Advertisement

Biochemistry (Moscow)

, Volume 80, Issue 2, pp 208–218 | Cite as

Reorganization of low-molecular-weight fraction of plasma proteins in the annual cycle of cyprinidae

  • A. M. AndreevaEmail author
  • N. E. Lamas
  • M. V. Serebryakova
  • I. P. Ryabtseva
  • V. V. Bolshakov
Article

Abstract

Reorganization of the low-molecular-weight fraction of cyprinid plasma was analyzed using various electrophoretic techniques (disc electrophoresis, electrophoresis in polyacrylamide concentration gradient, in polyacrylamide with urea, and in SDS-polyacrylamide). The study revealed coordinated changes in the low-molecular-weight protein fractions with seasonal dynamics and related reproductive rhythms of fishes. We used cultured species of the Cyprinidae family with sequenced genomes for the detection of these interrelations in fresh-water and anadromous cyprinid species. The common features of organization of fish low-molecular-weight plasma protein fractions made it possible to make reliable identification of their proteins. MALDI mass-spectrometry analysis revealed the presence of the same proteins (hemopexin, apolipoproteins, and serpins) in the low-molecular-weight plasma fraction in wild species and cultured species with sequenced genomes (carp, zebrafish). It is found that the proteins of the first two classes are organized as complexes made of protein oligomers. Stoichiometry of these complexes changes in concordance with the seasonal and reproductive rhythms.

Key words

fish plasma proteins mass spectra MALDI 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anderson, N. L., and Anderson, N. G. (2002) The human plasma proteome: history, character, and diagnostic prospects, Mol. Cell. Proteom., 1, 845–867.CrossRefGoogle Scholar
  2. 2.
    Liotta, L. A., and Petricoin, E. F. (2006) Serum peptidome for cancer detection: spinning biologic trash into diagnostic gold, J. Clin. Invest., 116, 26–30.CrossRefPubMedCentralPubMedGoogle Scholar
  3. 3.
    Anderson, N. L., Polanski, M., Pieper, R., Gatlin, T., Tirumalai, R. S., Conrads, T. P., Veenstra, T. D., Adkins, J. N., Pounds, J. G., Fagan, R., and Lobley, A. (2004) The human plasma proteome: a nonredundant list developed by combination of four separate sources, Mol. Cell. Proteom., 3, 311–326.CrossRefGoogle Scholar
  4. 4.
    Bouwman, F. G., Roos, B., Rubio-Aliaga, I., Crosley, L. K., Duthie, S. J., Mayer, C., Horgan, G., Polley, A. C., Heim, C., Coort, S., Evelo, C. T., Mulholland, F., Johnson, I. T., Elliott, R. M., Daniel, H., and Mariman, E. (2011) 2D-electrophoresis and multiplex immunoassay proteomic analysis of different body fluids and cellular components reveal known and novel markers for extended fasting, BMC Med. Genom., 4, 1–12.CrossRefGoogle Scholar
  5. 5.
    Babaei, F., Ramalingam, R., Tavendale, A., Liang, Y., Yan, L. S., Ajuh, P., Cheng, S. H., and Lam, Y. W. (2013) Novel blood collection method allows plasma proteome analysis from single zebrafish, J. Proteome Res., 12, 1580–1590.CrossRefPubMedGoogle Scholar
  6. 6.
    Zhang, Z., Bast, R. C., Yu, Y., Li, J., Sokoll, L. J., Rai, A. J., Rosenzweig, J. M., Cameron, B., Wang, Y. Y., Meng, X. Y., Berchuck, A., Van Haaften-Day, C., Hacker, N. F., de Bruijn, H. W., van der Zee, A. G., Jacobs, I. J., Fung, E. T., and Chan, D. W. (2004) Three biomarkers identified from serum proteomic analysis for the detection of early stage ovarian cancer, Cancer Res., 64, 5882–5890.CrossRefPubMedGoogle Scholar
  7. 7.
    Luczak, M., Formanowicz, D., Pawliczak, E., Wanic-Kossowska, M., Wykretowicz, A., and Figlerowicz, M. (2011) Chronic kidney disease-related atherosclerosis — proteomic studies of blood plasma, Proteome Sci., 9, 1–12.CrossRefGoogle Scholar
  8. 8.
    Tiselius, A. (1937) Electrophoresis of serum globulin: electrophoretic analysis of normal and immune sera, Biochem. J., 31, 1464–1472.PubMedCentralPubMedGoogle Scholar
  9. 9.
    Lucitt, M. B., Price, T. S., Pizarro, A., Wu, W., Yocum, A. K., Seiler, C., Pack, M. A., Blair, I. A., FitzGerald, G. A., and Grosser, T. (2008) Analysis of the zebrafish proteome during embryonic development, Mol. Cell Proteom., 7, 981–994.CrossRefGoogle Scholar
  10. 10.
    Danis, M. H., Filosa, M. F., and Youson, J. H. (2000) An albumin-like protein in the serum of non-parasitic brook lamprey (Lampetra appendix) is restricted to pre-adult phases of the life cycle in contrast to the parasitic species Petromyzon marinus, Comp. Biochem. Physiol. B Biochem. Mol. Biol., 127, 251–260.CrossRefPubMedGoogle Scholar
  11. 11.
    Metcalf, V. J., George, P. M., and Brennan, S. O. (2007) Lungfish albumin is more similar to tetrapod than to teleost albumins: purification and characterization of albumin from the Australian lungfish Neoceratodus forsteri, Comp. Biochem. Physiol. B Biochem. Mol. Biol., 147, 428–437.CrossRefPubMedGoogle Scholar
  12. 12.
    Fanali, G., Ascenzi, P., Bernardi, G., and Fasano, M. J. (2012) Sequence analysis of serum albumins reveals the molecular evolution of ligand recognition properties, Biomol. Struct. Dyn., 29, 691–701.CrossRefGoogle Scholar
  13. 13.
    Xue, Z., Pang, Y., Liu, X., Zheng, Z., Xiao, R., Jin, M., Han, Y., Su, P., Lv, L., Wang, J., and Li, Q. (2013) First evidence of protein G-binding protein in the most primitive vertebrate: serum lectin from lamprey (Lampetra japonica), Dev. Comp. Immunol., 41, 618–630.CrossRefPubMedGoogle Scholar
  14. 14.
    Shevchenko, V. E., Kovalev, S. V., Yurchenko, V. A., Matveev, V. B., and Zaridze, D. G. (2011) Human blood plasma proteome mapping in norm and in renal light cell carcinoma, Onkourologiya, 3, 65–69.Google Scholar
  15. 15.
    Sakun, O. F., and Butskaya, N. A. (1968) Determination of Maturity Stages and Study of Fish Sex Products [in Russian], PINRO, Murmansk, p. 46.Google Scholar
  16. 16.
    Creighton, T. E. (1979) Electrophoretic analysis of the unfolding of proteins by urea, J. Mol. Biol., 129, 235–264.CrossRefPubMedGoogle Scholar
  17. 17.
    Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage, Nature, 227, 680–685.CrossRefPubMedGoogle Scholar
  18. 18.
    Ornstein, L. (1964) Disk-electrophoresis. I. Background and theory, Ann. N. Y. Acad. Sci., 121, 321–349.CrossRefPubMedGoogle Scholar
  19. 19.
    Davis, B. J. (1964) Disk-electrophoresis. II. Method and application to human serum proteins, Ann. N. Y. Acad. Sci., 121, 404–427.CrossRefPubMedGoogle Scholar
  20. 20.
    Andreeva, A. M. (2013) Identification of some proteins of blood and tissue liquid in fishes with undecoded genome, Zh. Evol. Biokhim. Fiziol., 49, 394–402.PubMedGoogle Scholar
  21. 21.
    Andreeva, A. M. (2011) Mechanisms of the plurality of Scorpaena porcus L. serum albumin, Open J. Marine Sci., 1, 31–35.CrossRefGoogle Scholar
  22. 22.
    Andreeva, A. M., Serebryakova, M. V., Lamash, N. E., Fedorov, R. A., and Ryabtseva, I. P. (2014) Organization of low-molecular-weight fraction of plasma proteins in Far-Eastern redfins of Tribolodon genus and other Cyprinidae species, Biol. Morya, in press.Google Scholar
  23. 23.
    Palmour, R. M., and Sutton, H. E. (1971) Vertebrate transferrins molecular-weight, clinical composition and iron binding studies, Biochemistry, 10, 4026–4032.CrossRefPubMedGoogle Scholar
  24. 24.
    Tsai, P. L., Chen, C. H., Huang, C. J., Chou, C. M., and Chang, G. D. (2004) Purification and cloning of an endogenous protein inhibitor of carp nephrosin, an astacin metalloproteinase, J. Biol. Chem., 279, 11146–11155.CrossRefPubMedGoogle Scholar
  25. 25.
    Kinoshita, S., Itoi, S., and Watabe, S. (2001) cDNA cloning and characterization of the warm-temperature-acclimation-associated protein Wap65 from carp, Cyprinus carpio, Fish Physiol. Biochem., 24, 125–134.CrossRefGoogle Scholar
  26. 26.
    Cho, Y. S., Kim, B. S., Kim, D. S., and Nam, Y. K. (2012) Modulation of warm-temperature-acclimation-associated 65 kDa-protein genes (Wap65-1 and Wap65-2) in mud loach (Misgurnus mizolepis, Cypriniformes) liver in response to different stimulatory treatments, Fish Shellfish Immunol., 32, 662–669.CrossRefPubMedGoogle Scholar
  27. 27.
    Kikuchi, K., Yamashita, M., Watabe, S., and Aida, K. (1995) The warm temperature acclimation-related 65-kDa protein, Wap65, in goldfish and its gene expression, J. Biol. Chem., 270, 17087–17092.CrossRefPubMedGoogle Scholar
  28. 28.
    Andreeva, A. M. (2012) Structural and Functional Organization of Fish Blood Proteins, Nova Science Publisher, N. Y., p. 188.Google Scholar
  29. 29.
    Dietrich, M. A., Arnold, G. J., Nynca, J., Frohlich, T., Otte, K., and Ciereszko, A. (2014) Characterization of carp seminal plasma proteome in relation to blood plasma, J. Proteom., 98, 218–232.CrossRefGoogle Scholar
  30. 30.
    Braceland, M., Bickerdike, R., Tinsley, J., Cockerill, D., Mcloughlin, M. F., Graham, D. A., Burchmore, R. J., Weir, W., Wallace, C., and Eckersall, P. D. (2013) The serum proteome of Atlantic salmon, Salmo salar, during pancreas disease (PD) following infection with salmonid alphavirus subtype 3 (SAV3), J. Proteom., 94, 423–436.CrossRefGoogle Scholar
  31. 31.
    Low, C. F., Shamsudin, M. N., Chee, H. Y., Aliyu-Paiko, M., and Idrus, E. S. (2014) Putative apolipoprotein A-I, natural killer cell enhancement factor, and lysozyme γ are involved in the early immune response of brown-marbled grouper, Epinephelus fuscoguttatus, Forskal, to Vibrio alginolyticus, J. Fish Dis., 37, 693–701.CrossRefPubMedGoogle Scholar
  32. 32.
    Metcalf, V. J., Brennan, S. O., Chambers, G., and George, P. M. (1999) High density lipoprotein (HDL), and not albumin, is the major palmitate binding protein in New Zealand long-finned (Anguilla dieffenbachii) and shortfinned eel (Anguilla australis schmidtii) plasma, Biochim. Biophys. Acta, 1429, 467–475.CrossRefPubMedGoogle Scholar
  33. 33.
    Metcalf, V. J., Brennan, S. O., Chambers, G. K., and George, P. M. (1998) The albumin of the brown trout (Salmo trutta) is a glycoprotein, Biochim. Biophys. Acta, 1386, 90–96.CrossRefPubMedGoogle Scholar
  34. 34.
    Aleksandrov, V. Ya. (1985) Cell Reactivity and Proteins [in Russian], Nauka, Leningrad.Google Scholar
  35. 35.
    Mohd. Wajid Ali Khan, Zafar Rasheed, Wahid Ali Khan, and Rashid Ali (2007) Biochemical, biophysical, and thermodynamic analysis of in vitro glycated human serum albumin, Biochemistry (Moscow), 72, 146–152.CrossRefGoogle Scholar
  36. 36.
    Flouriot, G., Ducouret, B., Byrnes, L., and Valotaire, Y. (1998) Transcriptional regulation of expression of the rainbow trout albumin gene by estrogen, J. Mol. Endocrinol., 20, 355–362.CrossRefPubMedGoogle Scholar
  37. 37.
    Novikov, G. G. (2000) Growth and Development in Early Ontogenesis of Teleost Fishes [in Russian], Editorial URSS, Moscow.Google Scholar
  38. 38.
    Andreeva, A. M. (2010) Role of structural organization of blood plasma proteins in stabilization of aqueous metabolism in teleost fishes (Teleostei), Voprosy Ikhtiol., 50, 570–576.Google Scholar
  39. 39.
    Papakostas, S., Vasemagi, A., Himberg, M., and Primmer, C. R. (2014) Proteome variance differences within populations of European whitefish (Coregonus lavaretus) originating from contrasting salinity environments, J. Proteom., 105, 144–150.CrossRefGoogle Scholar
  40. 40.
    Armengaud, J., Trapp, J., Pible, O., Geffard, O., Chaumot, A., and Hartmann, E. M. (2014) Non-model organisms, a species endangered by proteogenomics, J. Proteom., 105, 5–18.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • A. M. Andreeva
    • 1
    Email author
  • N. E. Lamas
    • 2
    • 3
  • M. V. Serebryakova
    • 4
  • I. P. Ryabtseva
    • 1
  • V. V. Bolshakov
    • 1
  1. 1.Papanin Institute for Biology of Inland WatersRussian Academy of SciencesBorokRussia
  2. 2.Zhirmunsky Institute of Marine BiologyFar-Eastern Branch of the Russian Academy of SciencesVladivostokRussia
  3. 3.Far-Earstern Federal UniversityVladivostokRussia
  4. 4.Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations