Advertisement

Biochemistry (Moscow)

, Volume 80, Issue 2, pp 228–232 | Cite as

Soluble expression and one-step purification of recombinant mouse interferon-λ3 in Escherichia coli

  • Y. Q. Wang
  • M. Zhou
  • L. M. Zeng
  • Q. Y. Gao
  • X. L. Yuan
  • Y. LiEmail author
  • M. C. LiEmail author
Article
  • 144 Downloads

Abstract

Interferon (IFN)-λ3, a member of the type III IFN family, is a pleiotropic cytokine that exhibits potent antiproliferative, antiviral, and immunoregulatory activities. For further functional study of IFN-λ3, we developed an efficient procedure that includes cloning, expression, and purification to obtain relatively large quantity of mouse IFN-λ3 fusion protein. The mature IFN-λ3 protein-coding region was cloned into the prokaryotic expression vector pET-44. IFN-λ3 contains a hexahistidine tag at its C-terminus. We used Ni2+-nitrilotriacetic acid agarose-affinity chromatography to purify the expressed soluble protein. The purified IFN-λ3 inhibited significantly IL-13 production in stimulated RAW264.7 macrophages. Our findings show that the production of soluble IFN-λ3 proteins by the pET-44 vector in Escherichia coli is a good alternative for the production of native IFN-λ3 and could be useful for the production of other IFN proteins.

Key words

interferon-λ3 recombinant protein Escherichia coli pET-44 vector 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kotenko, S. V., Gallagher, G., Baurin, V. V., Lewis-Antes, A., Shen, M., Shah, N. K., Langer, J. A., Sheikh, F., Dickensheets, H., and Donnelly, R. P. (2003) IFN-lambdas mediate antiviral protection through a distinct class II cytokine receptor complex, Nat. Immunol., 4, 69–77.CrossRefPubMedGoogle Scholar
  2. 2.
    Sheppard, P., Kindsvogel, W., Xu, W., Henderson, K., Schlutsmeyer, S., Whitmore, T. E., Kuestner, R., Garrigues, U., Birks, C., Roraback, J., Ostrander, C., Dong, D., Shin, J., Presnell, S., Fox, B., Haldeman, B., Cooper, E., Taft, D., Gilbert, T., Grant, F. J., Tackett, M., Krivan, W., McKnight, G., Clegg, C., Foster, D., and Klucher, K. M. (2003) IL-28, IL-29 and their class II cytokine receptor IL-28R, Nat. Immunol., 4, 63–68.CrossRefPubMedGoogle Scholar
  3. 3.
    Witte, K., Witte, E., Sabat, R., and Wolk, K. (2010) IL-28A, IL-28B, and IL-29: promising cytokines with type I interferon-like properties, Cytokine Growth Factor Rev., 21, 237–251.CrossRefPubMedGoogle Scholar
  4. 4.
    Pestka, S., Krause, C. D., Sarkar, D., Walter, M. R., Shi, Y., and Fisher, P. B. (2004) Interleukin-10 and related cytokines and receptors, Annu. Rev. Immunol., 22, 929–979.CrossRefPubMedGoogle Scholar
  5. 5.
    Duong, F. H., Trincucci, G., Boldanova, T., Calabrese, D., Campana, B., Krol, I., Durand, S. C., Heydmann, L., Zeisel, M. B., Baumert, T. F., and Heim, M. H. (2014) IFN-λ receptor 1 expression is induced in chronic hepatitis C and correlates with the IFN-λ3 genotype and with nonresponsiveness to IFN-λ therapies, J. Exp. Med., 211, 857–868.CrossRefPubMedCentralPubMedGoogle Scholar
  6. 6.
    Li, M., Liu, X., Zhou, Y., and Su, S. B. (2009) Interferonlambdas: the modulators of antivirus, antitumor, and immune responses, J. Leukoc. Biol., 86, 23–32.CrossRefPubMedGoogle Scholar
  7. 7.
    Bartlett, N. W., Buttigieg, K., Kotenko, S. V., and Smith, G. L. (2005) Murine interferon lambdas (type III interferons) exhibit potent antiviral activity in vivo in a poxvirus infection model, J. Gen. Virol., 86, 1589–1596.CrossRefPubMedGoogle Scholar
  8. 8.
    Lasfar, A., Lewis-Antes, A., Smirnov, S. V., Anantha, S., Abushahba, W., Tian, B., Reuhl, K., Dickensheets, H., Sheikh, F., Donnelly, R. P., Raveche, E., and Kotenko, S. V. (2006) Characterization of the mouse IFN-lambda ligand-receptor system: IFN-lambdas exhibit antitumor activity against B16 melanoma, Cancer Res., 66, 4468–4477.CrossRefPubMedGoogle Scholar
  9. 9.
    Park, H., Serti, E., Eke, O., Muchmore, B., Prokunina-Olsson, L., Capone, S., Folgori, A., and Rehermann, B. (2012) IL-29 is the dominant type III interferon produced by hepatocytes during acute hepatitis C virus infection, Hepatology, 56, 2060–2070.CrossRefPubMedCentralPubMedGoogle Scholar
  10. 10.
    Doyle, S. E., Schreckhise, H., Khuu-Duong, K., Henderson, K., Rosler, R., Storey, H., Yao, L., Liu, H., Barahmand-Pour, F., Sivakumar, P., Chan, C., Birks, C., Foster, D., Clegg, C. H., Wietzke-Braun, P., Mihm, S., and Klucher, K. M. (2006) Interleukin-29 uses a type 1 interferon-like program to promote antiviral responses in human hepatocytes, Hepatology, 44, 896–906.CrossRefPubMedGoogle Scholar
  11. 11.
    Pagliaccetti, N. E., Eduardo, R., Kleinstein, S. H., Mu, X. J., Bandi, P., and Robek, M. D. (2008) Interleukin-29 functions cooperatively with interferon to induce antiviral gene expression and inhibit hepatitis C virus replication, J. Biol. Chem., 283, 30079–30089.CrossRefPubMedCentralPubMedGoogle Scholar
  12. 12.
    Wang, J., Oberley-Deegan, R., Wang, S., Nikrad, M., Funk, C. J., Hartshorn, K. L., and Mason, R. J. (2009) Differentiated human alveolar type II cells secrete antiviral IL-29 (IFN-lambda 1) in response to influenza A infection, J. Immunol., 182, 1296–1304.CrossRefPubMedCentralPubMedGoogle Scholar
  13. 13.
    Misumi, I., and Whitmire, J. K. (2014) IFN-λ exerts opposing effects on T cell responses depending on the chronicity of the virus infection, J. Immunol., 192, 3596–3606.CrossRefPubMedGoogle Scholar
  14. 14.
    Zhou, L., Li, J., Wang, X., Ye, L., Hou, W., Ho, J., Li, H., and Ho, W. (2011) IL-29/IL-28A suppress HSV-1 infection of human NT2-N neurons, J. Neurovirol., 17, 212–219.CrossRefPubMedGoogle Scholar
  15. 15.
    Pott, J., Mahlakoiv, T., Mordstein, M., Duerr, C. U., Michiels, T., Stockinger, S., Staeheli, P., and Hornef, M. W. (2011) IFN-lambda determines the intestinal epithelial antiviral host defense, Proc. Natl Acad. Sci. USA, 108, 7944–7949.CrossRefPubMedCentralPubMedGoogle Scholar
  16. 16.
    Witte, K., Gruetz, G., Volk, H. D., Looman, A. C., Asadullah, K., Sterry, W., Sabat, R., and Wolk, K. (2009) Despite IFN-lambda receptor expression, blood immune cells, but not keratinocytes or melanocytes, have an impaired response to type III interferons: implications for therapeutic applications of these cytokines, Genes Immun., 10, 702–714.CrossRefPubMedGoogle Scholar
  17. 17.
    Li, Q., Kawamura, K., Ma, G., Iwata, F., Numasaki, M., Suzuki, N., Shimada, H., and Tagawa, M. (2010) Interferon-lambda induces G1 phase arrest or apoptosis in oesophageal carcinoma cells and produces anti-tumour effects in combination with anti-cancer agents, Eur. J. Cancer, 46, 180–190.CrossRefPubMedGoogle Scholar
  18. 18.
    Sato, A., Ohtsuki, M., Hata, M., Kobayashi, E., and Murakami, T. (2006) Antitumor activity of IFN-lambda in murine tumor models, J. Immunol., 176, 7686–7694.CrossRefPubMedGoogle Scholar
  19. 19.
    Naumnik, W., Naumnik, B., Niewiarowska, K., Ossolinska, M., and Chyczewska, E. (2012) Novel cytokines: IL-27, IL-29, IL-31 and IL-33. Can they be useful in clinical practice at the time diagnosis of lung cancer? Exp. Oncol., 34, 348–353.PubMedGoogle Scholar
  20. 20.
    Li, Y., Gao, Q., Yuan, X., Zhou, M., Peng, X., Liu, X., Zheng, X., Xu, D., and Li, M. (2014) Adenovirus expressing IFN-λ3 (IL-29) attenuates allergic airway inflammation and airway hyperreactivity in experimental asthma, Int. Immunopharmacol., 21, 156–162.CrossRefPubMedGoogle Scholar
  21. 21.
    Qiu, C., Li, Y., Zhou, M., Liu, J., Li, M., Wu, Y., and Xu, D. (2014) Hydrodynamic delivery of IL-28B (IFN-λ3) gene ameliorates lung inflammation induced by cigarette smoke exposure in mice, Biochem. Biophys. Res. Commun., 447, 513–519.CrossRefPubMedGoogle Scholar
  22. 22.
    Gaberc-Porekar, V., and Menart, V. (2001) Perspectives of immobilized-metal affinity chromatography, J. Biochem. Biophys. Methods, 49, 335–360.CrossRefPubMedGoogle Scholar
  23. 23.
    Glynou, K., Ioannou, P. C., and Christopoulos, T. K. (2003) One-step purification and refolding of recombinant photoprotein aequorin by immobilized metal-ion affinity chromatography, Protein Expr. Purif., 27, 384–390.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.Zhejiang Provincial Key Laboratory of Pathophysiology, Department of ImmunologyNingbo University School of MedicineNingboChina

Personalised recommendations