15.
    Knust, U., Erben, G., Spiegelhalder, B., Bartsch, H., and Owen, R. W. (2006) Identification and quantitation of phenolic compounds in faecal matrix by capillary gas chromatography and nano-electrospray mass spectrometry, Rapid Commun. Mass Spectrom., 20, 3119–3129.CrossRefPubMedGoogle Scholar
  16. 16.
    Sarshor, Y. N., Beloborodova, N. V., Bedova, A. Y., Osipov, A. A., Chernevskaya, E. A., and Getsina, M. L. (2013) New criteria of bacterial load in critically ill patients, Shock, 40(Suppl. 1), 31.Google Scholar
  17. 17.
    Beloborodova, N. V., Bairamov, I. T., Olenin, A. Y., Khabib, O. N., and Fedotcheva, N. I. (2013) Anaerobic microorganisms from human microbiota produce speciesspecific exometabolites important in heath and disease, Global J. Pathol. Microbiol., 1, 43–53.Google Scholar
  18. 18.
    Moroz, V. V., Beloborodova, N. V., Bedova, A. Y., Revelsky, A. I., Getsina, M. L., Osipov, A. A., Sarshor, Y. N., Buchinskaya, A. A., and Olenin, A. Y. (2015) Development and adaptation to clinical laboratories of GC methods for determination of phenylcarboxylic acids in blood serum, Zh. Analit. Khim., 4, in press.Google Scholar
  19. 19.
    Nasledov, A. (2013) IBM SPSS Statistics 20 and AMOS: Professional Statistical Analysis of the Data [in Russian], Piter, St. Petersburg.Google Scholar
  20. 20.
    Lang, T. A., and Sesik, M. (2011) How to Describe Statistics in Medicine [Russian translation] (Leonov, V. P., ed.) Prakticheskaya Meditsina, Moscow.Google Scholar
  21. 21.
    Vente, J. P., von Meyenfeldt, M. F., van Eijk, H. M., van Berlo, C. L., Gouma, D. J., van der Linden, C. J., and Soeters, P. B. (1989) Plasma-amino acid profiles in sepsis and stress, Ann. Surg., 209, 57–62.CrossRefPubMedCentralPubMedGoogle Scholar
  22. 22.
    Jeevanandam, M., Young, D. H., Ramias, L., and Schiller, W. R. (1990) Effect of major trauma on plasma free amino acid concentrations in geriatric patients, Am. J. Clin. Nutr., 51, 1040–1045.PubMedGoogle Scholar
  23. 23.
    Askanazi, J., Carpentier, Y. A., Michelsen, C. B., Elwyn, D. H., Furst, P., Kantrowitz, L. R., Gump, F. E., and Kinney, J. M. (1980) Muscle and plasma amino acids following injury: influence of intercurrent infection, Ann. Surg., 192, 78–85.CrossRefPubMedCentralPubMedGoogle Scholar
  24. 24.
    Smith, E. A., and Macfarlane, G. T. (1996) Enumeration of human colonic bacteria producing phenolic and indolic compounds: effects of pH, carbohydrate availability and retention time on dissimilatory aromatic amino acid metabolism, J. Appl. Bacteriol., 81, 288–302.CrossRefPubMedGoogle Scholar
  25. 25.
    Jones, M. R., Kopple, J. D., and Swendseid, M. E. (1978) Phenylalanine metabolism in uremic and normal man, Kidney Int., 14, 169–179.CrossRefPubMedGoogle Scholar
  26. 26.
    Griffiths, L. A., and Barrow, A. (1972) Metabolism of flavonoid compounds in germ-free rats, Biochem. J., 130, 1161–1162.PubMedCentralPubMedGoogle Scholar
  27. 27.
    Wikoff, W. R., Anfora, A. T., Liu, J., Schultz, P. G., Lesley, S. A., Peters, E. C., and Siuzdak, G. (2009) Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites, Proc. Natl. Acad. Sci. USA, 106, 3698–3703.CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • N. V. Beloborodova
    • 1
    Email author
  • V. V. Moroz
    • 1
  • A. A. Osipov
    • 1
    • 2
  • A. Yu. Bedova
    • 1
  • A. Yu. Olenin
    • 1
  • M. L. Getsina
    • 1
  • O. V. Karpova
    • 2
  • E. G. Olenina
    • 3
  1. 1.Negovsky Research Institute of General ReanimatologyMoscowRussia
  2. 2.Dmitry Rogachev Federal Scientific Clinical Center of Pediatric Hematology, Oncology, and ImmunologyMinistry of Health of the Russian FederationMoscowRussia
  3. 3.All-Russian Research Institute of Metrological ServiceMoscowRussia

Personalised recommendations