Biochemistry (Moscow)

, Volume 80, Issue 2, pp 202–207 | Cite as

Transcription factor NF-Y inhibits cell growth and decreases SOX2 expression in human embryonal carcinoma cell line NT2/D1

  • M. MojsinEmail author
  • V. Topalovic
  • J. Marjanovic Vicentic
  • M. Stevanovic


Transcription factor NF-Y belongs to the embryonic stem cell transcription factor circuitry due to its role in the regulation of cell proliferation. We investigated the role of NF-Y in pluripotency maintenance using NT2/D1 cells as one of the best-characterized human embryonal carcinoma cell line. We investigated the efficiency of protein transduction and analyzed the effects of forced expression of short isoform of NF-Y A-subunit (NF-YAs) on NT2/D1 cell growth and expression of SOX2. We found that protein transduction is an efficient method for NF-Y overexpression in NT2/D1 cells. Next, we analyzed the effect of NF-YAs overexpression on NT2/D1 cell viability and detected significant reduction in cell growth. The negative effect of NF-YAs overexpression on NT2/D1 cell pluripotency maintenance was confirmed by the decrease in the level of the pluripotency marker SOX2. Finally, we checked the p53 status and determined that the NF-Y-induced inhibition of NT2/D1 cell growth is p53-independent.

Key words

NF-Y transcription factor NT2/D1 cell line cell growth SOX2 p53 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andrews, P. W. (2002) From teratocarcinomas to embryonic stem cells, Philos. Trans. R. Soc. Lond. B. Biol. Sci., 357, 405–417.CrossRefPubMedCentralPubMedGoogle Scholar
  2. 2.
    Andrews, P. W., Damjanov, I., Simon, D., Banting, G. S., Carlin, C., Dracopoli, N. C., and Fogh, J. (1984) Pluripotent embryonal carcinoma clones derived from the human teratocarcinoma cell line Tera-2. Differentiation in vivo and in vitro, Lab. Invest., 50, 147–162.PubMedGoogle Scholar
  3. 3.
    Bocker, M. T., Tuorto, F., Raddatz, G., Musch, T., Yang, F. C., Xu, M., Lyko, F., and Breiling, A. (2012) Hydroxylation of 5-methylcytosine by TET2 maintains the active state of the mammalian HOXA cluster, Nat. Commun., 3, 818.CrossRefPubMedCentralPubMedGoogle Scholar
  4. 4.
    Pal, R., and Ravindran, G. (2006) Assessment of pluripotency and multilineage differentiation potential of NTERA-2 cells as a model for studying human embryonic stem cells, Cell Prolif., 39, 585–598.CrossRefPubMedGoogle Scholar
  5. 5.
    Przyborski, S. A., Christie, V. B., Hayman, M. W., Stewart, R., and Horrocks, G. M. (2004) Human embryonal carcinoma stem cells: models of embryonic development in humans, Stem Cells Devel., 13, 400–408.CrossRefGoogle Scholar
  6. 6.
    Ceribelli, M., Dolfini, D., Merico, D., Gatta, R., Vigano, A. M., Pavesi, G., and Mantovani, R. (2008) The histonelike NF-Y is a bifunctional transcription factor, Mol. Cell Biol., 28, 2047–2058.CrossRefPubMedCentralPubMedGoogle Scholar
  7. 7.
    Dolfini, D., Zambelli, F., Pavesi, G., and Mantovani, R. (2009) A perspective of promoter architecture from the CCAAT box, Cell Cycle, 8, 4127–4137.CrossRefPubMedGoogle Scholar
  8. 8.
    Peng, Y., and Jahroudi, N. (2002) The NFY transcription factor functions as a repressor and activator of the von Willebrand factor promoter, Blood, 99, 2408–2417.CrossRefPubMedGoogle Scholar
  9. 9.
    Fleming, J. D., Pavesi, G., Benatti, P., Imbriano, C., Mantovani, R., and Struhl, K. (2013) NF-Y coassociates with FOS at promoters, enhancers, repetitive elements, and inactive chromatin regions, and is stereo-positioned with growth-controlling transcription factors, Genome Res., 23, 1195–1209.CrossRefPubMedCentralPubMedGoogle Scholar
  10. 10.
    Romier, C., Cocchiarella, F., Mantovani, R., and Moras, D. (2003) The NF-YB/NF-YC structure gives insight into DNA binding and transcription regulation by CCAAT factor NF-Y, J. Biol. Chem., 278, 1336–1345.CrossRefPubMedGoogle Scholar
  11. 11.
    Li, X. Y., Hooft van Huijsduijnen, R., Mantovani, R., Benoist, C., and Mathis, D. (1992) Intron-exon organization of the NF-Y genes. Tissue-specific splicing modifies an activation domain, J. Biol. Chem., 267, 8984–8990.PubMedGoogle Scholar
  12. 12.
    Dolfini, D., Minuzzo, M., Pavesi, G., and Mantovani, R. (2012) The short isoform of NF-YA belongs to the embryonic stem cell transcription factor circuitry, Stem Cells, 30, 2450–2459.CrossRefPubMedGoogle Scholar
  13. 13.
    Sekido, R., and Lovell-Badge, R. (2009) Sex determination and SRY: down to a wink and a nudge? Trends Genet., 25, 19–29.CrossRefPubMedGoogle Scholar
  14. 14.
    Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., and Yamanaka, S. (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors, Cell, 131, 861–872.CrossRefPubMedGoogle Scholar
  15. 15.
    Takahashi, K., and Yamanaka, S. (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors, Cell, 126, 663–676.CrossRefPubMedGoogle Scholar
  16. 16.
    Wegner, M. (2010) All purpose Sox: the many roles of Sox proteins in gene expression, Int. J. Biochem. Cell Biol., 42, 381–390.CrossRefPubMedGoogle Scholar
  17. 17.
    Rizzino, A. (2013) Concise review: the Sox2-Oct4 connection: critical players in a much larger interdependent network integrated at multiple levels, Stem Cells, 31, 1033–1039.CrossRefPubMedCentralPubMedGoogle Scholar
  18. 18.
    Djurovic, J., and Stevanovic, M. (2004) Structural and functional characterization of the human SOX14 promoter, Biochim. Biophys. Acta, 1680, 53–59.CrossRefPubMedGoogle Scholar
  19. 19.
    Kovacevic Grujicic, N., Mojsin, M., Krstic, A., and Stevanovic, M. (2005) Functional characterization of the human SOX3 promoter: identification of transcription factors implicated in basal promoter activity, Gene, 344, 287–297.CrossRefPubMedGoogle Scholar
  20. 20.
    Krstic, A., Mojsin, M., and Stevanovic, M. (2007) Regulation of SOX3 gene expression is driven by multiple NF-Y binding elements, Arch. Biochem. Biophys., 467, 163–173.CrossRefPubMedGoogle Scholar
  21. 21.
    Milivojevic, M., Nikcevic, G., Kovacevic-Grujicic, N., Krstic, A., Mojsin, M., Drakulic, D., and Stevanovic, M. (2010) Involvement of ubiquitous and TALE transcription factors, as well as liganded RXRA in the regulation of human SOX2 gene expression in NT2/D1 embryonal carcinoma cell line, Arch. Biol. Sci. (Belgrade), 62, 199–210.CrossRefGoogle Scholar
  22. 22.
    Petrovic, I., Kovacevic-Grujicic, N., and Stevanovic, M. (2009) ZBP-89 and Sp3 down-regulate while NF-Y up-regulates SOX18 promoter activity in HeLa cells, Mol. Biol. Rep., 36, 993–1000.CrossRefPubMedGoogle Scholar
  23. 23.
    Kovacevic Grujicic, N., Yokoyama, K., and Stevanovic, M. (2008) Trans-activation of the human SOX3 promoter by MAZ in NT2/D1 cells, Arch. Biol. Sci., 60, 379–387.CrossRefGoogle Scholar
  24. 24.
    Petrovic, I., Kovacevic-Grujicic, N., Popovic, J., Krstic, A., Milivojevic, M., and Stevanovic, M. (2011) Members of the CREB/ATF and AP1 family of transcription factors are involved in the regulation of SOX18 gene expression, Arch. Biol. Sci., 63, 517–525.CrossRefGoogle Scholar
  25. 25.
    Domashenko, A. D., Danet-Desnoyers, G., Aron, A., Carroll, M. P., and Emerson, S. G. (2010) TAT-mediated transduction of NF-Ya peptide induces the ex vivo proliferation and engraftment potential of human hematopoietic progenitor cells, Blood, 116, 2676–2683.CrossRefPubMedCentralPubMedGoogle Scholar
  26. 26.
    Andrews, P. W. (1998) Teratocarcinomas and human embryology: pluripotent human EC cell lines. Review article, APMIS, 106, 158–167; discussion 167–158.CrossRefPubMedGoogle Scholar
  27. 27.
    Gurtner, A., Fuschi, P., Martelli, F., Manni, I., Artuso, S., Simonte, G., Ambrosino, V., Antonini, A., Folgiero, V., Falcioni, R., Sacchi, A., and Piaggio, G. (2010) Transcription factor NF-Y induces apoptosis in cells expressing wild-type p53 through E2F1 upregulation and p53 activation, Cancer Res., 70, 9711–9720.CrossRefPubMedGoogle Scholar
  28. 28.
    Grskovic, M., Chaivorapol, C., Gaspar-Maia, A., Li, H., and Ramalho-Santos, M. (2007) Systematic identification of cis-regulatory sequences active in mouse and human embryonic stem cells, PLoS Genet., 3, e145.CrossRefPubMedCentralPubMedGoogle Scholar
  29. 29.
    Greber, B., Lehrach, H., and Adjaye, J. (2007) Silencing of core transcription factors in human EC cells highlights the importance of autocrine FGF signaling for self-renewal, BMC Devel. Biol., 7, 46.CrossRefGoogle Scholar
  30. 30.
    Imbriano, C., Gnesutta, N., and Mantovani, R. (2012) The NF-Y/p53 liaison: well beyond repression, Biochim. Biophys. Acta, 1825, 131–139.PubMedGoogle Scholar
  31. 31.
    Bourdon, J. C., Deguin-Chambon, V., Lelong, J. C., Dessen, P., May, P., Debuire, B., and May, E. (1997) Further characterization of the p53 responsive element — identification of new candidate genes for trans-activation by p53, Oncogene, 14, 85–94.CrossRefPubMedGoogle Scholar
  32. 32.
    El-Deiry, W. S. (1998) Regulation of p53 downstream genes, Semin. Cancer Biol., 8, 345–357.CrossRefPubMedGoogle Scholar
  33. 33.
    El-Deiry, W. S., Kern, S. E., Pietenpol, J. A., Kinzler, K. W., and Vogelstein, B. (1992) Definition of a consensus binding site for p53, Nat. Genet., 1, 45–49.CrossRefPubMedGoogle Scholar
  34. 34.
    Funk, W. D., Pak, D. T., Karas, R. H., Wright, W. E., and Shay, J. W. (1992) A transcriptionally active DNA-binding site for human p53 protein complexes, Mol. Cell Biol., 12, 2866–2871.PubMedCentralPubMedGoogle Scholar
  35. 35.
    Ko, L. J., and Prives, C. (1996) p53: puzzle and paradigm, Genes Devel., 10, 1054–1072.CrossRefPubMedGoogle Scholar
  36. 36.
    Menendez, D., Inga, A., and Resnick, M. A. (2009) The expanding universe of p53 targets, Nat. Rev. Cancer, 9, 724–737.CrossRefPubMedGoogle Scholar
  37. 37.
    Willis, A. C., and Chen, X. (2002) The promise and obstacle of p53 as a cancer therapeutic agent, Curr. Mol. Med., 2, 329–345.CrossRefPubMedGoogle Scholar
  38. 38.
    Imbriano, C., Gurtner, A., Cocchiarella, F., Di Agostino, S., Basile, V., Gostissa, M., Dobbelstein, M., Del Sal, G., Piaggio, G., and Mantovani, R. (2005) Direct p53 transcriptional repression: in vivo analysis of CCAAT-containing G2/M promoters, Mol. Cell Biol., 25, 3737–3751.CrossRefPubMedCentralPubMedGoogle Scholar
  39. 39.
    Su, M., Bansal, A. K., Mantovani, R., and Sodek, J. (2005) Recruitment of nuclear factor Y to the inverted CCAAT element (ICE) by c-Jun and E1A stimulates basal transcription of the bone sialoprotein gene in osteosarcoma cells, J. Biol. Chem., 280, 38365–38375.CrossRefPubMedGoogle Scholar
  40. 40.
    Bolognese, F., Wasner, M., Dohna, C. L., Gurtner, A., Ronchi, A., Muller, H., Manni, I., Mossner, J., Piaggio, G., Mantovani, R., and Engeland, K. (1999) The cyclin B2 promoter depends on NF-Y, a trimer whose CCAAT-binding activity is cell-cycle regulated, Oncogene, 18, 1845–1853.CrossRefPubMedGoogle Scholar
  41. 41.
    Di Agostino, S., Strano, S., Emiliozzi, V., Zerbini, V., Mottolese, M., Sacchi, A., Blandino, G., and Piaggio, G. (2006) Gain of function of mutant p53: the mutant p53/NF-Y protein complex reveals an aberrant transcriptional mechanism of cell cycle regulation, Cancer Cell, 10, 191–202.CrossRefPubMedGoogle Scholar
  42. 42.
    Farina, A., Manni, I., Fontemaggi, G., Tiainen, M., Cenciarelli, C., Bellorini, M., Mantovani, R., Sacchi, A., and Piaggio, G. (1999) Down-regulation of cyclin B1 gene transcription in terminally differentiated skeletal muscle cells is associated with loss of functional CCAAT-binding NF-Y complex, Oncogene, 18, 2818–2827.CrossRefPubMedGoogle Scholar
  43. 43.
    Gurtner, A., Fuschi, P., Magi, F., Colussi, C., Gaetano, C., Dobbelstein, M., Sacchi, A., and Piaggio, G. (2008) NF-Y dependent epigenetic modifications discriminate between proliferating and postmitotic tissue, PLoS One, 3, e2047.CrossRefPubMedCentralPubMedGoogle Scholar
  44. 44.
    Gurtner, A., Manni, I., Fuschi, P., Mantovani, R., Guadagni, F., Sacchi, A., and Piaggio, G. (2003) Requirement for down-regulation of the CCAAT-binding activity of the NF-Y transcription factor during skeletal muscle differentiation, Mol. Biol. Cell, 14, 2706–2715.CrossRefPubMedCentralPubMedGoogle Scholar
  45. 45.
    Korner, K., Jerome, V., Schmidt, T., and Muller, R. (2001) Cell cycle regulation of the murine cdc25B promoter: essential role for nuclear factor-Y and a proximal repressor element, J. Biol. Chem., 276, 9662–9669.CrossRefPubMedGoogle Scholar
  46. 46.
    Linhart, C., Elkon, R., Shiloh, Y., and Shamir, R. (2005) Deciphering transcriptional regulatory elements that encode specific cell cycle phasing by comparative genomics analysis, Cell Cycle, 4, 1788–1797.CrossRefPubMedGoogle Scholar
  47. 47.
    Zwicker, J., Lucibello, F. C., Wolfraim, L. A., Gross, C., Truss, M., Engeland, K., and Muller, R. (1995) Cell cycle regulation of the cyclin A, cdc25C and cdc2 genes is based on a common mechanism of transcriptional repression, EMBO J., 14, 4514–4522.PubMedCentralPubMedGoogle Scholar
  48. 48.
    Vermeulen, K., Berneman, Z. N., and Van Bockstaele, D. R. (2003) Cell cycle and apoptosis, Cell Prolif., 36, 165–175.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • M. Mojsin
    • 1
    Email author
  • V. Topalovic
    • 1
  • J. Marjanovic Vicentic
    • 1
  • M. Stevanovic
    • 1
  1. 1.Institute of Molecular Genetics and Genetic EngineeringUniversity of BelgradeBelgradeSerbia

Personalised recommendations