Biochemistry (Moscow)

, Volume 80, Issue 3, pp 260–275 | Cite as

Rat liver sinusoidal surface N-linked glycoproteomic analysis by affinity enrichment and mass spectrometric identification

  • Jianglin Li
  • Jun Gao
  • Miao Jiang
  • Jia Chen
  • Zhonghua Liu
  • Ping ChenEmail author
  • Songping LiangEmail author


Glycosylation in liver is one of the most biologically important protein modifications. It plays critical roles in many physiological and pathological processes by virtue of its unique location at the blood-tissue interface, including angiogenesis, liver cancer, cirrhosis, and fibrosis. To analyze glycosylation of plasma membrane proteins in liver sinusoidal endothelial cells (LSEC), N-glycopeptides of the LSEC surface were enriched using a filter-assisted sample preparation-based lectin affinity capture method and subsequently identified with mass spectrometry. In total, 225 unique N-glycosylation sites on 152 glycoproteins were identified, of which 119 (53%) sites had not previously been determined experimentally. Among the glycoproteins, 53% were classified as plasma membrane proteins and 47 (31%) as signaling proteins and receptors. Moreover, 23 cluster of differentiation antigens with 49 glycopeptides were detected within the membrane glycoproteins of the liver sinusoidal surface. Furthermore, bioinformatics analysis revealed that the majority of identified glycoproteins have an impact on processes of LSEC. Therefore, N-glycoproteomic analysis of the liver sinusoidal surface may provide useful information on liver regeneration and facilitate liver disease diagnosis.

Key words

liver sinusoidal endothelial surface N-glycoproteomic N-glyco-FASP mass spectrometry 



cell adhesion molecule


cluster of differentiation


extracellular matrix


epidermal growth factor receptor


endoplasmic reticulum


filter-aided sample preparation-based method


gene ontology annotation


grand average hydropathy


Kyoto Encyclopedia of Genes and Genomes


liquid chromatography-tandem mass spectrometry


liver sinusoidal endothelial cells


mass spectrometry


plasma membrane pellet from the Nycodenz density centrifugation


plasma membrane


LSEC PM fraction after sucrose density centrifugation


transmembrane domain


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zielinska, D. F., Gnad, F., Wisniewski, J. R., and Mann, M. (2010) Precision mapping of an in vivo N-glycoproteome reveals rigid topological and sequence constraints, Cell, 141, 897–907.CrossRefPubMedGoogle Scholar
  2. 2.
    Wisniewski, J. R. (2011) Tools for phospho- and glycoproteomics of plasma membranes, Amino Acids, 41, 223–233.CrossRefPubMedGoogle Scholar
  3. 3.
    Apweiler, R., Hermjakob, H., and Sharon, N. (1999) On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database, Biochim. Biophys. Acta (BBA)-General Subjects, 1473, 4–8.CrossRefGoogle Scholar
  4. 4.
    Varki, A. (1993) Biological roles of oligosaccharides: all of the theories are correct, Glycobiology, 3, 97–130.CrossRefPubMedGoogle Scholar
  5. 5.
    Gahmberg, C. G., and Tolvanen, M. (1996) Why mammalian cell surface proteins are glycoproteins, Trends Biochem. Sci., 21, 308–311.CrossRefPubMedGoogle Scholar
  6. 6.
    Tian, Y., and Zhang, H. (2013) Characterization of disease-associated N-linked glycoproteins, Proteomics, 13, 504–511.CrossRefPubMedGoogle Scholar
  7. 7.
    Blomme, B., Van Steenkiste, C., Callewaert, N., and Van Vlierberghe, H. (2009) Alteration of protein glycosylation in liver diseases, J. Hepatol., 50, 592–603.CrossRefPubMedGoogle Scholar
  8. 8.
    Scott, D. W., and Patel, R. P. (2013) Endothelial heterogeneity and adhesion molecules N-glycosylation: implications in leukocyte trafficking in inflammation, Glycobiology, 23, 622–633.CrossRefPubMedGoogle Scholar
  9. 9.
    Lee, A., Kolarich, D., Haynes, P. A., Jensen, P. H., Baker, M. S., and Packer, N. H. (2009) Rat liver membrane glycoproteome: enrichment by phase partitioning and glycoprotein capture, J. Proteome Res., 8, 770–781.CrossRefPubMedGoogle Scholar
  10. 10.
    Wisniewski, J. R., Zougman, A., Nagaraj, N., and Mann, M. (2009) Universal sample preparation method for proteome analysis, Nat. Methods, 6, 359–362.CrossRefPubMedGoogle Scholar
  11. 11.
    Wisniewski, J. R., Ostasiewicz, P., and Mann, M. (2011) High recovery FASP applied to the proteomic analysis of microdissected formalin-fixed paraffin-embedded cancer tissues retrieves known colon cancer markers, J. Proteome Res., 10, 3040–3049.CrossRefPubMedGoogle Scholar
  12. 12.
    Zielinska, D. F., Gnad, F., Schropp, K., Wisniewski, J. R., and Mann, M. (2012) Mapping N-glycosylation sites across seven evolutionarily distant species reveals a divergent substrate proteome despite a common core machinery, Mol. Cell, 46, 542–548.CrossRefPubMedGoogle Scholar
  13. 13.
    Wisniewski, J. R., Zougman, A., and Mann, M. (2009) Combination of FASP and Stage Tip-based fractionation allows in-depth analysis of the hippocampal membrane proteome, J. Proteome Res., 8, 5674–5678.CrossRefPubMedGoogle Scholar
  14. 14.
    Wisniewski, J. R., Zielinska, D. F., and Mann, M. (2011) Comparison of ultrafiltration units for proteomic and N-glycoproteomic analysis by the filter-aided sample preparation method, Anal. Biochem., 410, 307–309.CrossRefPubMedGoogle Scholar
  15. 15.
    Stolz, D. B., Ross, M. A., Salem, H. M., Mars, W. M., Michalopoulos, G. K., and Enomoto, K. (1999) Cationic colloidal silica membrane perturbation as a means of examining changes at the sinusoidal surface during liver regeneration, Am. J. Pathol., 155, 1487–1498.CrossRefPubMedCentralPubMedGoogle Scholar
  16. 16.
    Durr, E., Yu, J., Krasinska, K. M., Carver, L. A., Yates, J. R., Testa, J. E., Oh, P., and Schnitzer, J. E. (2004) Direct proteomic mapping of the lung microvascular endothelial cell surface in vivo and in cell culture, Nat. Biotechnol., 22, 985–992.CrossRefPubMedGoogle Scholar
  17. 17.
    Li, X., Xie, C., Cao, J., He, Q., Cao, R., Lin, Y., Jin, Q., Chen, P., Wang, X., and Liang, S. (2008) An in vivo membrane density perturbation strategy for identification of liver sinusoidal surface proteome accessible from the vasculature, J. Proteome Res., 8, 123–132.CrossRefGoogle Scholar
  18. 18.
    Huang, D. W., Sherman, B. T., Tan, Q., Kir, J., Liu, D., Bryant, D., Guo, Y., Stephens, R., Baseler, M. W., and Lane, H. C. (2007) DAVID bioinformatics resources: expanded annotation database and novel algorithms to better extract biology from large gene lists, Nucleic Acids Res., 35, W169–W175.CrossRefPubMedCentralPubMedGoogle Scholar
  19. 19.
    Huang, D. W., Sherman, B. T., and Lempicki, R. A. (2008) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources, Nat. Protoc., 4, 44–57.CrossRefGoogle Scholar
  20. 20.
    Aoki, K. F., and Kanehisa, M. (2005) Using the KEGG database resource, Curr. Protoc. Bioinform., 1, 1.12; DOI: 10.1002/0471250953.Google Scholar
  21. 21.
    Josic, D., and Clifton, J. G. (2007) Mammalian plasma membrane proteomics, Proteomics, 7, 3010–3029.CrossRefPubMedGoogle Scholar
  22. 22.
    Qiu, R., and Regnier, F. E. (2005) Use of multidimensional lectin affinity chromatography in differential glycoproteomics, Anal. Chem., 77, 2802–2809.CrossRefPubMedGoogle Scholar
  23. 23.
    Santoni, V., Kieffer, S., Desclaux, D., Masson, F., and Rabilloud, T. (2000) Membrane proteomics: use of additive main effects with multiplicative interaction model to classify plasma membrane proteins according to their solubility and electrophoretic properties, Electrophoresis, 21, 3329–3344.CrossRefPubMedGoogle Scholar
  24. 24.
    Geraud, C., Schledzewski, K., Demory, A., Klein, D., Kaus, M., Peyre, F., Sticht, C., Evdokimov, K., Lu, S., and Schmieder, A. (2010) Liver sinusoidal endothelium: a microenvironment-dependent differentiation program in rat including the novel junctional protein liver endothelial differentiation-associated protein-1, Hepatology, 52, 313–326.CrossRefPubMedGoogle Scholar
  25. 25.
    Ganesan, L. P., Mohanty, S., Kim, J., Clark, K. R., Robinson, J. M., and Anderson, C. L. (2011) Rapid and efficient clearance of blood-borne virus by liver sinusoidal endothelium, PLoS Pathog., 7, e1002281.CrossRefPubMedCentralPubMedGoogle Scholar
  26. 26.
    Mitchell, S. J., Huizer-Pajkos, A., Cogger, V. C., McLachlan, A. J., Le Couteur, D. G., Jones, B., de Cabo, R., and Hilmer, S. N. (2011) Age-related pseudocapillarization of the liver sinusoidal endothelium impairs the hepatic clearance of acetaminophen in rats, J. Gerontol. Ser. A: Biol. Sci. Med. Sci., 66, 400–408.CrossRefGoogle Scholar
  27. 27.
    Reichen, J. (1999) The role of the sinusoidal endothelium in liver function, Physiology, 14, 117–121.Google Scholar
  28. 28.
    Solaun, M. S., Mendoza, L., De Luca, M., Gutierrez, V., Lopez, M. P., Olaso, E., Sim, L., Kim, B., and Vidal-Vanaclocha, F. (2002) Endostatin inhibits murine colon carcinoma sinusoidal-type metastases by preferential targeting of hepatic sinusoidal endothelium, Hepatology, 35, 1104–1116.CrossRefPubMedGoogle Scholar
  29. 29.
    Ding, B.-S., Nolan, D. J., Butler, J. M., James, D., Babazadeh, A. O., Rosenwaks, Z., Mittal, V., Kobayashi, H., Shido, K., and Lyden, D. (2010) Inductive angiocrine signals from sinusoidal endothelium are required for liver regeneration, Nature, 468, 310–315.CrossRefPubMedCentralPubMedGoogle Scholar
  30. 30.
    Gamble, J., Vadas, M., and McCaughan, G. (2011) Sinusoidal endothelium is essential for liver regeneration, Hepatology, 54, 731–733.CrossRefPubMedGoogle Scholar
  31. 31.
    Kuwada, S. K., Kuang, J., and Li, X. (2005) Integrin alpha5/beta1 expression mediates HER-2 down-regulation in colon cancer cells, J. Biol. Chem., 280, 19027–19035.CrossRefPubMedGoogle Scholar
  32. 32.
    Dingemans, A.-M. C., van den Boogaart, V., Vosse, B. A., van Suylen, R.-J., Griffioen, A. W., and Thijssen, V. L. (2010) Integrin expression profiling identifies integrin alpha5 and beta1 as prognostic factors in early stage nonsmall cell lung cancer, Mol. Cancer, 9, 1476–4598.CrossRefGoogle Scholar
  33. 33.
    Wang, J. L., Ren, K. F., Chang, H., Jia, F., Li, B. C., Ji, Y., and Ji, J. (2013) Direct adhesion of endothelial cells to bioinspired poly(dopamine) coating through endogenous fibronectin and integrin alpha5/beta1, Macromol. Biosci., 13, 483–493.CrossRefPubMedGoogle Scholar
  34. 34.
    Welti, J., Loges, S., Dimmeler, S., and Carmeliet, P. (2013) Recent molecular discoveries in angiogenesis and antiangiogenic therapies in cancer, J. Clin. Invest., 123, 3190–3200.CrossRefPubMedCentralPubMedGoogle Scholar
  35. 35.
    Priglinger, C. S., Szober, C. M., Priglinger, S. G., Merl, J., Euler, K. N., Kernt, M., Gondi, G., Behler, J., Geerlof, A., Kampik, A., Ueffing, M., and Hauck, S. M. (2013) Galectin-3 induces clustering of CD147 and integrin-beta1 transmembrane glycoprotein receptors on the RPE cell surface, PLoS One, 8.Google Scholar
  36. 36.
    Gu, J., Isaji, T., Sato, Y., Kariya, Y., and Fukuda, T. (2009) Importance of N-glycosylation on alpha5/beta1 integrin for its biological functions, Biol. Pharm. Bull., 32, 780–785.CrossRefPubMedGoogle Scholar
  37. 37.
    Weidle, U. H., Eggle, D., Klostermann, S., and Swart, G. W. (2010) ALCAM/CD166: cancer-related issues, Cancer Genom. Proteom., 7, 231–243.Google Scholar
  38. 38.
    Yan, M., Yang, X., Wang, L., Clark, D., Zuo, H., Ye, D., Chen, W., and Zhang, P. (2013) Plasma membrane proteomics of tumor spheres identify CD166 as a novel marker for cancer stem-like cells in head and neck squamous cell carcinoma, Mol. Cell. Proteom., 12, 3271–3284.CrossRefGoogle Scholar
  39. 39.
    Safaee, M., Clark, A. J., Ivan, M. E., Oh, M. C., Bloch, O., Sun, M. Z., Oh, T., and Parsa, A. T. (2013) CD97 is a multifunctional leukocyte receptor with distinct roles in human cancers (review), Int. J. Oncol., 43, 1343–1350.PubMedGoogle Scholar
  40. 40.
    Wang, T., Ward, Y., Tian, L., Lake, R., Guedez, L., Stetler-Stevenson, W. G., and Kelly, K. (2005) CD97, an adhesion receptor on inflammatory cells, stimulates angiogenesis through binding integrin counterreceptors on endothelial cells, Blood, 105, 2836–2844.CrossRefPubMedGoogle Scholar
  41. 41.
    Hamann, J., Veninga, J. H. H., de Groot, D. M., Visser, L., Hofstra, C. L., Tak, P. P., Laman, J. D., Boots, A. M., and van Eenennaam, H. (2011) CD97 in leukocyte trafficking, Adv. Exp. Med. Biol., 706, 128–137.CrossRefGoogle Scholar
  42. 42.
    Jung, M.-Y., Park, S.-Y., and Kim, I.-S. (2007) Stabilin-2 is involved in lymphocyte adhesion to the hepatic sinusoidal endothelium via the interaction with alpha M/beta 2 integrin, J. Leukoc. Biol., 82, 1156–1165.CrossRefPubMedGoogle Scholar
  43. 43.
    Mertz, A. F., Che, Y., Banerjee, S., Goldstein, J. M., Rosowski, K. A., Revilla, S. F., Niessen, C. M., Marchetti, M. C., Dufresne, E. R., and Horsley, V. (2013) Cadherin-based intercellular adhesions organize epithelial cell-matrix traction forces, Proc. Natl. Acad. Sci. USA, 110, 842–847.CrossRefPubMedCentralPubMedGoogle Scholar
  44. 44.
    Guo, H., Li, R., Zucker, S., and Toole, B. P. (2000) EMM-PRIN (CD147), an inducer of matrix metalloproteinase synthesis, also binds interstitial collagenase to the tumor cell surface, Cancer Res., 60, 888–891.PubMedGoogle Scholar
  45. 45.
    Tang, W., Chang, S. B., and Hemler, M. E. (2004) Links between CD147 function, glycosylation, and caveolin-1, Mol. Biol. Cell., 15, 4043–4050.CrossRefPubMedCentralPubMedGoogle Scholar
  46. 46.
    Katz, M., Amit, I., Citri, A., Shay, T., Carvalho, S., Lavi, S., Milanezi, F., Lyass, L., Amariglio, N., and Jacob-Hirsch, J. (2007) A reciprocal tensin-3-cten switch mediates EGF-driven mammary cell migration, Nature Cell Biol., 9, 961–969.CrossRefPubMedGoogle Scholar
  47. 47.
    Seshacharyulu, P., Ponnusamy, M. P., Haridas, D., Jain, M., Ganti, A. K., and Batra, S. K. (2012) Targeting the EGFR signaling pathway in cancer therapy, Exp. Opin. Therap. Targets, 16, 15–31.CrossRefGoogle Scholar
  48. 48.
    Mottolese, M., Natali, P., Coli, A., Bigotti, G., Benevolo, M., Cione, A., Raus, L., and Carapella, C. (1997) Comparative analysis of proliferating cell nuclear antigen and epidermal growth factor receptor expression in glial tumors: correlation with histological grading, Anticancer Res., 18, 1951–1956.Google Scholar
  49. 49.
    Sato, C., Kim, J.-H., Abe, Y., Saito, K., Yokoyama, S., and Kohda, D. (2000) Characterization of the N-oligosaccharides attached to the atypical Asn-X-Cys sequence of recombinant human epidermal growth factor receptor, J. Biochem., 127, 65–72.CrossRefPubMedGoogle Scholar
  50. 50.
    Wu, S.-L., Kim, J., Hancock, W. S., and Karger, B. (2005) Extended Range Proteomic Analysis (ERPA): a new and sensitive LC-MS platform for high sequence coverage of complex proteins with extensive post-translational modifications comprehensive analysis of beta-casein and epidermal growth factor receptor (EGFR), J. Proteome Res., 4, 1155–1170.CrossRefPubMedGoogle Scholar
  51. 51.
    Liu, Y.-C., Yen, H.-Y., Chen, C.-Y., Chen, C.-H., Cheng, P.-F., Juan, Y.-H., Chen, C.-H., Khoo, K.-H., Yu, C.-J., and Yang, P.-C. (2011) Sialylation and fucosylation of epidermal growth factor receptor suppress its dimerization and activation in lung cancer cells, Proc. Natl. Acad. Sci. USA, 108, 11332–11337.CrossRefPubMedCentralPubMedGoogle Scholar
  52. 52.
    Smedsrod, B., De Bleser, P., Braet, F., Lovisetti, P., Vanderkerken, K., Wisse, E., and Geerts, A. (1994) Cell biology of liver endothelial and Kupffer cells, Gut, 35, 1509–1516.CrossRefPubMedCentralPubMedGoogle Scholar
  53. 53.
    Smedsrod, B., Melkko, J., Araki, N., Sano, H., and Horiuchi, S. (1997) Advanced glycation end products are eliminated by scavenger-receptor-mediated endocytosis in hepatic sinusoidal Kupffer and endothelial cells, Biochem. J., 322, 567–573.PubMedCentralPubMedGoogle Scholar
  54. 54.
    Seternes, T., Sorensen, K., and Smedsrod, B. (2002) Scavenger endothelial cells of vertebrates: a nonperipheral leukocyte system for high-capacity elimination of waste macromolecules, Proc. Natl. Acad. Sci. USA, 99, 7594–7597.CrossRefPubMedCentralPubMedGoogle Scholar
  55. 55.
    Chandler, K., and Goldman, R. (2013) Glycoprotein disease markers and single protein omics, Mol. Cell. Proteom., 12, 836–845.CrossRefGoogle Scholar
  56. 56.
    Yates Iii, J. R., Gilchrist, A., Howell, K. E., and Bergeron, J. J. (2005) Proteomics of organelles and large cellular structures, Nature Rev. Mol. Cell Biol., 6, 702–714.CrossRefGoogle Scholar
  57. 57.
    Racanelli, V., and Rehermann, B. (2006) The liver as an immunological organ, Hepatology, 43, S54–S62.CrossRefPubMedGoogle Scholar
  58. 58.
    Sawamura, T., Nakada, H., Hazama, H., Shiozaki, Y., Sameshima, Y., and Tashiro, Y. (1984) Hyperasialoglycoproteinemia in patients with chronic liver diseases and/or liver cell carcinoma. Asialoglycoprotein receptor in cirrhosis and liver cell carcinoma, Gastroenterology, 87, 1217–1221.PubMedGoogle Scholar
  59. 59.
    Burgess, J. B., Baenziger, J. U., and Brown, W. R. (1992) Abnormal surface distribution of the human asialoglycoprotein receptor in cirrhosis, Hepatology, 15, 702–706.CrossRefPubMedGoogle Scholar
  60. 60.
    Braet, F., and Wisse, E. (2002) Structural and functional aspects of liver sinusoidal endothelial cell fenestrae: a review, Comp. Hepatol., 1, 1.CrossRefPubMedCentralPubMedGoogle Scholar
  61. 61.
    Bedossa, P., and Paradis, V. (2003) Liver extracellular matrix in health and disease, J. Pathol., 200, 504–515.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.Key Laboratory of Protein Chemistry and Developmental Biology of the Ministry of Education, College of Life SciencesHunan Normal UniversityChangshaP. R. China
  2. 2.Qingyuan City People’s Hospital of Jinan UniversityQingyuan, GuangdongP. R. China

Personalised recommendations