Advertisement

Biochemistry (Moscow)

, Volume 80, Issue 2, pp 172–179 | Cite as

Effect of chaperonin encoded by gene 146 on thermal aggregation of lytic proteins of bacteriophage EL Pseudomonas aeruginosa

  • P. I. SemenyukEmail author
  • V. N. Orlov
  • L. P. Kurochkina
Article

Abstract

Investigation of the chaperonin encoded by gene 146 of bacteriophage EL Pseudomonas aeruginosa that we characterized earlier has been continued. To reveal the mechanism of its functioning, new recombinant substrate proteins, fragments of gene product (gp) 183 containing the lysozyme domain were prepared. Their interaction with gp146 was studied. The influence of the phage chaperonin on the thermal aggregation of one of these gp183 fragments and endolysin (gp188) was investigated in both the presence and the absence of ATP by dynamic light scattering. In the absence of ATP, the phage chaperonin forms stable complexes with substrate proteins, thereby protecting them against thermal aggregation. Experimental data obtained for different substrate proteins are analyzed.

Key words

phage chaperonin bacteriophage EL endolysin protein aggregation 

Abbreviations

DLS

dynamic light scattering

DSC

differential scanning calorimetry

gp

gene product

ITC

isothermal titration calorimetry

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Horwich, A. L. (2013) Chaperonin-mediated protein folding, J. Biol. Chem., 288, 23622–23632.CrossRefPubMedCentralPubMedGoogle Scholar
  2. 2.
    Iizuka, R., Yoshida, T., Ishii, N., Zako, T., Takahashi, K., Maki, K., Inobe, T., Kuwajima, K., and Yohda, M. (2005) Characterization of archaeal group II chaperonin-ADP-metal fluoride complexes: implications that group II chaperonins operate as a “two-stroke engine”, J. Biol. Chem., 280, 40375–40383.CrossRefPubMedGoogle Scholar
  3. 3.
    Georgopoulos, C. P., Hendrix, R. W., Casjens, S. R., and Kaiser, A. D. (1973) Host participation in bacteriophage lambda head assembly, J. Mol. Biol., 76, 45–60.CrossRefPubMedGoogle Scholar
  4. 4.
    Van der Vies, S. M., Gatenby, A. A., and Georgopoulos, C. (1994) Bacteriophage T4 encodes a co-chaperonin that can substitute for Escherichia coli GroES in protein folding, Nature, 368, 654–656.CrossRefPubMedGoogle Scholar
  5. 5.
    Ang, D., Richardson, A., Mayer, M. P., Keppel, F., Krisch, H., and Georgopoulos, C. (2001) Pseudo-T-even bacteriophage RB49 encodes CocO, a cochaperonin for GroEL, which can substitute for Escherichia coli’s GroES and bacteriophage T4’s gp31, J. Biol. Chem., 276, 8720–8726.CrossRefPubMedGoogle Scholar
  6. 6.
    Hertveldt, K., Lavigne, R., Pleteneva, E., Sernova, N., Kurochkina, L., Korchevskii, R., Robben, J., Mesyanzhinov, V., Krylov, V. N., and Volckaert, G. (2005) Genome comparison of Pseudomonas aeruginosa large phages, J. Mol. Biol., 354, 536–545.CrossRefPubMedGoogle Scholar
  7. 7.
    Kiljunen, S., Hakala, K., Pinta, E., Huttunen, S., Pluta, P., Gador, A., Lönnberg, H., and Skurnik, M. (2005) Yersiniophage phiR1-37 is a tailed bacteriophage having a 270 kb DNA genome with thymidine replaced by deoxyuridine, Microbiology, 151, 4093–4102.CrossRefPubMedGoogle Scholar
  8. 8.
    Cornelissen, A., Hardies, S. C., Shaburova, O. V., Krylov, V. N., Mattheus, W., Kropinski, A. M., and Lavigne, R. (2012) Complete genome sequence of the giant virus OBP and comparative genome analysis of the diverse φKZ-related phages, J. Virol., 86, 1844–1852.CrossRefPubMedCentralPubMedGoogle Scholar
  9. 9.
    Jang, H. B., Fagutao, F. F., Nho, S. W., Park, S. B., Cha, I. S., Yu, J. E., Lee, J. S., Im, S. P., Aoki, T., and Jung, T. S. (2013) Phylogenomic network and comparative genomics reveal a diverged member of the φKZ-related group, marine vibrio phage φJM-2012, J. Virol., 87, 12866–12878.CrossRefPubMedCentralPubMedGoogle Scholar
  10. 10.
    Kurochkina, L. P., Semenyuk, P. I., Orlov, V. N., Robben, J., Sykilinda, N. N., and Mesyanzhinov, V. V. (2012) Expression and functional characterization of the first bacteriophage-encoded chaperonin, J. Virol., 86, 10103–10111.CrossRefPubMedCentralPubMedGoogle Scholar
  11. 11.
    Briers, Y., Lavigne, R., Volckaert, G., and Hertveldt, K. (2007) A standardized approach for accurate quantification of murein hydrolase activity in high-throughput assays, J. Biochem. Biophys. Methods, 70, 531–533.CrossRefPubMedGoogle Scholar
  12. 12.
    Zhemaeva, L. V., Sykilinda, N. N., Navruzbekov, G. A., Kurochkina, L. P., and Mesyanzhinov, V. V. (2000) Structure and folding of bacteriophage T4 gene product 9 triggering infection. II. Study of conformational changes of gene product 9 mutants using monoclonal antibodies, Biochemistry (Moscow), 65, 1068–1074.Google Scholar
  13. 13.
    Lin, M. Y., Lindsay, H. M., Weitz, D. A., Ball, R. C., Klein, R., and Meakin, P. (1989) Universality of fractal aggregates as probed by light-scattering, Proc. Roy. Soc. L. Ser. Math. Phys. Eng. Sci., 423, 71–87.CrossRefGoogle Scholar
  14. 14.
    Khanova, H. A., Markossian, K. A., Kurganov, B. I., Samoilov, A. M., Kleimenov, S. Y., Levitsky, D. I., Yudin, I. K., Timofeeva, A. C., Muranov, K. O., and Ostrovsky, M. A. (2005) Mechanism of chaperone-like activity. Suppression of thermal aggregation of βL-crystallin by α-crystallin, Biochemistry, 44, 15480–15487.CrossRefPubMedGoogle Scholar
  15. 15.
    Weitz, D. A., Huang, J. S., Lin, M. Y., and Sung, J. (1985) Limits of the fractal dimension for irreversible kinetic aggregation of gold colloids, Phys. Rev. Lett., 54, 1416–1419.CrossRefPubMedGoogle Scholar
  16. 16.
    Khanova, H. A., Markossian, K. A., Kleimenov, S. Y., Levitsky, D. I., Chebotareva, N. A., Golub, N. V., Asryants, R. A., Muronetz, V. I., Saso, L., Yudin, I. K., Muranov, K. O., Ostrovsky, M. A., and Kurganov, B. I. (2007) Effect of α-crystallin on thermal denaturation and aggregation of rabbit muscle glyceraldehyde-3-phosphate dehydrogenase, Biophys. Chem., 125, 521–531.CrossRefPubMedGoogle Scholar
  17. 17.
    Baykov, A. A., Evtushenko, O. A., and Avaeva, S. M. (1988) A malachite green procedure for orthophosphate determination and its use in alkaline phosphatase-based enzyme immunoassay, Anal. Biochem., 171, 266–270.CrossRefPubMedGoogle Scholar
  18. 18.
    Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, 227, 680–685.CrossRefPubMedGoogle Scholar
  19. 19.
    Markossian, K. A., Golub, N. V., Chebotareva, N. A., Asryants, R. A., Naletova, I. N., Muronetz, V. I., Muranov, K. O., and Kurganov, B. I. (2010) Comparative analysis of the effects of α-crystallin and GroEL on the kinetics of thermal aggregation of rabbit muscle glyceraldehyde-3-phosphate dehydrogenase, Protein J., 29, 11–25.CrossRefPubMedGoogle Scholar
  20. 20.
    Hartl, F. U., and Hayer-Hartl, M. (2002) Molecular chaperones in the cytosol: from nascent chain to folded protein, Science, 295, 1852–1858.CrossRefPubMedGoogle Scholar
  21. 21.
    Li, Y., Zheng, Z., Ramsey, A., and Chen, L. (2010) Analysis of peptides and proteins in their binding to GroEL, J. Pept. Sci., 16, 693–700.CrossRefPubMedCentralPubMedGoogle Scholar
  22. 22.
    Gutsche, I., Essen, L. O., and Baumeister, W. (1999) Group II chaperonins: new TRiC(k)s and turns of a protein folding machine, J. Mol. Biol., 293, 295–312.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • P. I. Semenyuk
    • 1
    Email author
  • V. N. Orlov
    • 1
  • L. P. Kurochkina
    • 1
    • 2
  1. 1.Lomonosov Moscow State UniversityBelozersky Institute of Physico-Chemical BiologyMoscowRussia
  2. 2.Shemyakin-Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations