Advertisement

Biochemistry (Moscow)

, Volume 80, Issue 3, pp 310–322 | Cite as

Epigenetic mechanisms of peptidergic regulation of gene expression during aging of human cells

  • V. V. AshapkinEmail author
  • N. S. Linkova
  • V. Kh. Khavinson
  • B. F. Vanyushin
Article

Abstract

Expression levels of genes encoding specific transcription factors and other functionally important proteins vary upon aging of pancreatic and bronchial epithelium cell cultures. The peptides KEDW and AEDL tissue-specifically affect gene expression in pancreatic and bronchial cell cultures, respectively. It is established in this work that the DNA methylation patterns of the PDX1, PAX6, NGN3, NKX2-1, and SCGB1A1 gene promoter regions change upon aging in pancreatic and bronchial cell cultures in correlation with variations in their expression levels. Thus, stable changes in gene expression upon aging of cell cultures could be caused by changes in their promoter methylation patterns. The methylation patterns of the PAX4 gene in pancreatic cells as well as those of the FOXA1, SCGB3A2, and SFTPA1 genes in bronchial cells do not change upon aging and are unaffected by peptides, whereas their expression levels change in both cases. The promoter region of the FOXA2 gene in pancreatic cells contains a small number of methylated CpG sites, their methylation levels being affected by cell culture aging and KEDW, though without any correlation with gene expression levels. The promoter region of the FOXA2 gene is completely unmethylated in bronchial cells irrespective of cell culture age and AEDL action. Changes in promoter methylation might be the cause of age- and peptide-induced variations in expression levels of the PDX1, PAX6, and NGN3 genes in pancreatic cells and NKX2-1 and SCGB1A1 genes in bronchial cells. Expression levels of the PAX4 and FOXA2 genes in pancreatic cells and FOXA1, FOXA2, SCGB3A2, and SFTPA1 genes in bronchial cells seem to be controlled by some other mechanisms.

Key words

short peptides DNA methylation transcription cell differentiation pancreatic cell culture bronchial cell culture differentiation factors 

Abbreviations

AEDL

peptide H-Ala-Glu-Asp-Leu-OH

bp

base pair

CGI

CpG-island

KEDW

peptide H-Lys-Glu-Asp-Trp-NH2

TIS

transcription initiation site

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Khavinson, V. Kh., Durnova, A. O., Polyakova, V. O., Tolibova, G. H., Linkova, N. S., Kvetnoy, I. M., and Tarnovskaya, S. I. (2013) Effects of pancragen on the differentiation of pancreatic cells during their ageing, Bull. Exp. Biol. Med., 154, 501–504.CrossRefPubMedGoogle Scholar
  2. 2.
    Khavinson, V. Kh., Gapparov, M. M.-G., Sharanova, N. E., Vasilyev, A. V., and Ryzhak, G. A. (2010) Study of biological activity of Lys-Glu-Asp-Trp-NH2 endogenous tetrapeptide, Bull. Exp. Biol. Med., 149, 351–353.CrossRefPubMedGoogle Scholar
  3. 3.
    Korkushko, O. V., Khavinson, V. Kh., Shatilo, V. B., and Antonyk-Sheglova, I. A. (2011) Peptide geroprotector from the pituitary gland inhibits rapid aging of elderly people: results of 15-year follow-up, Bull. Exp. Biol. Med., 151, 366–369.CrossRefPubMedGoogle Scholar
  4. 4.
    Korkushko, O. V., Khavinson, V. Kh., Shatilo, V. B., Antonyk-Sheglova, I. A., and Bondarenko, E. V. (2011) Prospects of using pancragen for correction of metabolic disorders in elderly people, Bull. Exp. Biol. Med., 151, 454–456.CrossRefPubMedGoogle Scholar
  5. 5.
    Khavinson, V. Kh., Tendler, S. M., Vanyushin, B. F., Kasyanenko, N. A., Kvetnoy, I. M., Linkova, N. S., Ashapkin, V. V., Polyakova, V. O., Basharina, V. S., and Bernadotte, A. (2014) Peptide regulation of gene expression and protein synthesis in bronchial epithelium, Lung, 192, 781–791.CrossRefPubMedGoogle Scholar
  6. 6.
    Khavinson, V. Kh., Linkova, N. S., Polyakova, V. O., Kheifets, O. V., Tarnovskaya, S. I., and Kvetnoy, I. M. (2012) Peptides tissue-specifically stimulate cell differentiation during their aging, Bull. Exp. Biol. Med., 153, 148–151.CrossRefPubMedGoogle Scholar
  7. 7.
    Pogribny, I. P., and Vanyushin, B. F. (2010) Age-related genomic hypomethylation, in Epigenetics of Aging (Tollefsbol, T. O., ed.) Springer Science+Business Media, N. Y., pp. 11–27.CrossRefGoogle Scholar
  8. 8.
    Schumacher, A. (2011) Aging epigenetics, in Handbook of Epigenetics. The New Molecular and Medical Genetics (Tollefsbol, T. O., ed.) Elsevier Inc., Amsterdam, pp. 405–422.CrossRefGoogle Scholar
  9. 9.
    Bell, J. T., Tsai, P.-C., Yang, T.-P., Pidsley, R., Nisbet, J., Glass, D., Mangino, M., Zhai, G., Zhang, F., Valdes, A., Shin, S. Y., Dempster, E. L., Murray, R. M., Grundberg, E., Hedman, A. K., Nica, A., Small, K. S., Dermitzakis, E. T., McCarthy, M. I., Mill, J., Spector, T. D., and Deloukas, P. (2012) Epigenome-wide scans identify differentially methylated regions for age and age-related phenotypes in a healthy ageing population, PLoS Genet., 8, e1002629; DOI: 10.1371/journal.pgen.1002629.CrossRefPubMedCentralPubMedGoogle Scholar
  10. 10.
    Day, K., Waite, L. L., Thalacker-Mercer, A., West, A., Bamman, M. M., Brooks, J. D., Myers, R. M., and Absher, D. (2013) Differential DNA methylation with age displays both common and dynamic features across human tissues that are influenced by CpG landscape, Genome Biol., 14, R102.CrossRefPubMedCentralPubMedGoogle Scholar
  11. 11.
    Hannum, G., Guinney, J., Zhao, L., Zhang, L., Hughes, G., Sadda, S., Klotzle, B., Bibikova, M., Fan, J. B., Gao, Y., Deconde, R., Chen, M., Rajapakse, I., Friend, S., Ideker, T., and Zhang, K. (2013) Genome-wide methylation profiles reveal quantitative views of human aging rates, Mol. Cell, 49, 359–367.CrossRefPubMedCentralPubMedGoogle Scholar
  12. 12.
    Florath, I., Butterbach, K., Mueller, H., Bewerunge-Hudler, M., and Brenner, H. (2014) Cross-sectional and longitudinal changes in DNA methylation with age: an epigenome-wide analysis revealing over 60 novel age-associated CpG sites, Hum. Mol. Genet., 23, 1186–1201.CrossRefPubMedCentralPubMedGoogle Scholar
  13. 13.
    Tusnady, G. E., Simon, I., Varadi, A., and Aranyi, T. (2005) BiSearch: primer-design and search tool for PCR on bisulfite treated genomes, Nucleic Acids Res., 33, e9.CrossRefPubMedCentralPubMedGoogle Scholar
  14. 14.
    Aranyi, T., Varadi, A., Simon, I., and Tusnady, G. E. (2006) The BiSearch web server, BMC Bioinformatics, 7, 431.CrossRefPubMedCentralPubMedGoogle Scholar
  15. 15.
    Grunau, C., Schattevoy, R., Mache, N., and Rosenthal, A. (2000) MethTools — a toolbox to visualize and analyze DNA methylation data, Nucleic Acids Res., 28, 1053–1058.CrossRefPubMedCentralPubMedGoogle Scholar
  16. 16.
    Lewin, J., Schmitt, A. O., Adorjan, P., Hildmann, T., and Piepenbrock, C. (2004) Quantitative DNA methylation analysis based on four-dye trace data from direct sequencing of PCR amplificates, Bioinformatics, 20, 3005–3012.CrossRefPubMedGoogle Scholar
  17. 17.
    Rakyan, V. K., Hildmann, T., Novik, K. L., Lewin, J., Tost, J., Cox, A. V., Andrews, T. D., Howe, K. L., Otto, T., Olek, A., Fischer, J., Gut, I. G., Berlin, K., and Beck, S. (2004) DNA methylation profiling of the human major histocompatibility complex: a pilot study for the human epigenome project, PLoS Biol., 2, e405.CrossRefPubMedCentralPubMedGoogle Scholar
  18. 18.
    Arda, H. E., Benitez, C. M., and Kim, S. K. (2013) Gene regulatory networks governing pancreas development, Devel. Cell, 25, 5–13.CrossRefGoogle Scholar
  19. 19.
    Conrad, E., Stein, R., and Hunter, C. S. (2014) Revealing transcription factors during human pancreatic β cell development, Trends Endocrinol. Metab., 25, 407–414.CrossRefPubMedGoogle Scholar
  20. 20.
    Maeda, Y., Dave, V., and Whitsett, J. A. (2007) Transcriptional control of lung morphogenesis, Physiol. Rev., 87, 219–244.CrossRefPubMedGoogle Scholar
  21. 21.
    Illingworth, R. S., and Bird, A. P. (2009) CpG islands — “a rough guide”, FEBS Lett., 583, 1713–1720.CrossRefPubMedGoogle Scholar
  22. 22.
    Deaton, A. M., and Bird, A. (2011) CpG islands and the regulation of transcription, Genes Devel., 25, 1010–1022.CrossRefPubMedCentralPubMedGoogle Scholar
  23. 23.
    Jones, P. A. (2012) Functions of DNA methylation: islands, start sites, gene bodies and beyond, Nat. Rev. Genet., 13, 484–492.CrossRefPubMedGoogle Scholar
  24. 24.
    Smith, Z. D., and Meissner, A. (2013) DNA methylation: roles in mammalian development, Nat. Rev. Genet., 14, 204–220.CrossRefPubMedGoogle Scholar
  25. 25.
    Huntriss, J., Lorenzi, R., Purewal, A., and Monk, M. (1997) A methylation-dependent DNA-binding activity recognizing the methylated promoter region of the mouse Xist gene, Biochem. Biophys. Res. Commun., 235, 730–738.CrossRefPubMedGoogle Scholar
  26. 26.
    Han, H., Cortez, C. C., Yang, X., Nichols, P. W., Jones, P. A., and Liang, G. (2011) DNA methylation directly silences genes with non-CpG island promoters and establishes a nucleosome occupied promoter, Hum. Mol. Genet., 20, 4299–4310.CrossRefPubMedCentralPubMedGoogle Scholar
  27. 27.
    Gustems, M., Woellmer, A., Rothbauer, U., Eck, S. H., Wieland, T., Lutter, D., and Hammerschmidt, W. (2014) c-Jun/c-Fos heterodimers regulate cellular genes via a newly identified class of methylated DNA sequence motifs, Nucleic Acids Res., 42, 3059–3072.CrossRefPubMedCentralPubMedGoogle Scholar
  28. 28.
    Fedoreeva, L. I., Kireev, I. I., Khavinson, V. Kh., and Vanyushin, B. F. (2011) Penetration of short fluorescencelabeled peptides into the nucleus in HeLa cells and in vitro specific interaction of the peptides with deoxyribooligonucleotides and DNA, Biochemistry (Moscow), 76, 1210–1219.CrossRefGoogle Scholar
  29. 29.
    Khavinson, V. Kh., Fedoreeva, L. I., and Vanyushin, B. F. (2011) Short peptides modulate the effect of endonucleases of wheat seedling, Doklady Biochem. Biophys., 437, 64–67.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • V. V. Ashapkin
    • 1
    Email author
  • N. S. Linkova
    • 2
    • 3
  • V. Kh. Khavinson
    • 2
    • 4
  • B. F. Vanyushin
    • 1
  1. 1.Belozersky Institute of Physico-Chemical BiologyLomonosov Moscow State UniversityMoscowRussia
  2. 2.St. Petersburg Institute of Bioregulation and GerontologySt. PetersburgRussia
  3. 3.St. Petersburg State Polytechnical UniversitySt. PetersburgRussia
  4. 4.Mechnikov North-West State Medical UniversitySt. PetersburgRussia

Personalised recommendations