Skip to main content
Log in

Possible role of proteases in preconditioning of brain cells to pathological conditions

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Preconditioning (PC) is one of the most effective strategies to reduce the severity of cell damage, in particular of nervous tissue cells. Although PC mechanisms are studied insufficiently, it is clear that proteases are involved in them, but their role has yet been not studied in detail. In this work, some mechanisms of a potential recruiting of proteases in PC are considered. Our attention is mainly focused on the protease families of caspases and cathepsins and on protease receptors. We present evidence that just these proteins are involved in the PC of brain cells. A hypothesis is proposed that secreted cathepsin B is involved in the realization of PC through activation of PAR2 receptor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AP:

autophagy

IPC:

ischemic preconditioning

PC:

preconditioning

References

  1. Dave, K. R., Saul, I., Prado, R., Busto, R., and Perez-Pinzon, M. A. (2006) Remote organ ischemic preconditioning protects brain from ischemic damage following asphyxial cardiac arrest, Neurosci. Lett., 404, 170–175.

    Article  CAS  PubMed  Google Scholar 

  2. Hahn, C. D., Manlhiot, C., Schmidt, M. R., Nielsen, T. T., and Redington, A. N. (2011) Remote ischemic pre-conditioning: a novel therapy for acute stroke? Stroke, 42, 2960–2962.

    Article  PubMed  Google Scholar 

  3. Malhotra, S., Naggar, I., Stewart, M., and Rosenbaum, D. M. (2011) Neurogenic pathway mediated remote preconditioning protects the brain from transient focal ischemic injury, Brain Res., 1386, 184–190.

    Article  CAS  PubMed  Google Scholar 

  4. Hu, S., Dong, H., Zhang, H., Wang, S., Hou, L., and Chen, S. (2012) Noninvasive limb remote ischemic preconditioning contributes neuroprotective effects via activation of adenosine A1 receptor and redox status after transient focal cerebral ischemia in rats, Brain Res., 1459, 81–90.

    Article  CAS  PubMed  Google Scholar 

  5. Dirnagl, U., Becker, K., and Meisel, A. (2009) Preconditioning and tolerance against cerebral ischemia: from experimental strategies to clinical use, Lancet Neurol., 8, 398–412.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Koch, S. (2010) Preconditioning the human brain: practical considerations for proving cerebral protection, Transl. Stroke Res., 1, 161–169.

    Article  PubMed  Google Scholar 

  7. Obrenovitch, T. P. (2008) Molecular physiology of preconditioning-induced brain tolerance to ischemia, Physiol. Rev., 88, 211–247.

    Article  CAS  PubMed  Google Scholar 

  8. Kitagawa, K., Matsumoto, M., Tagaya, M., Hata, R., Ueda, H., Niinobe, M., Handa, N., Fukunaga, R., Kimura, K., Mikoshiba, K., and Kamada, T. (1990) “Ischemic tolerance” phenomenon found in the brain, Brain Res., 528, 21–24.

    Article  CAS  PubMed  Google Scholar 

  9. Stagliano, N. E., Perez-Pinzon, M. A., Moskowitz, M. A., and Huang, P. L. (1999) Focal ischemic preconditioning induces rapid tolerance to middle cerebral artery occlusion in mice, J. Cereb. Blood Flow Metab., 19, 757–761.

    Article  CAS  PubMed  Google Scholar 

  10. Bruer, U., Weih, M. K., Isaev, N. K., Meisel, A., Ruscher, K., Bergk, A., Trendelenburg, G., Wiegand, F., Victorov, I. V., and Dirnagl, U. (1997) Induction of tolerance in rat cortical neurons: hypoxic preconditioning, FEBS Lett., 414, 117–121.

    Article  CAS  PubMed  Google Scholar 

  11. Grabb, M. C., and Choi, D. W. (1999) Ischemic tolerance in murine cortical cell culture: critical role for NMDA receptors, J. Neurosci., 19, 1657–1662.

    CAS  PubMed  Google Scholar 

  12. Sakaki, T., Yamada, K., Otsuki, H., Yuguchi, T., Kohmura, E., and Hayakawa, T. (1995) Brief exposure to hypoxia induces bFGF mRNA and protein and protects rat cortical neurons from prolonged hypoxic stress, Neurosci. Res., 23, 289–296.

    Article  CAS  PubMed  Google Scholar 

  13. Romera, C., Hurtado, O., Botella, S. H., Lizasoain, I., Cardenas, A., and Fernandez-Tome, P. (2004) In vitro ischemic tolerance involves up-regulation of glutamate transport partly mediated by the TACE/ADAM17-tumor necrosis factor-alpha pathway, J. Neurosci., 24, 1350–1357.

    Article  CAS  PubMed  Google Scholar 

  14. McLaughlin, B., Hartnett, K. A., Erhardt, J. A., Legos, J. J., White, R. F., Barone, F. C., and Aizenman, E. (2003) Caspase 3 activation is essential for neuroprotection in preconditioning, Proc. Natl. Acad. Sci. USA, 100, 715–720.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Hoyte, L. C., Papadakis, M., Barber, P. A., and Buchan, A. M. (2006) Improved regional cerebral blood flow is important for the protection seen in a mouse model of late phase ischemic preconditioning, Brain Res., 1121, 231–237.

    Article  CAS  PubMed  Google Scholar 

  16. Vlasov, T. D., Korzhevskii, D. E., and Polyakova, E. A. (2005) Ischemic preconditioning of the rat brain as a method of endothelial protection from ischemic/repercussion injury, Neurosci. Behav. Physiol., 35, 567–572.

    Article  CAS  PubMed  Google Scholar 

  17. Nakamura, H., Katsumata, T., Nishiyama, Y., Otori, T., Katsura, K., and Katayama, Y. (2006) Effect of ischemic preconditioning on cerebral blood flow after subsequent lethal ischemia in gerbils, Life Sci., 78, 1713–1719.

    Article  CAS  PubMed  Google Scholar 

  18. Hashiguchi, A., Yano, S., Morioka, M., Hamada, J., Ushio, Y., and Takeuchi, Y. (2004) Up-regulation of endothelial nitric oxide synthase via phosphatidylinositol 3-kinase pathway contributes to ischemic tolerance in the CA1 subfield of gerbil hippocampus, J. Cereb. Blood Flow Metab., 24, 271–279.

    Article  CAS  PubMed  Google Scholar 

  19. Cho, S., Park, E. M., Zhou, P., Frys, K., Ross, M. E., and Iadecola, C. (2005) Obligatory role of inducible nitric oxide synthase in ischemic preconditioning, J. Cereb. Blood Flow Metab., 25, 493–501.

    Article  CAS  PubMed  Google Scholar 

  20. Atochin, D. N., Clark, J., Demchenko, I. T., Moskowitz, M. A., and Huang, P. L. (2003) Rapid cerebral ischemic preconditioning in mice deficient in endothelial and neuronal nitric oxide synthases, Stroke, 34, 1299–1303.

    Article  CAS  PubMed  Google Scholar 

  21. Tokuno, S., Chen, F., Pernow, J., Jiang, J., and Valen, G. (2002) Effects of spontaneous or induced brain ischemia on vessel reactivity: the role of inducible nitric oxide synthase, Life Sci., 71, 679–692.

    Article  CAS  PubMed  Google Scholar 

  22. Rybnikova, E., Gluschenko, T., Tulkova, E., Churilova, A., Jaroshevich, O., Baranova, K., and Samoilov, M. (2008) Preconditioning induces prolonged expression of transcription factors pCREB and NF-kappa B in the neocortex of rats before and following severe hypobaric hypoxia, J. Neurochem., 106, 1450–1458.

    CAS  PubMed  Google Scholar 

  23. Stroev, S. A., Tjulkova, E. I., Tugoy, I. A., Gluschenko, T. S., Samoilov, M. O., and Pelto-Huikko, M. (2007) Effects of preconditioning by mild hypobaric hypoxia on the expression of manganese superoxide dismutase in the rat hippocampus, Neurochem. J., 1, 312–317.

    Article  Google Scholar 

  24. Del Zoppo, G. J., Becker, K. J., and Hallenbeck, J. M. (2001) Inflammation after stroke: is it harmful? Arch. Neurol., 58, 669–672.

    PubMed  Google Scholar 

  25. Bowen, K. K., Naylor, M., and Vemuganti, R. (2006) Prevention of inflammation is a mechanism of preconditioning-induced neuroprotection against focal cerebral ischemia, Neurochem. Int., 49, 127–135.

    Article  CAS  PubMed  Google Scholar 

  26. Carr-White, G., Koh, T., DeSouza, A., Haxby, E., Kemp, M., and Hooper, J. (2004) Chronic stable ischemia protects against myocyte damage during beating heart coronary surgery, Eur. J. Cardiothorac. Surg., 25, 772–778.

    Article  PubMed  Google Scholar 

  27. Hazell, A. S. (2007) Excitotoxic mechanisms in stroke: an update of concepts and treatment strategies, Neurochem. Int., 50, 941–953.

    Article  CAS  PubMed  Google Scholar 

  28. Liu, Y. X., Zhang, M., Liu, L. Z., Cui, X., Hu, Y. Y., and Li, W. B. (2012) The role of glutamate transporter-1a in the induction of brain ischemic tolerance in rats, Glia, 60, 112–124.

    Article  PubMed  Google Scholar 

  29. Zhang, M., Li, W. B., Geng, J. X., Li, Q. J., Sun, X. C., and Xian, X. H. (2007) The upregulation of glial glutamate transporter-1 participates in the induction of brain ischemic tolerance in rats, J. Cereb. Blood Flow Metab., 27, 1352–1368.

    Article  CAS  PubMed  Google Scholar 

  30. Rochelle, D., and Schwartz-Bloom, R. S. (2001) Gamma-aminobutyric acid a neurotransmission and cerebral ischemia, J. Neurochem., 77, 353–371.

    Article  Google Scholar 

  31. Dave, K. R., Lange-Asschenfeldt, C., Raval, A. P., Prado, R., Busto, R., and Saul, I. (2005) Ischemic preconditioning ameliorates excitotoxicity by shifting glutamate/gamma-aminobutyric acid release and biosynthesis, J. Neurosci. Res., 82, 665–673.

    Article  CAS  PubMed  Google Scholar 

  32. Dave, K. R., DeFazio, R. A., Raval, A. P., Torraco, A., Saul, I., and Barrientos, A. (2008) Ischemic preconditioning targets the respiration of synaptic mitochondria via protein kinase C epsilon, J. Neurosci., 28, 4172–4182.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Dave, K. R., Saul, I., Busto, R., Ginsberg, M. D., Sick, T. J., and Perez-Pinzon, M. A. (2001) Ischemic preconditioning preserves mitochondrial function after global cerebral ischemia in rat hippocampus, J. Cereb. Blood Flow Metab., 21, 1401–1410.

    Article  CAS  PubMed  Google Scholar 

  34. Waldenstrom, A., Haney, M., Biber, B., Kavianipour, M., Moritz, T., and Stranden, P. (2010) Ischemic preconditioning is related to decreasing levels of extracellular adenosine that may be metabolically useful in the at-risk myocardium: an experimental study in the pig, Acta Physiol. (Oxford), 199, 1–9.

    Article  CAS  Google Scholar 

  35. Yoneda, T., Benedetti, C., Urano, F., Clark, S. G., Harding, H. P., and Ron, D. (2004) Compartment-specific perturbation of protein handling activates genes encoding mitochondrial chaperones, J. Cell Sci., 117, 4055–4066.

    Article  CAS  PubMed  Google Scholar 

  36. DeGracia, D. J., and Hu, B. R. (2007) Irreversible translation arrest in the reperfused brain, J. Cereb. Blood Flow Metab., 27, 875–893.

    PubMed Central  CAS  PubMed  Google Scholar 

  37. Ghaemmaghami, S., Huh, W. K., Bower, K., Howson, R. W., Belle, A., and Dephoure, N. (2003) Global analysis of protein expression in yeast, Nature, 425, 737–741.

    Article  CAS  PubMed  Google Scholar 

  38. Hebert, D. N., and Molinari, M. (2007) In and out of the ER: protein folding, quality control, degradation, and related human diseases, Physiol. Rev., 8, 1377–1408.

    Article  Google Scholar 

  39. Liu, C., Chen, S., Kamme, F., and Hu, B. R. (2005) Ischemic preconditioning prevents protein aggregation after transient cerebral ischemia, Neuroscience, 134, 69–80.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Balduini, W., Carloni, S., and Buonocore, G. (2009) Autophagy in hypoxia-ischemia induced brain injury: evidence and speculations, Autophagy, 5, 221–223.

    Article  CAS  PubMed  Google Scholar 

  41. Shintani, T., and Klionsky, D. J. (2004) Autophagy in health and disease: a double-edged sword, Science, 306, 990–995.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Park, H. K., Chu, K., Jung, K. H., Lee, S. T., Bahn, J. J., and Kim, M. (2009) Autophagy is involved in the ischemic preconditioning, Neurosci. Lett., 451, 16–19.

    Article  CAS  PubMed  Google Scholar 

  43. McStay, G. P., Salvesen, G. S., and Green, D. R. (2008) Overlapping cleavage motif selectivity of caspases: implications for analysis of apoptotic pathways, Cell Death Differ., 15, 322–331.

    Article  CAS  PubMed  Google Scholar 

  44. Salvesen, G. S. (2002) Caspases and apoptosis, Essays Biochem., 38, 9–19.

    CAS  PubMed  Google Scholar 

  45. Troy, C. M., and Salvesen, G. S. (2002) Caspases on the brain, J. Neurosci. Res., 69, 145–150.

    Article  CAS  PubMed  Google Scholar 

  46. Namura, S., Zhu, J., Fink, K., Endres, M., Srinivasan, A., Tomaselli, K. J., Yuan, J., and Moskowitz, M. A. (1998) Activation and cleavage of caspase-3 in apoptosis induced by experimental cerebral ischemia, J. Neurosci., 18, 3659–3668.

    CAS  PubMed  Google Scholar 

  47. Clark, R. S., Kochanek, P. M., Chen, M., Watkins, S. C., Marion, D. W., Chen, J., Hamilton, R. L., Loeffert, J. E., and Graham, S. H. (1999) Increases in Bcl-2 and cleavage of caspase-1 and caspase-3 in human brain after head injury, FASEB J., 13, 813–821.

    CAS  PubMed  Google Scholar 

  48. Kuida, K., Zheng, T. S., Na, S., Kuan, C., Yang, D., Karasuyama, H., Rakic, P., and Flavell, R. A. (1996) Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice, Nature, 384, 368–372.

    Article  CAS  PubMed  Google Scholar 

  49. Khalil, H., Peltzer, N., Walicki, J., Yang, J. Y., Dubuis, G., Gardiol, N., Held, W., Bigliardi, P., Marsland, B., Liaudet, L., and Widmann, C. (2012) Caspase-3 protects stressed organs against cell death, Mol. Cell Biol., 32, 4523–4533.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Yang, J. Y., Michod, D., Walicki, J., Murphy, B. M., Kasibhatla, S., Martin, S. J., and Widmann, C. (2004) Partial cleavage of RasGAP by caspases is required for cell survival in mild stress conditions, Mol. Cell Biol., 24, 10425–10436.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Launay, S., Hermine, O., Fontenay, M., Kroemer, G., Solary, E., and Garrido, C. (2005) Vital functions for lethal caspases, Oncogene, 24, 5137–5148.

    Article  CAS  PubMed  Google Scholar 

  52. Cowan, K. N., Leung, W. C., Mar, C., Bhattacharjee, R., Zhu, Y., and Rabinovitch, M. (2005) Caspases from apoptotic myocytes degrade extracellular matrix: a novel remodeling paradigm, FASEB J., 19, 1848–1850.

    CAS  PubMed  Google Scholar 

  53. Krebs, J. F., Srinivasan, A., Wong, A. M., Tomaselli, K. J., Fritz, L. C., and Wu, J. C. (2000) Heavy membrane-associated caspase 3: identification, isolation, and characterization, Biochemistry, 39, 16056–16063.

    Article  CAS  PubMed  Google Scholar 

  54. Denault, J. B., and Salvesen, G. S. (2003) Human caspase-7 activity and regulation by its N-terminal peptide, J. Biol. Chem., 278, 34042–34050.

    Article  CAS  PubMed  Google Scholar 

  55. Pelletier, M., Cartron, P. F., Delaval, F., Meflah, K., Vallette, F. M., and Oliver, L. (2004) Caspase-3 activation is controlled by a sequence located in the N-terminus of its large subunit, Biochem. Biophys. Res. Commun., 316, 93–99.

    Article  CAS  PubMed  Google Scholar 

  56. Ditzel, M., Broemer, M., Tenev, T., Bolduc, C., Lee, T. V., Rigbolt, K. T., Elliott, R., Zvelebil, M., Blagoev, B., Bergmann, A., and Meier, P. (2008) Inactivation of effector caspases through nondegradative polyubiquitinylation, Mol. Cell, 32, 540–553.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Pelletier, M., Oliver, L., Meflah, K., and Vallette, F. M. (2005) Caspase-3 can be pseudo-activated by a Ca2+-dependent proteolysis at a non-canonical site, FEBS Lett., 579, 2364–2368.

    Article  CAS  PubMed  Google Scholar 

  58. Faleiro, L., Kobayashi, R., Fearnhead, H., and Lazebnik, Y. (1997) Multiple species of CPP32 and Mch2 are the major active caspases present in apoptotic cells, EMBO J., 16, 2271–2281.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Miller, M. A., Karacay, B., Zhu, X., O’Dorisio, M. S., and Sandler, A. D. (2006) Caspase 8L, a novel inhibitory isoform of caspase 8, is associated with undifferentiated neuroblastoma, Apoptosis, 11, 15–24.

    Article  CAS  PubMed  Google Scholar 

  60. Beaujouin, M., Baghdiguian, S., Glondu-Lassis, M., Berchem, G., and Liaudet-Coopman, E. (2006) Overexpression of both catalytically active and inactive cathepsin D by cancer cells enhances apoptosis-dependent chemo-sensitivity, Oncogene, 25, 1967–1973.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Levine, B., and Kroemer, G. (2008) Autophagy in the pathogenesis of disease, Cell, 132, 27–42.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Parkhitko, A. A., Favorova, O. O., and Henske, E. P. (2013) Autophagy: mechanisms, regulation and its role in tumorigenesis, Biochemistry (Moscow), 78, 355–367.

    Article  CAS  Google Scholar 

  63. Ossovskaya, V. S., and Bunnett, N. W. (2004) Proteaseactivated receptors: contribution to physiology and disease, Physiol. Rev., 84, 579–621.

    Article  CAS  PubMed  Google Scholar 

  64. Vu, T. K., Hung, D. T., Wheaton, V. I., and Coughlin, S. R. (1991) Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation, Cell, 64, 1057–1068.

    Article  CAS  PubMed  Google Scholar 

  65. Bohm, S. K., Khitin, L. M., Grady, E. F., Aponte, G., Payan, D. G., and Bunnett, N. W. (1996) Mechanisms of desensitization and resensitization of proteinase-activated receptor-2, J. Biol. Chem., 271, 22003–22016.

    Article  CAS  PubMed  Google Scholar 

  66. Luo, W., Wang, Y., and Reiser, G. (2007) Protease-activated receptors in the brain: receptor expression, activation, and functions in neurodegeneration and neuroprotection, Brain Res. Rev., 56, 331–345.

    Article  CAS  PubMed  Google Scholar 

  67. Striggow, F., Riek-Burchardt, M., Kiesel, A., Schmidt, W., Henrich-Noack, P., Breder, J., Krug, M., Reymann, K. G., and Reiser, G. (2001) Four different types of protease-activated receptors are widely expressed in the brain and are up-regulated in hippocampus by severe ischemia, Eur. J. Neurosci., 14, 595–608.

    Article  CAS  PubMed  Google Scholar 

  68. Davydova, O. N., Yakovlev, A. A., Lyzhin, A. A., Khaspekov, L. G., and Gulyaeva, N. V. (2010) Deprivation of growth factors leads to specific increase in expression of the PAR-2 receptor mRNA in primary cell cultures of cerebellum, Neirokhimiya, 27, 309–314.

    CAS  Google Scholar 

  69. Yakovlev, A. A., Kvichansky, A. A., Lyzhin, A. A., Khaspekov, L. G., and Gulyaeva, N. V. (2013) Glutamate treatment and preconditioning differently affect cathepsin B release and intracellular proteases in primary cultures of cerebellar granular cells, Neurochem. J., 30, 117–127.

    Google Scholar 

  70. Jin, G., Hayashi, T., Kawagoe, J., Takizawa, T., Nagata, T., Nagano, I., Syoji, M., and Abe, K. (2005) Deficiency of PAR-2 gene increases acute focal ischemic brain injury, J. Cereb. Blood Flow Metab., 25, 302–313.

    Article  CAS  PubMed  Google Scholar 

  71. Database MEROPS (http://merops.sanger.ac.uk/).

  72. Schilling, O., and Overall, C. M. (2008) Proteome-derived, database-searchable peptide libraries for identifying protease cleavage sites, Nature Biotechnol., 26, 685–694.

    Article  CAS  Google Scholar 

  73. Verspurten, J., Gevaert, K., Declercq, W., and Vandenabeele, P. (2009) Site predicting the cleavage of proteinase substrates, Trends Biochem. Sci., 34, 319–323.

    Article  CAS  PubMed  Google Scholar 

  74. http://www.dmbr.ugent.be/prx/bioit2-public/SitePrediction/index.php

  75. Onufriev, M. V., Yakovlev, A. A., Lyzhin, A. A., Stepanichev, M. Yu., Khaspekov, L. G., and Gulyaeva, N. V. (2009) A secreted caspase-3-substrate-cleaving activity at low pH belongs to cathepsin B: a study on primary brain cell cultures, Biochemistry (Moscow), 74, 281–287.

    Article  CAS  Google Scholar 

  76. Yakovlev, A. A., Gorokhovatsky, A. Yu., Onufriev, M. V., Beletsky, I. P., and Gulyaeva, N. V. (2008) Brain cathepsin B cleaves a caspase substrate, Biochemistry (Moscow), 73, 332–336.

    Article  CAS  Google Scholar 

  77. Mort, J. S., and Recklies, A. D. (1986) Interrelationship of active and latent secreted human cathepsin B precursors, Biochem. J., 233, 57–63.

    PubMed Central  CAS  PubMed  Google Scholar 

  78. Pietras, R. J., and Roberts, J. A. (1981) Cathepsin B-like enzymes. Subcellular distribution and properties in neoplastic and control cells from human ectocervix, J. Biol. Chem., 256, 8536–8544.

    CAS  PubMed  Google Scholar 

  79. Sloane, B. F., Moin, K., Sameni, M., Tait, L. R., Rozhin, J., and Ziegler, G. (1994) Membrane association of cathepsin B can be induced by transfection of human breast epithelial cells with c-Ha-ras oncogene, J. Cell Sci., 107, 373–384.

    CAS  PubMed  Google Scholar 

  80. Guinec, N., Dalet-Fumeron, V., and Pagano, M. (1992) Quantitative study of the binding of cysteine proteinases to basement membranes, FEBS Lett., 308, 305–308.

    Article  CAS  PubMed  Google Scholar 

  81. Barrett, A. J., and Kirschke, H. (1981) Cathepsin B, cathepsin H, and cathepsin L, Methods Enzymol., 80, 535–561.

    Article  CAS  PubMed  Google Scholar 

  82. Rowan, A. D., Feng, R., Konishi, Y., and Mort, J. S. (1993) Demonstration by electrospray mass spectrometry that the peptidyl dipeptidase activity of cathepsin B is capable of rat cathepsin B C-terminal processing, Biochem. J., 294, 923–927.

    PubMed Central  CAS  PubMed  Google Scholar 

  83. Pohl, J., Davinic, S., Blaha, I., Strop, P., and Kostka, V. (1987) Chromophoric and fluorophoric peptide substrates cleaved through the dipeptidyl carboxypeptidase activity of cathepsin B, Analyt. Biochem., 165, 96–101.

    Article  CAS  PubMed  Google Scholar 

  84. Polgar, L., and Csoma, C. (1987) Dissociation of ionizing groups in the binding cleft inversely controls the endo- and exopeptidase activities of cathepsin B, J. Biol. Chem., 262, 14448–14453.

    CAS  PubMed  Google Scholar 

  85. Takahashi, T., Dehdarani, A. H., Yonezawa, S., and Tang, J. (1986) Porcine spleen cathepsin B is an exopeptidase, J. Biol. Chem., 261, 9375–9381.

    CAS  PubMed  Google Scholar 

  86. Khouri, H. E., Plouffe, C., Hasnain, S., Hirama, T., Storer, A. C., and Menard, R. (1991) A model to explain the pH-dependent specificity of cathepsin B-catalyzed hydrolyses, Biochem. J., 275, 751–757.

    PubMed Central  CAS  PubMed  Google Scholar 

  87. Willenbrock, F., and Brocklehurst, K. (1985) A general framework of cysteine-proteinase mechanism deduced from studies on enzymes with structurally different analogous catalytic-site residues Asp158 and -161 (papain and actinidin), Gly196 (cathepsin B) and Asn165 (cathepsin H). Kinetic studies up to pH 8 of the hydrolysis of N-alphabenzyloxycarbonyl-L-arginyl-L-arginine 2-naphthylamide catalyzed by cathepsin B and of L-arginine 2-naphthylamide catalyzed by cathepsin H, Biochem. J., 227, 521–528.

    PubMed Central  CAS  PubMed  Google Scholar 

  88. Turk, B., Bieth, J. G., Bjork, I., Dolenc, I., Turk, D., Cimerman, N., Kos, J., Colic, A., Stoka, V., and Turk, V. (1995) Regulation of the activity of lysosomal cysteine proteinases by pH-induced inactivation and/or endogenous protein inhibitors, cystatins, Biol. Chem. Hoppe Seyler, 376, 225–230.

    Article  CAS  PubMed  Google Scholar 

  89. Afkhami-Goli, A., Noorbakhsh, F., Keller, A. J., Vergnolle, N., Westaway, D., Jhamandas, J. H., Andrade-Gordon, P., Hollenberg, M. D., Arab, H., Dyck, R. H., and Power, C. (2007) Proteinase-activated receptor-2 exerts protective and pathogenic cell type-specific effects in Alzheimer’s disease, J. Immunol., 179, 5493–5503.

    Article  CAS  PubMed  Google Scholar 

  90. Khan, M. Y., Agarwal, S. K., and Ahmad, S. (1992) Structure-activity relationship in buffalo spleen cathepsin B, J. Biochem., 111, 732–735.

    CAS  PubMed  Google Scholar 

  91. Medina, D. L., Fraldi, A., Bouche, V., Annunziata, F., Mansueto, G., Spampanato, C., Puri, C., Pignata, A., Martina, J. A., Sardiello, M., Palmieri, M., Polishchuk, R., Puertollano, R., and Ballabio, A. (2011) Transcriptional activation of lysosomal exocytosis promotes cellular clearance, Dev. Cell, 21, 421–430.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  92. Jaiswal, J. K., Andrews, N. W., and Simon, S. M. (2002) Membrane proximal lysosomes are the major vesicles responsible for calcium-dependent exocytosis in nonsecretory cells, Cell Biol., 159, 625–635.

    Article  CAS  Google Scholar 

  93. Li, D., Ropert, N., Koulakoff, A., Giaume, C., and Oheim, M. (2008) Lysosomes are the major vesicular compartment undergoing Ca2+-regulated exocytosis from cortical astrocytes, J. Neurosci., 28, 7648–7658.

    Article  CAS  PubMed  Google Scholar 

  94. Reddy, A., Caler, E. V., and Andrews, N. W. (2001) Plasma membrane repair is mediated by Ca2+-regulated exocytosis of lysosomes, Cell, 106, 157–169.

    Article  CAS  PubMed  Google Scholar 

  95. Annunziata, I., Patterson, A., Helton, D., Hu, H., Moshiach, S., Gomero, E., Nixon, R., and d’Azzo, A. (2013) Lysosomal NEU1 deficiency affects amyloid precursor protein levels and amyloid-β secretion via deregulated lysosomal exocytosis, Nature Commun., 4, 2734.

    Article  Google Scholar 

  96. Dou, Y., Wu, H. J., Li, H. Q., Qin, S., Wang, Y. E., Li, J., Lou, H. F., Chen, Z., Li, X. M., Luo, Q. M., and Duan, S. (2012) Microglial migration mediated by ATP-induced ATP release from lysosomes, Cell Res., 22, 1022–1033.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  97. Chen, G., Zhang, Z., Wei, Z., Cheng, Q., Li, X., Li, W., Duan, S., and Gu, X. (2012) Lysosomal exocytosis in Schwann cells contributes to axon remyelination, Glia, 60, 295–305.

    Article  PubMed  Google Scholar 

  98. Papadakis, M., Hadley, G., Xilouri, M., Hoyte, L. C., Nagel, S., McMenamin, M. M., Tsaknakis, G., Watt, S. M., Drakesmith, C. W., Chen, R., Wood. M. J., Zhao, Z., Kessler, B., Vekrellis, K., and Buchan, A. M. (2013) Tsc1 (hamartin) confers neuroprotection against ischemia by inducing autophagy, Nature Med., 19, 351–357.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  99. Cavallo-Medved, D., Dosescu, J., Linebaugh, B. E., Sameni, M., Rudy, D., and Sloane, B. F. (2003) Mutant K-ras regulates cathepsin B localization on the surface of human colorectal carcinoma cells, Neoplasia, 5, 507–519.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  100. Almeida, P. C., Nantes, I. L., Chagas, J. R., Rizzi, C. C., Faljoni-Alario, A., Carmona, E., Juliano, L., Nader, H. B., and Tersariol, I. L. (2001) Cathepsin B activity regulation. Heparin-like glycosaminoglycans protect human cathepsin B from alkaline pH-induced inactivation, J. Biol. Chem., 276, 944–951.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Gulyaeva.

Additional information

Original Russian Text © A. A. Yakovlev, N. V. Gulyaeva, 2015, published in Biokhimiya, 2015, Vol. 80, No. 2, pp. 204–213.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yakovlev, A.A., Gulyaeva, N.V. Possible role of proteases in preconditioning of brain cells to pathological conditions. Biochemistry Moscow 80, 163–171 (2015). https://doi.org/10.1134/S0006297915020030

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297915020030

Key words

Navigation