Advertisement

Biochemistry (Moscow)

, Volume 80, Issue 2, pp 180–201 | Cite as

Features of hydrolysis of specific and nonspecific globular proteins and oligopeptides by antibodies against viral integrase from blood of HIV-infected patients

  • E. S. Odintsova
  • P. S. Dmitrenok
  • S. V. Baranova
  • A. M. Timofeeva
  • V. N. Buneva
  • G. A. NevinskyEmail author
Article

Abstract

It was shown previously that, as differentiated from canonical proteases, abzymes against myelin basic protein (MBP) from blood of patients with multiple sclerosis and systemic lupus erythematosus effectively cleaved only MBP, while antibodies (ABs) against integrase (IN) from blood of HIV-infected patients specifically hydrolyzed only IN. In this work, all sites of effective hydrolysis by anti-IN antibodies (IgG and IgM) of 25-mer oligopeptide (OP25) corresponding to MBP were identified using reversed-phase and thin-layer chromatographies and MALDI mass spectrometry. It was found that amino acid sequences of OP25 and other oligopeptides hydrolyzed by anti-MBP abzymes were partially homologous to some fragments of the full sequence of IN. Sequences of IN oligopeptides cleavable by anti-IN abzymes were homologous to some fragments of MBP, but anti-MBP abzymes could not effectively hydrolyze OPs corresponding to IN. The common features of the cleavage sites of OP25 and other oligopeptides hydrolyzed by anti-MBP and anti-IN abzymes were revealed. The literature data on hydrolysis of specific and nonspecific proteins and oligopeptides by abzymes against different protein antigens were analyzed. Overall, the literature data suggest that short OPs, including OP25, mainly interact with light chains of polyclonal ABs, which had lower affinity and specificity to the substrate than intact ABs. However, it seems that anti-IN ABs are the only one example of abzymes capable of hydrolyzing various oligopeptides with high efficiency (within some hours but not days). Possible reasons for the efficient hydrolysis of foreign oligopeptides by anti-IN abzymes from HIV-infected patients are discussed.

Key words

HIV-infected patients catalytic antibodies against viral integrase integrase myelin basic protein hydrolysis of peptides of myelin basic protein 

Abbreviations

AB

antibody

FM

final reaction mixture

HIV

human immunodeficiency virus

HSA

human serum albumin

IAS

immunogenic amino acid sequence

IgGmix and IgMmix

mixtures of individual antibodies from blood of HIV-infected patients

IN

HIV integrase

MBP

myelin basic protein

MCA

4-methylcoumaryl-7-amine

MS

multiple sclerosis

OP

oligopeptide

RPC

reverse-phase chromatography

SLE

systemic lupus erythematosus

X

fluorescent residue 6-O-(carboxymethyl)fluorescein ethyl ester

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Keinan, E. (ed.) (2005) Catalytic Antibodies, Wiley-VCH Verlag GmbH and Co. KgaA, Weinheim, Germany.Google Scholar
  2. 2.
    Nevinsky, G. A., and Buneva, V. N. (2002) Human catalytic RNA- and DNA-hydrolyzing antibodies, J. Immunol. Methods, 269, 235–249.CrossRefPubMedGoogle Scholar
  3. 3.
    Nevinsky, G. A., and Buneva, V. N. (2005) Natural catalytic antibodies — abzymes, in Catalytic Antibodies (Keinan, E., ed.) VCH-Wiley, Weinheim, Germany, pp. 503–567.Google Scholar
  4. 4.
    Nevinsky, G. A. (2010) Natural catalytic antibodies in norm and in autoimmune diseases, in Autoimmune Diseases: Symptoms, Diagnosis and Treatment (Brenner, K. J., ed.) Nova Science Publishers, Inc., USA.Google Scholar
  5. 5.
    Nevinsky, G. A. (2011) Natural catalytic antibodies in norm and in HIV-infected patients, in Understanding HIV/AIDS Management and Care — Pandemic Approaches the 21st Century (Kasenga, F. H., ed.) InTech, Rijeka, Croatia, pp. 151–192.Google Scholar
  6. 6.
    Nevinsky, G. A., and Buneva, V. N. (2012) Autoantibodies and natural catalytic antibodies in health, multiple sclerosis, and some other diseases, Adv. Neuroimmune Biol., 3, 157–182.Google Scholar
  7. 7.
    Fauci, A. S., Braunwald, E., Kasper, D. L., Hauser, S. L., Longo, D. L., and Jameson, J. L. (2008) Harrison’s Principles of Internal Medicine, 7th Edn., McGraw-Hill Professional, New York.Google Scholar
  8. 8.
    Katz, A. R., and Skalka, A. M. (1994) HIV-1 integrase: structural organization, conformational changes, and catalysis, Ann. Rev. Biochem., 63, 133–173.CrossRefPubMedGoogle Scholar
  9. 9.
    Litvak, S. (1996) Retroviral reverse transcriptases, in Molecular Biology Intelligency Unit Series (Landes, R., ed.) Chapman and Hall/Springer Verlag, Heidelberg.Google Scholar
  10. 10.
    Skalka, A. M., and Goff, S. P. (1993) Reverse Transcriptase, Cold Spring Harbor Laboratory Press, New York.Google Scholar
  11. 11.
    Asante-Appiah, E., and Skalka, A. M. (1999) HIV-1 integrase: structural organization, conformational changes, and catalysis, Adv. Virus Res., 52, 351–369.CrossRefPubMedGoogle Scholar
  12. 12.
    Verkoczy, L., and Diaz, M. (2014) Autoreactivity in HIV-1 broadly neutralizing antibodies: implications for their function and induction by vaccination, Curr. Opin. HIV AIDS, 9, 224–234.CrossRefPubMedGoogle Scholar
  13. 13.
    Zandman-Goddard, G., and Shoenfeld, Y. (2002) HIV and autoimmunity, Autoimmun. Rev., 1, 329–337.CrossRefPubMedGoogle Scholar
  14. 14.
    Gololobov, G. V., Mikhalap, S. V., Starov, A. V., Kolesnikov, A. F., and Gabibov, A. G. (1994) DNA-protein complexes. Natural targets for DNA-hydrolyzing antibodies, Appl. Biochem. Biotechnol., 47, 305–314.CrossRefPubMedGoogle Scholar
  15. 15.
    Odintsova, E. S., Kharitonova, M. A., Baranovskii, A. G., Sizyakina, L. P., Buneva, V. N., and Nevinsky, G. A. (2006) DNA-hydrolyzing IgG antibodies from the blood of patients with acquired immune deficiency syndrome, Mol. Biol., 40, 857–864.CrossRefGoogle Scholar
  16. 16.
    Odintsova, E. S., Kharitonova, M. A., Baranovskii, A. G., Sizyakina, L. P., Buneva, V. N., and Nevinsky, G. A. (2006) Proteolytic activity of IgG antibodies from blood of acquired immunodeficiency syndrome patients, Biochemistry (Moscow), 71, 251–261.CrossRefGoogle Scholar
  17. 17.
    Baranova, S. V., Buneva, V. N., Kharitonova, M. A., Sizyakina, L. P., Calmels, C., Parissi, V., Andreola, M. L., Buneva, V. N., Zakharova, O. D., and Nevinsky, G. A. (2010) HIV-1 integrase-hydrolyzing IgM antibodies from sera of HIV-infected patients, Int. Immunol., 22, 671–680.CrossRefPubMedGoogle Scholar
  18. 18.
    Baranova, S. V., Buneva, V. N., Kharitonova, M. A., Sizyakina, L. P., Calmels, C., Andreola, M. L., Parissi, V., and Nevinsky, G. A. (2009) HIV-1 integrase-hydrolyzing antibodies from sera of HIV-infected patients, Biochimie, 91, 1081–1086.CrossRefPubMedGoogle Scholar
  19. 19.
    Odintsova, E. S., Baranova, S. V., Dmitrenok, P. S., Rasskazov, V. A., Calmels, C., Parissi, V., Andreola, M. L., Buneva, V. N., Zakharova, O. D., and Nevinsky, G. A. (2011) Antibodies to HIV integrase catalyze site-specific degradation of their antigen, Int. Immunol., 23, 601–612.CrossRefPubMedGoogle Scholar
  20. 20.
    Odintsova, E. S., Dmitrenok, P. S., Buneva, V. N., and Nevinsky, G. A. (2013) Specific anti-integrase abzymes from HIV-infected patients: a comparison of the cleavage sites of intact globular HIV integrase and two 20-mer oligopeptides corresponding to its antigenic determinants, J. Mol. Recognit., 26, 121–135.CrossRefPubMedGoogle Scholar
  21. 21.
    O’Connor, K. C., Bar-Or, A., and Hafler, D. A. (2001) Neuroimmunology of multiple sclerosis, J. Clin. Immunol., 21, 81–92.CrossRefPubMedGoogle Scholar
  22. 22.
    Archelos, J. J., Storch, M. K., and Hartung, H. P. (2000) The role of B cells and autoantibodies in multiple sclerosis, Ann. Neurol., 47, 694–706.CrossRefPubMedGoogle Scholar
  23. 23.
    Hemmer, B., Archelos, J. J., and Hartung, H. P. (2002) New concepts in the immunopathogenesis of multiple sclerosis, Nat. Rev. Neurosci., 3, 291–301.CrossRefPubMedGoogle Scholar
  24. 24.
    Polosukhina, D. I., Kanyshkova, T. G., Doronin, B. M., Tyshkevich, O. B., Buneva, V. N., Boiko, A. N., Gusev, E. I., Favorova, O. O., and Nevinsky, G. A. (2004) Hydrolysis of myelin basic protein by polyclonal catalytic IgGs from the sera of patients with multiple sclerosis, J. Cell. Mol. Med., 8, 359–368.CrossRefPubMedGoogle Scholar
  25. 25.
    Polosukhina, D. I., Buneva, V. N., Doronin, B. M., Tyshkevich, O. B., Boiko, A. N., Gusev, E. I., Favorova, O. O., and Nevinsky, G. A. (2005) Hydrolysis of myelin basic protein by IgM and IgA antibodies from the sera of patients with multiple sclerosis, Med. Sci. Monit., 11, BR266–BR272.PubMedGoogle Scholar
  26. 26.
    Polosukhina, D. I., Kanyshkova, T. G., Doronin, B. M., Tyshkevich, O. B., Buneva, V. N., Boiko, A. N., Gusev, E. I., Nevinsky, G. A., and Favorova, O. O. (2006) Metal-dependent hydrolysis of myelin basic protein by IgGs from the sera of patients with multiple sclerosis, Immunol. Lett., 103, 75–81.CrossRefPubMedGoogle Scholar
  27. 27.
    Ponomarenko, N. A., Durova, O. M., Vorobiev, I. I., Belogurov, A. A., Kurkova, I. N., Petrenko, A. G., Telegin, G. B., Suchkov, S. V., Kiselev, S. L., Lagarkova, M. A., Govorun, V. M., Serebryakova, M. V., Avalle, B., Tornatore, P., Karavanov, A., Morse, H. C. 3rd, Thomas, D., Friboulet, A., and Gabibov, A. G. (2006) Autoantibodies to myelin basic protein catalyze site-specific degradation of their antigen, Proc. Natl. Acad. Sci. USA, 103, 281–286.CrossRefPubMedCentralPubMedGoogle Scholar
  28. 28.
    Hhachn, B. Ch. (1996) Systemic lupus erythematosus, in Internal Diseases (Braunvald, E. E., Isselbakher, K. D., Petersdorf, R. G., Wilson, D. D., Martin. D. B., and Fauchi, A. S., eds.) [Russian translation], Meditsina, Moscow.Google Scholar
  29. 29.
    Bezuglova, A. M., Konenkova, L. P., Doronin, B. M., Buneva, V. N., and Nevinsky, G. A. (2011) Affinity and catalytic heterogeneity and metal-dependence of polyclonal myelin basic protein-hydrolyzing IgGs from sera of patients with systemic lupus erythematosus, J. Mol. Recognit., 24, 960–974.CrossRefPubMedGoogle Scholar
  30. 30.
    Bezuglova, A. M., Dmitrenok, P. S., Konenkova, L. P., Buneva, V. N., and Nevinsky, G. A. (2012) Multiple sites of the cleavage of 17- and 19-mer encephalitogenic oligopeptides corresponding to human myelin basic protein (MBP) by specific anti-MBP antibodies from patients with systemic lupus erythematosus, Peptides, 37, 69–78.CrossRefPubMedGoogle Scholar
  31. 31.
    Timofeeva, A. M., Dmitrenok, P. S., Konenkova, L. P., Buneva, V. N., and Nevinsky G. A. (2013) Multiple sites of the cleavage of 21- and 25-mer encephalitogenic oligopeptides corresponding to human myelin basic protein (MBP) by specific anti-MBP antibodies from patients with systemic lupus erythematosus, PLoS One, 8, e51600.CrossRefPubMedCentralPubMedGoogle Scholar
  32. 32.
    Bezuglova, A. M., Konenkova, L. P., Buneva, V. N., and Nevinsky, G. A. (2012) IgGs containing light chains of the λ- and κ-type and of all subclasses (IgG1-IgG4) from the sera of patients with systemic lupus erythematosus hydrolyze myelin basic protein, Int. Immunol., 12, 759–770.CrossRefGoogle Scholar
  33. 33.
    Odintsova, E. S., Dmitrenok, P. S., Timofeeva, A. M., Buneva, V. N., and Nevinsky, G. A. (2014) Why specific anti-integrase antibodies from HIV-infected patients can efficiently hydrolyze 21-mer oligopeptide corresponding to antigenic determinant of human myelin basic protein, J. Mol. Recognit., 27, 32–45.CrossRefPubMedGoogle Scholar
  34. 34.
    Odintsova, E. S., Baranova, S. V., Dmitrenok, P. S., Calmels, C., Parissi, V., Andreola, M. L., Buneva, V. N., and Nevinsky, G. A. (2012) Anti-integrase abzymes from the sera of HIV-infected patients specifically hydrolyze integrase but nonspecifically cleave short oligopeptides, J. Mol. Recognit., 25, 193–207.CrossRefPubMedGoogle Scholar
  35. 35.
    Caumont, A., Jamieson, G., de Soultrait, V., Parissi, V., Fournier, M., Zakharova, O. D., Bayandin, R., Litvak, S., Tarrago-Litvak, L., and Nevinsky, G. A. (1999) High affinity interaction of HIV-1 integrase with specific and nonspecific single-stranded short oligonucleotides, FEBS Lett., 455, 154–158.CrossRefPubMedGoogle Scholar
  36. 36.
    Huang, X., and Miller, W. (1991) Local alignment of two-base encoded DNA sequence, Adv. Appl. Math., 12, 337–357.CrossRefGoogle Scholar
  37. 37.
    Paul, S., Li, L., Kalaga, R., O’Dell, J., Dannenbring, R. E., Swindells, S., Hinrichs, S., Cauturegli, P., and Rose, N. R. (1997) Characterization of thyroglobulin-directed and polyreactive catalytic antibodies in autoimmune disease, J. Immunol., 159, 1530–1536.PubMedGoogle Scholar
  38. 38.
    Kalaga, R., Li, L., O’Dell, J. R., and Paul, S. (1995) Unexpected presence of polyreactive catalytic antibodies in IgG from unimmunized donors and decreased levels in rheumatoid arthritis, J. Immunol., 155, 2695–2702.PubMedGoogle Scholar
  39. 39.
    Paul, S., Li, L., Kalaga, R., Wilkins-Stevens, P., Stevens, F. J., and Solomon, A. (1995) Natural catalytic antibodies: peptide-hydrolyzing activities of Bence-Jones proteins and VL fragment, J. Biol. Chem., 270, 15257–15261.CrossRefPubMedGoogle Scholar
  40. 40.
    Yi, J., Arthur, J. W., Dunbrack, R. L., and Skalka, A. M. (2000) An inhibitory monoclonal antibody binds at the turn of the helix-turn-helix motif in the N-terminal domain of HIV-1 integrase, J. Biol. Chem., 275, 38739–38748.CrossRefPubMedGoogle Scholar
  41. 41.
    Bizub-Bender, D., Kulkosky, J., and Skalka, A. M. (1994) Monoclonal antibodies against HIV type 1 integrase: clues to molecular structure, AIDS Res. Hum. Retroviruses, 10, 1105–1115.CrossRefPubMedGoogle Scholar
  42. 42.
    Nilsen, B. M., Haugan, I. R., Berg, K., Olsen, L., Brown, P. O., and Helland, D. E. (1996) Monoclonal antibodies against human immunodeficiency virus type 1 integrase: epitope mapping and differential effects on integrase activities in vitro, J. Virol., 70, 1580–1587.PubMedCentralPubMedGoogle Scholar
  43. 43.
    Baranovskii, A. G., Buneva, V. N., Doronin, B. M., and Nevinsky, G. A. (2008) Immunoglobulins from blood of patients with multiple sclerosis are catalytically heterogeneous nucleases, Ros. Immunol. Zh., 2, 405–419.Google Scholar
  44. 44.
    Andrievskaya, O. A., Buneva, V. N., Baranovskii, A. G., Gal’vita, A. V., Benzo, E. S., Naumov, V. A., and Nevinsky, G. A. (2002) Catalytic diversity of polyclonal RNA-hydrolyzing IgG antibodies from the sera of patients with systemic lupus erythematosus, Immunol. Lett., 81, 191–198.CrossRefPubMedGoogle Scholar
  45. 45.
    Galvita, A. V., Baranovskii, A. G., Kuznetsova, I. A., Vinshu, N. V., Galenok, V. A., Buneva, V. N., and Nevinsky, G. A. (2007) Peculiarities of DNA hydrolysis by antibodies from blood of patients with pancreatic diabetes, Rus. J. Immunol., 1, 116–131.Google Scholar
  46. 46.
    Parkhomenko, T. A., Buneva, V. N., Tyshkevich, O. B., Generalov, I. I., Doronin, B. M., and Nevinsky, G. A. (2010) DNA-hydrolyzing activity of IgG antibodies from the sera of patients with tick-borne encephalitis, Biochimie, 92, 545–554.CrossRefPubMedGoogle Scholar
  47. 47.
    Parkhomenko, T. A., Odintsova, E. S., Buneva, V. N., Kunder, E. V., Zhyltsov, I. V., Senkovich, S. A., Generalov, I. I., and Nevinsky, G. A. (2009) DNA-hydrolyzing activity of IgG antibodies from the sera of patients with diseases caused by different bacterial infections, J. Cell. Mol. Med., 13, 2875–2887.CrossRefPubMedGoogle Scholar
  48. 48.
    Kanyshkova, T. G., Semenov, D. V., Buneva, V. N., and Nevinsky, G. A. (1999) Human milk lactoferrin binds two molecules of DNA with different affinities, FEBS Lett., 451, 235–237.CrossRefPubMedGoogle Scholar
  49. 49.
    Kuznetsova, I. A., Orlovskaya, I. A., Buneva, V. N., and Nevinsky, G. A. (2007) Activation of DNA-hydrolyzing antibodies from the sera of autoimmune-prone MRLlpr/lpr mice by different metal ions, Biochim. Biophys. Acta, 1774, 884–896.CrossRefPubMedGoogle Scholar
  50. 50.
    Andryushkova, A. A., Kuznetsova, I. A., Orlovskaya, I. A., Buneva, V. N., and Nevinsky, G. A. (2006) Antibodies with amylase activity from the sera of autoimmune-prone MRL/MpJ-lpr mice, FEBS Lett., 580, 5089–5095.CrossRefPubMedGoogle Scholar
  51. 51.
    Andryushkova, A. A., Kuznetsova, I. A., Orlovskaya, I. A., Buneva, V. N., and Nevinsky, G. A. (2009) Nucleotidehydrolyzing antibodies from the sera of autoimmune-prone MRL-lpr/lpr mice, Int. Immunol., 21, 935–945.CrossRefPubMedGoogle Scholar
  52. 52.
    Botvinovskaya, A. V., Kostrikina, I. A., Buneva, V. N., and Nevinsky, G. A. (2013) Systemic lupus erythematosus: molecular cloning of several recombinant DNase monoclonal kappa light chains with different catalytic properties, J. Mol. Recognit., 26, 450–460.CrossRefPubMedGoogle Scholar
  53. 53.
    Kostrikina, I. A., Buneva, V. N., and Nevinsky, G. A. (2014) Systemic lupus erythematosus: molecular cloning of fourteen recombinant DNase monoclonal kappa light chains with different catalytic properties, Biochim. Biophys. Acta, 1840, 1725–1737.CrossRefPubMedGoogle Scholar
  54. 54.
    Sun, M., Gao, Q. S., Kirnarskiy, L., Rees, A., and Paul, S. (1997) Cleavage specificity of a proteolytic antibody light chain and effects of the heavy chain variable domain, J. Mol. Biol., 271, 374–385.CrossRefPubMedGoogle Scholar
  55. 55.
    Thiagarajan, P., Dannenbring, R., Matsuura, K., Tramontano, A., Gololobov, G., and Paul, S. (2000) Monoclonal antibody light chain with prothrombinase activity, Biochemistry, 39, 6459–6465.CrossRefPubMedGoogle Scholar
  56. 56.
    Rangan, S. K., Liu, R., Brune, D., Plaque, S., Paul, S., and Sierks, M. R. (2003) Degradation of beta-amyloid by proteolytic antibody light chains, Biochemistry, 42, 14328–14334.CrossRefPubMedGoogle Scholar
  57. 57.
    Mitsuda, Y., Hifimi, E., Tsuruhata, R., Fujinami, H., Yamamoto, N., and Uda, T. (2004) Catalytic antibody light chain capable of cleaving a chemokine receptor CCR-5 peptide with a high reaction rate constant, Biotechnol. Bioeng., 86, 217–225.CrossRefPubMedGoogle Scholar
  58. 58.
    Nidhiyama, Y., Karle, S., Planque, S., Taguchi, H., and Paul, S. (2007) Antibodies to the superantigenic site of HIV-1 gp120, hydrolytic and binding activities of the light chain subunit, Mol. Immunol., 44, 2707–2718.CrossRefGoogle Scholar
  59. 59.
    Taguchi, H., Keck, Z., Foung, S. K., Paul, S., and Nishiyama, Y. (2004) Antibody light chain-catalyzed hydrolysis of a hepatitis C virus peptide, Bioorg. Med. Chem. Lett., 14, 4529–4532.CrossRefPubMedGoogle Scholar
  60. 60.
    Hifumi, E., Morihara, F., Hatiuchi, K., Okuda, T., Nishisono, A., and Uda, T. (2008) Catalytic features and eradication ability of antibody light-chain UA15-L against Helicobacter pylori, J. Biol. Chem., 283, 899–907.CrossRefPubMedGoogle Scholar
  61. 61.
    Li, L., Paul, S., Tyutyulkova, S., Kazatchkine, M. D., and Kavery, S. (1995) Catalytic activity of anti-thyroglobulin antibodies, J. Immunol., 154, 3328–3332.PubMedGoogle Scholar
  62. 62.
    Gao, Q. S., Sun, M., Tyutyulkova, S., Webster, D., Rees, A., Tramontano, A., Massey, R. J., and Paul, S. (1994) Molecular cloning of a proteolytic antibody light chain, J. Biol. Chem., 269, 32389–32393.PubMedGoogle Scholar
  63. 63.
    Fersht, A. (1985) Enzyme Structure and Mechanism, 2nd Edn., W. H. Freeman, Co., N. Y.Google Scholar
  64. 64.
    Nevinsky, G. A. (2003) in Protein Structures: Kaleidoscope of Structural Properties and Functions (Uversky, V. N., ed.) Research Signpost, Kerala, pp. 133–222.Google Scholar
  65. 65.
    Paul, S., Volle, D. J., Beach, C. M., Johnson, D. R., Powell, M. J., and Massey, R. J. (1989) Catalytic hydrolysis of vasoactive intestinal peptide by human autoantibody, Science, 244, 1158–1162.CrossRefPubMedGoogle Scholar
  66. 66.
    Lacroix-Desmazes, S., Moreau, A., Sooryanarayana, Bonnemain, C., Stieltjes, N., Pashov, A., Sultan, Y., Hoebeke, J., Kazatchkine, M. D., and Kaveri, S. V. (1999) Catalytic activity of antibodies against factor VIII in patients with hemophilia A, Nat. Med., 5, 1044–1047.CrossRefPubMedGoogle Scholar
  67. 67.
    Odintsova, E. S., Buneva, V. N., and Nevinsky, G. A. (2005) Casein-hydrolyzing activity of sIgA antibodies from human milk, J. Mol. Recognit., 18, 413–421.CrossRefPubMedGoogle Scholar
  68. 68.
    Paul, S., Karle, S., Planque, S., Taguchi, H., Salas, M., Nishiyama, Y., Handy, B., Hunter, R., Edmundson, A., and Hanson, C. (2004) Naturally occurring proteolytic antibodies: selective immunoglobulin M-catalyzed hydrolysis of HIV gp120, J. Biol. Chem., 279, 39611–39619.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • E. S. Odintsova
    • 1
  • P. S. Dmitrenok
    • 2
  • S. V. Baranova
    • 1
  • A. M. Timofeeva
    • 1
  • V. N. Buneva
    • 1
    • 3
  • G. A. Nevinsky
    • 1
    • 3
    Email author
  1. 1.Institute of Chemical Biology and Fundamental MedicineSiberian Division of the Russian Academy of SciencesNovosibirskRussia
  2. 2.Pacific Institute of Bioorganic ChemistryFar East Division of the Russian Academy of SciencesVladivostokRussia
  3. 3.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations