Biochemistry (Moscow)

, Volume 80, Issue 3, pp 323–331 | Cite as

Hybrid structures of polycationic aluminum phthalocyanines and quantum dots

  • E. G. MaksimovEmail author
  • D. A. Gvozdev
  • M. G. Strakhovskaya
  • V. Z. Paschenko


Semiconductor nanocrystals (CdSe/ZnS quantum dots, QDs) were used as inorganic focusing antenna, allowing for the enhancement of fluorescence and photosensitizing activity of polycationic aluminum phthalocyanines (PCs). It was found that QDs form stable complexes with PCs in aqueous solutions due to electrostatic interactions. In such hybrid complexes, we observed highly efficient nonradiative energy transfer from QD to PC, leading to a sharp increase in the effective absorption cross section of PC in the absorption bands of the CdSe/ZnS quantum dots. When hybrid complexes are excited within these bands, the intensity of PC fluorescence and the rate of photosensitized singlet oxygen generation increases significantly (up to 500 and 350%, correspondingly) compared to free PC at the same concentration. The observed effect is of interest for modeling primary stages of photosynthesis and increasing photosensitizing activity of dyes used in photodynamic therapy.

Key words

quantum dots aluminum phthalocyanines hybrid systems energy migration reactive oxygen species 





aluminum phthalocyanine, where Y is degree of substitute incorporation


quantum dots with emission maximum X


reactive oxygen species


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Halliwell, B. (2005) Free Radicals and Other Reactive Species in Disease, eLS, John Wiley & Sons, Ltd., Singapore.Google Scholar
  2. 2.
    He, J. A., Hu, Y. Z., and Jiang, L. J. (1997) Photodynamic action of phycobiliproteins: in situ generation of reactive oxygen species, Biochim. Biophys. Acta, 1320, 165–174.CrossRefGoogle Scholar
  3. 3.
    Sedoud, A., Lopez-Igual, R., ur Rehman, A., Wilson, A., Perreau, F., Boulay, C., and Kirilovsky, D. (2014) The cyanobacterial photoactive orange carotenoid protein is an excellent singlet oxygen quencher, Plant Cell, 26, 1781–1791.CrossRefPubMedGoogle Scholar
  4. 4.
    Moser, F. H., and Thomas, A. L. (1983) The Phthalocyanines, CRC Press, Boca Raton, FL.Google Scholar
  5. 5.
    Torre, G., Vazquez, P., Agullo-Lopez, F., and Torres, T. (2004) Role of structural factors in the nonlinear optical properties of phthalocyanines and related compounds, Chem. Rev., 104, 3723–3750.CrossRefPubMedGoogle Scholar
  6. 6.
    Dogo, S., Germain, J. P., Maleysson, C., and Pauly, A. (1992) Interaction of NO2 with copper phthalocyanine thin films II: application to gas sensing, Thin Solid Films, 219, 251.CrossRefGoogle Scholar
  7. 7.
    Kaliya, O. L., Lukyanets, E. A., and Vorozhtsov, G. N. (1999) Catalysis and photocatalysis by phthalocyanines for technology, ecology and medicine, J. Porphyrins Phthalocyanines, 3, 592.CrossRefGoogle Scholar
  8. 8.
    Wohrle, D., Suvorova, O., Gerdes, R., Bartels, O., Lapok, L., Baziakina, N., Makarov, S., and Slodek, A. (2004) Efficient oxidations and photooxidations with molecular oxygen using metal phthalocyanines as catalysts and photocatalysts, J. Porphyrins Phthalocyanines, 8, 1020.CrossRefGoogle Scholar
  9. 9.
    Carraro, M., Sartorel, A., Toma, F., Puntoriero, F., Scandola, F., Campagna, S., Prato, M., and Bonchio, M. (2011) Artificial photosynthesis challenges: water oxidation at nanostructured interfaces, Top. Curr. Chem., 303, 121–150.CrossRefPubMedGoogle Scholar
  10. 10.
    Walter, M. G., Rudine, A. B., and Wamser, C. C. (2010) Porphyrins and phthalocyanines in solar photovoltaic cells, J. Porphyrins Phthalocyanines, 14, 759–792.CrossRefGoogle Scholar
  11. 11.
    McConnell, I., Li, G., and Brudvig, G. W. (2010) Energy conversion in natural and artificial photosynthesis, Chem. Biol., 17, 434–447.CrossRefPubMedCentralPubMedGoogle Scholar
  12. 12.
    Sekkat, N., van den Bergh, H., Nyokong, T., and Lange, N. (2011) Like a bolt from the blue: phthalocyanines in biomedical optics, Molecules, 17, 98–144.CrossRefPubMedGoogle Scholar
  13. 13.
    Cook, M. J., Chambrier, I., Cracknell, S. J., Mayes, D. A., and Russell, D. A. (1995) Octaalkyl zinc phthalocyanines: potential photosensitizers for use in the photodynamic therapy of cancer, Photochem. Photobiol., 62, 542–545.CrossRefPubMedGoogle Scholar
  14. 14.
    Ochsner, M. (1997) Photophysical and photobiological processes in the photodynamic therapy of tumors, J. Photochem. Photobiol. B, 39, 1–18.CrossRefPubMedGoogle Scholar
  15. 15.
    Hamblin, M., and Hasan, T. (2004) Photodynamic therapy: a new antimicrobial approach to infectious diseases, Photochem. Photobiol. Sci., 3, 436–450.CrossRefPubMedCentralPubMedGoogle Scholar
  16. 16.
    Strakhovskaya, M. G., Antonenko, U. N., Pashkovskaya, A. A., Kotova, E. A., Kireev, V., Zhukhovizky, V. G., Kuznetzova, N. A., Uzhakova, O. A., Negrimovsky, V. M., and Rubin, A. B. (2009) Electrostatic binding of substituted phthalocyanines to enterobacteria cells: the role in photodynamic inactivation, Biochemistry (Moscow), 74, 1305–1314.CrossRefGoogle Scholar
  17. 17.
    Kuznetsova, N. A., Yuzhakova, O. A., Strakhovskaya, M. G., Shumarina, A. O., Kozlov, A. S., Krasnovsky, A. A., and Kaliya, O. L. (2011) New heterogeneous photosensitizers with phthalocyanine molecules covalently linked to aminopropyl silica gel, J. Porphyrins Phthalocyanines, 15, 718–726.CrossRefGoogle Scholar
  18. 18.
    Makarov, D. A., Kuznetsova, N. A., Yuzhakova, O. A., Savvina, L. P., Kaliya, O. L., Lukyanets, E. A., Negrimovskii, V. M., and Strakhovskaya, M. G. (2009) Effects of the degree of substitution on the physicochemical properties and photodynamic activity of zinc and aluminum phthalocyanine polycations, Rus. J. Phys. Chem. A, 83, 1044–1050.CrossRefGoogle Scholar
  19. 19.
    Sukhanova, A., Baranov, A. V., Klinov, D., Oleinikov, V., Berwick, K., Cohen, J. H. M., Pluot, M., and Nabiev, I. (2006) Self-assembly of charged microclusters of CdSe/ZnS core/shell nanodots and nanorods into hierarchically ordered colloidal arrays, Nanotechnology, 17, 4223–4228.CrossRefPubMedGoogle Scholar
  20. 20.
    Bawendi, M. G., Carroll, P. J., Wilson, W. L., and Brus, L. E. (1992) Luminescence properties of CdSe quantum crystallites: resonance between interior and surface localized states, J. Chem. Phys., 96, 946.CrossRefGoogle Scholar
  21. 21.
    Bergmann, L., Schafer, C., and Niedrig, H. (2004) Lehrbuch der Experimentalphysik: Optik, Band 3, 9 Auflage, Walter de Gruyter, Berlin.Google Scholar
  22. 22.
    Leatherdale, C. A., Woo, W.-K., Mikulec, F. V., and Bawendi, M. G. (2002) On the absorption cross section of CdSe nanocrystal quantum dots, J. Phys. Chem. B, 106, 7619–7622.CrossRefGoogle Scholar
  23. 23.
    Sukhanova, A., Artemyev, M., Sharapov, O., Baranov, A., Jardillier, J. C., and Nabiev, I. (2001) European, Eurasian and USA patents EP1366347, US2004105973, WO02073155.Google Scholar
  24. 24.
    Oleinikov, V. A., Sukhanova, A. V., and Nabiev, I. R. (2007) Fluorescent semiconductor crystals in biology and medicine, Ros. Nanotekhnol., 2, 160–173.Google Scholar
  25. 25.
    Medintz, I. L., and Mattoussi, H. (2009) Quantum dot-based resonance energy transfer and its growing application in biology, Phys. Chem. Chem. Phys., 11, 17–45.CrossRefPubMedGoogle Scholar
  26. 26.
    Nabiev, I., Rakovich, A., Sukhanova, A., Lukashev, E., Zagidullin, V., Paschenko, V., Rakovich, Y. P., Donegan, J. F., Rubin, A. B., and Govorov, A. O. (2010) Fluorescent quantum dots as artificial antennas for enhanced light harvesting and energy transfer to photosynthetic reaction centers, Angewandte Chemie, 49, 7217–7221.CrossRefPubMedGoogle Scholar
  27. 27.
    Maksimov, E. G., Gostev, T. S., Kuzminov, F. I., Sluchanko, N. N., Stadnichuk, I. N., Paschenko, V. Z., and Rubin, A. B. (2010) Hybrid systems of quantum dots mixed with the photosensitive protein phycoerythrin, Ros. Nanotekhnol., 5, 531–537.Google Scholar
  28. 28.
    Schmitt, F.-J., Maksimov, E. G., Suedmeyer, H., Jeyasangar, V., Theiss, C., Paschenko, V. Z., Eichler, H. J., and Renger, G. (2010) Time resolved temperature switchable excitation energy transfer processes between CdSe/ZnS nanocrystals and phycobiliprotein antenna from Acaryochloris marina, Photon. Nanostruct. Fundam. Appl., 9, 190–195.CrossRefGoogle Scholar
  29. 29.
    Schmitt, F.-J., Maksimov, E. G., Hatti, P., Weissenborn, J., Jeyasangar, V., Razjivin, A. P., Paschenko, V. Z., Friedrich, T., and Renger, G. (2012) Coupling of different isolated photosynthetic light harvesting complexes and CdSe/ZnS nanocrystals via Forster resonance energy transfer, Biochim. Biophys. Acta, 1817, 1461–1470.CrossRefPubMedGoogle Scholar
  30. 30.
    Maksimov, E. G., Kurashov, V. N., Mamedov, M. D., and Paschenko, V. Z. (2012) Hybrid system based on quantum dots and photosystem 2 core complex, Biochemistry (Moscow), 77, 624–630.CrossRefGoogle Scholar
  31. 31.
    Borissevitch, I. E., Parra, G. G., Zagidullin, V. E., Lukashev, E. P., Paschenko, V. Z., Knox, P. P., and Rubin, A. B. (2013) Cooperative effects in quenching of CdSe/ZnS-PEGOH quantum dot luminescence by water soluble porphyrins, J. Luminesc., 134, 83–87.CrossRefGoogle Scholar
  32. 32.
    Idowu, M., Chen, J. Y., and Nyokong, T. (2008) Photo-induced energy transfer between water-soluble CdTe quantum dots and aluminum tetra-sulfonated phthalocyanine, New J. Chem., 32, 290–296.CrossRefGoogle Scholar
  33. 33.
    Britton, J., Antunes, E., and Nyokong, T. (2009) Fluorescence studies of quantum dots and zinc tetraaminophthalocyanine conjugates, Inorg. Chem. Commun., 12, 828–831.CrossRefGoogle Scholar
  34. 34.
    Britton, J., Antunes, E., and Nyokong, T. (2010) Fluorescence quenching and energy transfer in conjugates of quantum dots with zinc and indium tetraamino phthalocyanines, J. Photochem. Photobiol. A: Chem., 210, 1–7.CrossRefGoogle Scholar
  35. 35.
    Narband, N., Mubarak, M., Ready, D., Parkin, I. P., Nair, S. P., Green, M. A., Beeby, A., and Wilson, M. (2008) Quantum dots as enhancers of the efficacy of bacterial lethal photosensitization, Nanotechnology, 19, 445102.CrossRefPubMedGoogle Scholar
  36. 36.
    Samia, A. C. S., Dayal, S., and Burda, C. (2006) Quantum dot-based energy transfer: perspectives and potential for applications in photodynamic therapy, Photochem. Photobiol., 82, 617–625.CrossRefPubMedGoogle Scholar
  37. 37.
    Suchanek, J., Lang, K., Novakova, V., Zimcik, P., Zelingera, Z., and Kubat, P. (2013) Photophysical properties of CdSe quantum dot self-assemblies with zinc phthalocyanines and azaphthalocyanines, Photochem. Photobiol. Sci., 12, 743–750.CrossRefPubMedGoogle Scholar
  38. 38.
    Idowu, M., and Nyokong, T. (2010) Spectroscopic behavior of cationic metallophthalocyanines in the presence of anionic quantum dots, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 75, 411–416.CrossRefGoogle Scholar
  39. 39.
    Li, L., Zhao, J. F., Won, N., Jin, H., Kim, S., and Chen, J. Y. (2012) Quantum dot-aluminum phthalocyanine conjugates perform photodynamic reactions to kill cancer cells via fluorescence resonance energy transfer (FRET), Nanoscale Res. Lett., 7, 386.CrossRefPubMedCentralPubMedGoogle Scholar
  40. 40.
    Tekdas, D. A., Durmus, M., Yanik, H., and Ahsen, V. (2012) Photodynamic therapy potential of thiol-stabilized CdTe quantum dot-group 3A phthalocyanine conjugates (QD-Pc), Spectrochim. Acta A: Mol. Biomol. Spectrosc., 93, 313–320.CrossRefGoogle Scholar
  41. 41.
    Idowu, M., and Nyokong, T. (2009) Interaction of watersoluble CdTe quantum dots with octacarboxy-metallophthalocyanines: a photophysical and photochemical study, J. Luminesc., 129, 356–362.CrossRefGoogle Scholar
  42. 42.
    Yu, W. W., Qu, L., Guo, W., and Peng, X. (2003) Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals, Chem. Mater., 15, 2854–2860.CrossRefGoogle Scholar
  43. 43.
    Jasieniak, J., Smith, L., van Embden, J., and Mulvaney, P. (2009) Re-examination of the size-dependent absorption properties of CdSe quantum dots, J. Phys. Chem. C, 113, 19468–19474.CrossRefGoogle Scholar
  44. 44.
    PML-16-C. 16-Channel Detector Head for Time-Correlated Single Photon Counting. User Handbook (2006) Becker & Hickl GmbH, Berlin;
  45. 45.
    Schmitt, F. J. (2011) Picobiophotonics for the Investigation of Pigment-Pigment and Pigment-Protein Interactions in Photosynthetic Complexes (thesis), Technische Universitat Berlin.Google Scholar
  46. 46.
    Nakamura, K., Ishiyama, K., Ikai, H., Kanno, T., Sasaki, K., Niwano, Y., and Kohno, M. (2011) Reevaluation of analytical methods for photogenerated singlet oxygen, J. Clin. Biochem. Nutr., 49, 95.CrossRefGoogle Scholar
  47. 47.
    Lakowicz, J. R. (ed.) (1999) Principles of Fluorescence Spectroscopy, 2nd Edn., Kluwer Academic/Plenum Publishers.Google Scholar
  48. 48.
    Shiohara, A., Hoshino, A., Hanaki, K., Suzuki, K., and Yamamoto, K. (2004) On the cytotoxicity caused by quantum dots, Microbiol. Immunol., 48, 669–675.CrossRefPubMedGoogle Scholar
  49. 49.
    Derfus, A. M., Chan, W. C. W., and Bhatia, S. N. (2004) Probing the cytotoxicity of semiconductor quantum dots, Nano Lett., 4, 11–18.CrossRefGoogle Scholar
  50. 50.
    Bakalova, R., Ohba, H., Zhelev, Z., Ishikawa, M., and Baba, Y. (2004) Quantum dots as photosensitizers, Nature Biotechnol., 22, 1360–1361.CrossRefGoogle Scholar
  51. 51.
    Samia, A. C. S., Chen, X., and Burda, C. (2003) Semiconductor quantum dots for photodynamic therapy, J. Am. Chem. Soc., 125, 15736–15737.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • E. G. Maksimov
    • 1
    Email author
  • D. A. Gvozdev
    • 1
  • M. G. Strakhovskaya
    • 1
    • 2
  • V. Z. Paschenko
    • 1
  1. 1.Faculty of BiologyLomonosov Moscow State UniversityMoscowRussia
  2. 2.Russian Federal Research Centre of Medical Care and Medical TechnologyMoscowRussia

Personalised recommendations