Biochemistry (Moscow)

, Volume 80, Issue 3, pp 284–295 | Cite as

Stratification of chondroitin sulfate binding sites in 3D-model of bovine testicular hyaluronidase and effective size of glycosaminoglycan coat of the modified protein

  • A. V. MaksimenkoEmail author
  • A. D. Turashev
  • R. S. Beabealashvili


A 3D-model of bovine testicular hyaluronidase (BTH) was constructed based on established tertiary structure of human hyaluronidase Hyal1 using a molecular homological modeling method in silico. The analysis of the BTH 3D-model demonstrated lysine residue stratification during enzyme modification. The 3D-model of chondroitin sulfate (CHS)-modified hyaluronidase (BTH-CHS) was obtained by modeling covalent binding of lysine residues with benzoquinone-activated CHS. The degree of enzyme modification and the length of CHS chains were varied during 3D modeling. The importance of deep BTH modification degree for the formation of active and stable enzyme derivatives was shown, as determined earlier experimentally. The effective size of the CHS coat for productive BTH modification was confirmed. It is theoretically achieved at the increase in molecular mass of BTH-CHS derivative to approximately 140–180 kDa and can be practically obtained, according to experimental data, using CHS of different molecular mass (30–50 as well as 120–140 kDa).

Key words

bovine testicular hyaluronidase tertiary structure chondroitin sulfate lysine residue modification hyaluronidase-chondroitin sulfate conjugate modification degree chondroitin sulfate coat 



bovine testicular hyaluronidase


chondroitin sulfate


spatial/three-dimensional/tertiary protein structure


epidermal growth factor


glucuronic acid


human hyaluronidase




root mean square deviation of model Cα-atoms from prototype Cα-atoms


trinitrobenzenesulfonic acid


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Maksimenko, A. V. (2012) Cardiological biopharmaceutics in concept of targeted drug transport: practical results and research perspectives, Acta Naturae, 4, 76–86.Google Scholar
  2. 2.
    Batool, S., Ferdous, S., Kamal, M. A., Iftikhar, H., and Rashid, S. (2013) In silico screening for identification of novel Aurora kinase inhibitors by molecular docking, dynamics simulations and ligand-based hypothesis approaches, Enz. Eng., 2, 1.Google Scholar
  3. 3.
    Wu, Z. L. (2012) Time for molecular glycobiology, J. Glycobiol., 1, e106.Google Scholar
  4. 4.
    Maksimenko, A. V., and Turashev, A. D. (2012) No-reflow phenomenon and endothelial glycocalyx of microcirculation, Biochem. Res. Int., 2012, 859231; DOI: 10.1155/2012/859231.Google Scholar
  5. 5.
    Reitsma, S., Slaaf, D. W., Vink, H., van Zandvoort, M. A., and oude Egbrink, M. G. A. (2007) The endothelial glycocalyx: compositions, functions, and visualization, Pflugers Arch., 454, 345–359.CrossRefPubMedCentralPubMedGoogle Scholar
  6. 6.
    Rubio-Gayosso, I., Platts, S. H., and Duling, B. R. (2006) Reactive oxygen species mediate modification of glycocalyx during ischemia-reperfusion injury, Am. J. Physiol. Heart Circ. Physiol., 290, 2247–2256.CrossRefGoogle Scholar
  7. 7.
    Stern, R., and Jedrzejas, M. J. (2006) Hyaluronidases: their genomics, structure, and mechanism of action, Chem. Rev., 106, 818–839.CrossRefPubMedCentralPubMedGoogle Scholar
  8. 8.
    Vink, H., and Duling, B. R. (2000) Capillary endothelial surface layer selectively reduces plasma solute distribution volume, Am. J. Physiol. Heart Circ. Physiol., 278, 285–289.Google Scholar
  9. 9.
    Platts, S. H., and Duling, B. R. (2004) Adenosine A3 receptor activation modulates the capillary endothelial glycocalyx, Circ. Res., 94, 77–82.CrossRefPubMedGoogle Scholar
  10. 10.
    Stern, R. (2008) Hyaluronidases in cancer biology, Sem. Cancer Biol., 18, 275–280.CrossRefGoogle Scholar
  11. 11.
    Toole, B. P., Wight, T. N., and Tammi, M. I. (2002) Hyaluronan-cell interactions in cancer and vascular disease, J. Biol. Chem., 277, 4593–4596.CrossRefPubMedGoogle Scholar
  12. 12.
    Stern, R., and Jedrzejas, M. J. (2008) Carbohydrate polymer at the center of life’s origins: the importance of molecular processivity, Chem. Rev., 108, 5061–5085.CrossRefPubMedGoogle Scholar
  13. 13.
    Erickson, M., and Stern, R. (2012) Chain gangs: new aspects of hyaluronan metabolism, Biochem. Res. Int., 2012, 893947; DOI: 10.1155/2012/893947.CrossRefPubMedCentralPubMedGoogle Scholar
  14. 14.
    Markovich-Housley, Z., Miglierini, G., Soldatova, L., Rizkallah, P. J., Muller, U., and Schirmer, T. (2000) Crystal structure of hyaluronidase, a major allergen of bee venom, Structure, 8, 1025–1035.CrossRefGoogle Scholar
  15. 15.
    Chao, K. L., Muthukumar, L., and Herzberg, O. (2007) Structure of human hyaluronidase-1, a hyaluronan hydrolyzing enzyme involved in tumor growth and angiogenesis, Biochemistry, 46, 6911–6920.CrossRefPubMedGoogle Scholar
  16. 16.
    Maksimenko, A. V., Schechilina, U. V., and Tischenko, E. G. (2001) Dextran modified hyaluronidase is resistant to heparin inhibition, Biochemistry (Moscow), 66, 456–463.CrossRefGoogle Scholar
  17. 17.
    Maksimenko, A. V., Schechilina, U. V., and Tischenko, E. G. (2003) Glycosaminoglycan microsurrounding of hyaluronidase in regulation of its endoglycosidase activity, Biochemistry (Moscow), 68, 862–868.CrossRefGoogle Scholar
  18. 18.
    Schwede, T., Kopp, J., Guex, N., and Peitsch, M. C. (2003) Swiss-model: an automated protein homologymodeling server, Nucleic Acids Res., 31, 3381–3385.CrossRefPubMedCentralPubMedGoogle Scholar
  19. 19.
    Arnold, K., Bordoli, L., Kopp, J., and Schwede, T. (2006) The Swiss-model workspace: a web-based environment for protein structure homology modeling, Bioinformatics, 22, 195–201.CrossRefPubMedGoogle Scholar
  20. 20.
    Schindyalov, I. N., and Bourne, P. E. (1998) Protein structure alignment by incremental combinatorial extension (CE) of the optimal path, Protein Eng., 11, 739–747.CrossRefGoogle Scholar
  21. 21.
    Laskovski, R. A., MacArthur, M. W., Moss, D. S., and Thornton, J. M. (1993) Procheck: a program to check the stereochemical quality of protein structures, J. Appl. Crystal., 26, 283–291.CrossRefGoogle Scholar
  22. 22.
    Morris, A. L., MacArthur, M. W., Hutchinson, E. G., and Thornton, J. M. (1992) Stereochemical quality of protein structure coordinates, Proteins, 12, 345–364.CrossRefPubMedGoogle Scholar
  23. 23.
    Vriend, G. (1990) WHAT IF: a molecular modeling and drug design program, J. Mol. Graph., 8, 52–56.CrossRefPubMedGoogle Scholar
  24. 24.
    Melo, F., Devos, D., Depiereux, E., and Feytmans, E. (1997) Anolea: a www server to assess protein structures, Proc. Int. Conf. Intel. Syst. Mol. Biol., 5, 187–190.Google Scholar
  25. 25.
    Melo, F., and Feytmans, E. (1998) Assessing protein structures with a non-local atomic interaction energy, J. Mol. Biol., 277, 1141–1152.CrossRefPubMedGoogle Scholar
  26. 26.
    Melo, F., and Feytmans, E. (1997) Novel knowledge-based mean force potential at atomic level, J. Mol. Biol., 267, 207–222.CrossRefPubMedGoogle Scholar
  27. 27.
    Maksimenko, A., Turashev, A., Fedorovich, A., Rogoza, A., and Tischenko, E. (2013) Hyaluronidase proof for endothelial glycocalyx as partaker of microcirculation disturbances, J. Life Sci., 7, 171–188.Google Scholar
  28. 28.
    Turashev, A. D., Tischenko, E. G., and Maksimenko, A. V. (2009) Glycation of native and chondroitin sulfate-modified hyaluronidase by monosaccharides, Mol. Med., 3, 51–56.Google Scholar
  29. 29.
    Belem-Goncalves, S., Tsan, P., Lancelin, J.-M., Alves, T. L. M., Salim, V. M., and Besson, F. (2006) Interfacial behavior of bovine testis hyaluronidase, Biochem. J., 398, 569–576.CrossRefPubMedCentralPubMedGoogle Scholar
  30. 30.
    Botzki, A., Rigden, D. J., Braun, S., Nukui, M., Salmen, S., Hoechstetter, J., Bernhardt, G., Dove, S., Jedrzejas, M. J., and Buschauer, A. (2004) L-ascorbic acid G-hexadecanoate, a potent hyaluronidase inhibitor. X-ray structure and molecular modeling of enzyme-inhibitor complexes, J. Biol. Chem., 279, 45990–45997.CrossRefPubMedGoogle Scholar
  31. 31.
    Zhang, L., Bharadwaj, A. G., Casper, A., Barkley, J., Barycki, J. J., and Simpson, M. A. (2009) Hyaluronidase activity of human Hyal1 requires active site acidic and tyrosine residues, J. Biol. Chem., 284, 9433–9442.CrossRefPubMedCentralPubMedGoogle Scholar
  32. 32.
    Hofinger, E. S., Bernhardt, G., and Buschauer, A. (2007) Kinetics of hyal-1 and PH-20 hyaluronidases: comparison of minimal substrates and analysis of the transglycosylation reaction, Glycobiology, 17, 963–971.CrossRefPubMedGoogle Scholar
  33. 33.
    Dygai, A. M., Zyuz’kov, G. N., Zhdanov, V. V., Udut, E. V., Miroshnichenko, L. A., Simanina, E. V., Khrichkova, T. Yu., Minakova, M. Yu., and Madonov, P. G. (2013) Specific activity of electron-beam synthesis immobilized hyaluronidase on G-CSF induced mobilization of bone marrow progenitor cells, Stem Cell Rev. Rep., 9, 140–147.CrossRefGoogle Scholar
  34. 34.
    Zuzkov, G. N., Maksimenko, A. V., Zhdanov, V. V., Udut, E. V., Turashev, A. D., Miroshnichenko, N. A., Simanina, E. V., Chaikovsky, A. V., Minakova, M. U., Artamonov, A. V., Bekarev, A. A., Madonov, P. G., Udut, V. V., and Dygai, M. M. (2013) Specific activity of chondroitin sulfate-modified hyaluronidase in relation to progenitor cell function, Klet. Tekhnol. Biol. Med., 4, 193–196.Google Scholar
  35. 35.
    Heldin, P., Basu, K., Olofsson, B., Porsch, H., Kozlova, I., and Kahata, K. (2013) Deregulation of hyaluronan synthesis, degradation and binding promotes breast cancer, J. Biochem., 154, 395–408.CrossRefPubMedGoogle Scholar
  36. 36.
    Wang, J., Wang, W., Kollman, P. A., and Case, D. A. (2006) Automatic atom type and bond type perception in molecular mechanical calculations, J. Mol. Graph. Model., 25, 247–260.CrossRefPubMedGoogle Scholar
  37. 37.
    Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A., and Case, D. A. (2004) Development and testing of a general amber force field, J. Comput. Chem., 25, 1157–1174.CrossRefPubMedGoogle Scholar
  38. 38.
    Maksimenko, A. V., Petrova, M. L., Tischenko, E. G., and Schechilina, Y. V. (2001) Chemical modification of hyaluronidase regulates its inhibition by heparin, Eur. J. Pharm. Biopharm., 51, 33–38.CrossRefPubMedGoogle Scholar
  39. 39.
    Turashev, A. D., Tischenko, E. G., and Maksimenko, A. V. (2009) Non-enzyme glycosylation of native and chondroitin sulfate-modified hyaluronidase by disaccharides, Mol. Med., 6, 50–55.Google Scholar
  40. 40.
    Maksimenko, A. V. (2008) Effects of glycosaminoglycans in vascular events, Khim. Farm. Zh., 42, 3–13.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • A. V. Maksimenko
    • 1
    Email author
  • A. D. Turashev
    • 1
  • R. S. Beabealashvili
    • 1
  1. 1.Institute of Experimental CardiologyRussian Cardiology Research and Production ComplexMoscowRussia

Personalised recommendations