Advertisement

Biochemistry (Moscow)

, Volume 80, Issue 3, pp 366–373 | Cite as

Taurine modulates catalytic activity of cytochrome P450 3A4

  • V. V. ShumyantsevaEmail author
  • A. A. Makhova
  • T. V. Bulko
  • R. Bernhardt
  • A. V. Kuzikov
  • E. V. Shich
  • V. G. Kukes
  • A. I. Archakov
Article

Abstract

The influence of the biologically active compound taurine on the stability and catalytic properties of the hemoprotein cytochrome P450 3A4 has been investigated. The catalytic properties were analyzed by electrochemical methods (cyclic and square-wave voltammetry) using cytochrome P450 3A4 immobilized on the electrode. Taurine at concentrations in the range 10–70 μM stimulated the electrochemical reduction of cytochrome P450 3A4, and the reduction was the highest (115 ± 3%) in the presence of 50 μM taurine. Taurine pronouncedly attenuated the itraconazol-caused inhibition of the P450 isoenzyme P450 3A4. Taurine protected cytochrome P450 3A4 due to stabilizing it during electrolysis at controlled voltage in the presence of erythromycin as a substrate. This protection was manifested by an increase in the amount of the “residual” reduced form of the hemoprotein (52 ± 5 and 71 ± 8%, respectively).

Key words

cytochrome P450 antioxidants drug metabolism bioelectrochemistry taurine 

Abbreviations

DDAB

didodecyldimethylammonium bromide

ROS

reactive oxygen species

SWV

square-wave voltammetry

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zanger, U., and Schwab, M. (2013) Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation, Pharmacol. Ther., 138, 103–141.CrossRefPubMedGoogle Scholar
  2. 2.
    Guengerich, F. P. (2008) Cytochrome P450 and chemical toxicology, Chem. Res. Toxicol., 21, 70–83.CrossRefPubMedGoogle Scholar
  3. 3.
    Estabrook, R. W., Faulkner, K. M., Shet, M. S., and Fisher, C. W. (1996) Application of electrochemistry for P450-catalyzed reactions, Methods Enzymol. B, 272, 44–51.CrossRefGoogle Scholar
  4. 4.
    Khatri, Y., Girhard, M., Romankiewicz, A., Urlacher, V. B., and Bernhardt, R. (2010) Regioselective hydroxylation of norisoprenoids by CYP109D1 from Sorangium cellulosum So ce56, Appl. Microbiol. Biotechnol., 88, 485–495.CrossRefPubMedGoogle Scholar
  5. 5.
    Nebert, D. W., and Russel, D. W. (2002) Clinical importance of the cytochromes P450, Lancet, 360, 1155–1162.CrossRefPubMedGoogle Scholar
  6. 6.
    Hrycay, E. G., and Bandiera, S. M. (2012) The monooxygenase, peroxidase, and peroxygenase properties of cytochrome P450, Arch. Biochem. Biophys., 522, 71–89.CrossRefPubMedGoogle Scholar
  7. 7.
    Nowak, P., Wozniakiewicz, M., and Koscielniak, P. (2014) Simulation of drug metabolism, Trends Anal. Chem., 59, 42–49.CrossRefGoogle Scholar
  8. 8.
    Shumyantseva, V. V., Bulko, T. V., and Archakov, A. I. (2005) Electrochemical reduction of cytochrome P450 as an approach to the construction of biosensors and bioreactors, J. Inorg. Biochem., 99, 1051–1063.CrossRefPubMedGoogle Scholar
  9. 9.
    Shumyantseva, V. V., Bulko, T. V., Suprun, E. V., Chalenko, Y. M., Vagin, M. Yu., Rudakov, Y. O., Shatskaya, M. A., and Archakov, A. I. (2011) Electrochemical investigations of cytochromes P450, Biochim. Biophys. Acta, 1814, 94–101.CrossRefPubMedGoogle Scholar
  10. 10.
    Shumyantseva, V. V., Suprun, E. V., Bulko, T. V., Dobrynina, O. V., and Archakov, A. I. (2010) Sensory systems for medical purpose based on hemoproteins and nanocomposite materials, Biomed. Khim., 56, 55–71.Google Scholar
  11. 11.
    Shumyantseva, V. V., Bulko, T. V., Kuznetsova, G. P., Samenkova, N. F., and Archakov, A. I. (2009) Electrochemistry of cytochromes P450: analysis of current-voltage characteristics of electrodes with immobilized cytochromes P450 for the screening of substrates and inhibitors, Biochemistry (Moscow), 74, 438–444.CrossRefGoogle Scholar
  12. 12.
    Sadeghi, S., Ferrero, S., Di Nardo, G., and Gilardi, G. (2012) Drug-drug interactions and cooperative effects detected in electrochemically driven human cytochrome P450 3A4, Bioelectrochemistry, 86, 87–91.CrossRefPubMedGoogle Scholar
  13. 13.
    Schneider, E., and Clark, D. S. (2013) Cytochrome P450 (CYP) enzymes and the development of CYP biosensors, Biosens. Bioelectron., 39, 1–13.CrossRefPubMedGoogle Scholar
  14. 14.
    Schenkman, J. B., and Jansson, I. (2003) The many roles of cytochrome b5, Pharmacol. Ther., 97, 139–152.CrossRefPubMedGoogle Scholar
  15. 15.
    Im, S. C., and Waskell, L. (2011) The interaction of microsomal cytochrome P450 2B4 with its redox partners, cytochrome P450 reductase and cytochrome b 5, Arch. Biochem. Biophys., 507, 144–153.CrossRefPubMedCentralPubMedGoogle Scholar
  16. 16.
    Makhova, A. A., Shumyantseva, V. V., Shich, E. V., Bulko, T. V., Kukes, V. G., Sizova, O. S., Ramenskaya, G. V., and Archakov, A. I. (2010) Influence of group B vitamins on the monooxygenase activity of cytochrome P450 3A4: electroanalysis of catalytic properties, Biomeditsina, 3, 96–98.Google Scholar
  17. 17.
    Makhova, A. A., Shumyantseva, V. V., Shich, E. V., Bulko, T. V., Kukes, V. G., Sizova, O. S., Ramenskaya, G. V., Usanov, S. A., and Archakov, A. I. (2011) Electroanalysis of cytochrome P450 3A4 catalytic properties with nanostructured electrodes: the influence of vitamin B group on diclofenac metabolism, BioNanoScience, 1, 46–52.CrossRefGoogle Scholar
  18. 18.
    Shumyantseva, V. V., Makhova, A. A., Bulko, T. V., Shich, E. V., Kukes, V. G., Usanov, S. A., and Archakov, A. I. (2014) The influence of antioxidants on the electrocatalytic activity of cytochrome P450 3A4, Biomed. Khim., 60, 224–234.Google Scholar
  19. 19.
    Makhova, A. A., Shumyantseva, V. V., Shich, E. V., Bulko, T. V., Suprun, E. V., Kuzikov, A. V., Kukes, V. G., and Archakov, A. I. (2013) Regulation of the activity of drug metabolism enzymes, cytochromes P450 3A4 and 2C9, by biologically active compounds, Mol. Med., 5, 49–53.Google Scholar
  20. 20.
    Kimura, Y., Ito, H., Ohnishi, R., and Hatano, T. (2010) Inhibitory effects of polyphenols on human cytochrome P450 3A4 and 2C9 activity, Food Chem. Toxicol., 48, 429–435.CrossRefPubMedGoogle Scholar
  21. 21.
    Shich, E. V., and Makhova, A. A. (2013) Experimental basis of the possibility of regulating the CYP450 3A4 activity by taurine for optimization of pharmacotherapy with antibiotic macrolides, Biomeditsina, 4, 169–173.Google Scholar
  22. 22.
    Asha, K. K., and Devadasan, K. (2013) Protective effect of taurine on the mitochondria of albino rats induced with fulminant hepatic failure, Biomed. Prevent. Nutr., 3, 279–283.CrossRefGoogle Scholar
  23. 23.
    Das, J., Ghosh, J., Manna, P., and Sil, P. (2013) Taurine protects acetaminophen-induced oxidative damage in mice kidney through APAP urinary excretion and CYP2E1 inactivation, Toxicology, 269, 24–34.CrossRefGoogle Scholar
  24. 24.
    Matsuda, H., Kinoshita, K., Sumida, A., Takahashi, K., Fukuen, S., Fukuda, T., Takahasi, K., Yamamoto, I., and Azuma, J. (2002) Taurine modulates induction of cytochrome P450 3A4 mRNA by rifampicin in the HepG2 cell line, Biochim. Biophys. Acta, 1593, 93–98.CrossRefPubMedGoogle Scholar
  25. 25.
    Bard, A. E., and Faulkner, L. R. (1980) Electrochemical Methods. Fundamental and Applications, John Wiley & Sons, NY.Google Scholar
  26. 26.
    Tang, C., Fang, Y., Booth-Genthe, C., Kuo, Y., Kuduk, S., Rushmore, T., and Carr, B. (2007) Diclofenac hydroxylation in monkeys: efficiency, regioselectivity, and response to inhibitors, Biochem. Pharmacol., 73, 880–890.CrossRefPubMedGoogle Scholar
  27. 27.
    Sucheta, A., Cammack, R., Weiner, J., and Armstrong, F. A. (1993) Reversible electrochemistry of fumarate reductase immobilized on an electrode surface. Direct voltammetric observations of redox centers and their participation in rapid catalytic electron transport, Biochemistry, 32, 5455–5465.CrossRefPubMedGoogle Scholar
  28. 28.
    Iwuoha, E. I., Williams-Dottin, A. R., Hall, L. A., Morrin, A., Mathebe, G. N., Smyth, M. R., and Killard, A. (2004) Electrochemistry and application of a novel monosubstituted squarate electron-transfer mediator in a glucose oxidase-doped poly(phenol) sensor, Pure Appl. Chem., 76, 789–799.CrossRefGoogle Scholar
  29. 29.
    Welsh, O., Vera-Cabrera, L., and Welsh, E. (2010) Onychomycosis, Clin. Dermatol., 28, 151–159.CrossRefPubMedGoogle Scholar
  30. 30.
    Hisaka, A., Ohno, Y., Yamamoto, T., and Suzuki, H. (2010) Prediction of pharmacokinetic drug-drug caused by changes in cytochrome P450 activity using in vivo information, Pharmacol. Ther., 125, 230–248.CrossRefPubMedGoogle Scholar
  31. 31.
    Lewis, D. F. V. (2001) Guide to Cytochrome P450. Structure and Function, Taylor and Francis, London-N.Y., pp. 132–139.CrossRefGoogle Scholar
  32. 32.
    Metelitsa, D. I. (1982) Oxygen Activation by Enzymatic Systems [in Russian], Nauka, Moscow, pp. 94–104.Google Scholar
  33. 33.
    Archakov, A. I., and Bachmanova, G. I. (1990) Cytochrome P450 and Active Oxygen, Taylor and Francis, London, pp. 185–207.Google Scholar
  34. 34.
    Zhukov, A. A., and Archakov, A. I. (1985) Stoichiometry of microsomal oxidation reactions. Distribution of redoxequivalents between the monooxygenase and oxidase reactions catalyzed by cytochrome P-450, Biokhimiya, 50, 1939–1952.Google Scholar
  35. 35.
    Yasui, H., Hayashi, S., and Sakurai, H. (2005) Possible involvement of singlet oxygen species as multiple oxidants in p450 catalytic reactions, Drug Metab. Pharmacokinet., 20, 1–13.CrossRefPubMedGoogle Scholar
  36. 36.
    Guengerich, F. P. (1978) Destruction of heme and hemoproteins mediated by liver microsomal reduced nicotinamide adenine dinucleotide phosphate-cytochrome P-450 reductase, Biochemistry, 17, 3633–3639.CrossRefPubMedGoogle Scholar
  37. 37.
    Sizova, O. S., Potekaev, N. N., Zhukovsky, R. O., and Shich, E. V. (2011) Possibilities to decrease the hepatotoxicity of itraconazol at the combined treatment with taurine in patients with onychomycosis, Klin. Dermatol. Venerol., 1, 45–49.Google Scholar
  38. 38.
    Kukes, V. G., Shumyantseva, V. V., Bulko, T. V., and Archakov, A. I. (2013) The influence of an antioxidant preparation ethoxidol on electrochemical reduction of cytochromes P450 3A4, 2C9, 2D6, Lekarstv. Prep. Ratsional. Farmakoterap., 3, 7–13.Google Scholar
  39. 39.
    Otdelenov, V. A., Smirnov, V. V., Dmitriev, A. V., Poroikov, V. V., Shumyntseva, V. V., Krasnykh, L. M., Sychev, D. A., and Kukes, V. G. (2013) Influence of ethylmethylhydroxypyridine malate on the CYP3A4 activity: a complex approach to assessment of the system of drug biotransformation, Lekarstv. Prep. Ratsional. Farmakoterap., 3, 30–36.Google Scholar
  40. 40.
    Rudakov, Yu. O., Shumyantseva, V. V., Bulko, T. V., Suprun, E. V., Kuznetsova, G. P., Samenkova, N. F., and Archakov, A. I. (2008) Stoichiometry of electrocatalytic cycle of cytochrome P450 2B4, J. Inorg. Biochem., 102, 2020–2025.CrossRefPubMedGoogle Scholar
  41. 41.
    Krylov, A. V., Beissenhirtz, M., Adamzing, H., Scheller, F. R., and Lisdat, F. (2004) Thick-film electrodes for measurement of superoxide and hydrogen peroxide proteinelectrode, Anal. Bioanal. Chem., 378, 1327–1330.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • V. V. Shumyantseva
    • 1
    Email author
  • A. A. Makhova
    • 2
  • T. V. Bulko
    • 1
  • R. Bernhardt
    • 3
  • A. V. Kuzikov
    • 1
  • E. V. Shich
    • 2
  • V. G. Kukes
    • 2
  • A. I. Archakov
    • 1
  1. 1.Orekhovich Institute of Biomedical ChemistryMoscowRussia
  2. 2.Sechenov First Moscow State Medical UniversityMoscowRussia
  3. 3.Institute for BiochemistrySaarland UniversitySaarbruckenGermany

Personalised recommendations