Advertisement

Biochemistry (Moscow)

, Volume 80, Issue 2, pp 163–171 | Cite as

Possible role of proteases in preconditioning of brain cells to pathological conditions

  • A. A. Yakovlev
  • N. V. GulyaevaEmail author
Review

Abstract

Preconditioning (PC) is one of the most effective strategies to reduce the severity of cell damage, in particular of nervous tissue cells. Although PC mechanisms are studied insufficiently, it is clear that proteases are involved in them, but their role has yet been not studied in detail. In this work, some mechanisms of a potential recruiting of proteases in PC are considered. Our attention is mainly focused on the protease families of caspases and cathepsins and on protease receptors. We present evidence that just these proteins are involved in the PC of brain cells. A hypothesis is proposed that secreted cathepsin B is involved in the realization of PC through activation of PAR2 receptor.

Key words

preconditioning brain proteases caspases cathepsin protease receptors (PAR) 

Abbreviations

AP

autophagy

IPC

ischemic preconditioning

PC

preconditioning

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dave, K. R., Saul, I., Prado, R., Busto, R., and Perez-Pinzon, M. A. (2006) Remote organ ischemic preconditioning protects brain from ischemic damage following asphyxial cardiac arrest, Neurosci. Lett., 404, 170–175.PubMedCrossRefGoogle Scholar
  2. 2.
    Hahn, C. D., Manlhiot, C., Schmidt, M. R., Nielsen, T. T., and Redington, A. N. (2011) Remote ischemic pre-conditioning: a novel therapy for acute stroke? Stroke, 42, 2960–2962.PubMedCrossRefGoogle Scholar
  3. 3.
    Malhotra, S., Naggar, I., Stewart, M., and Rosenbaum, D. M. (2011) Neurogenic pathway mediated remote preconditioning protects the brain from transient focal ischemic injury, Brain Res., 1386, 184–190.PubMedCrossRefGoogle Scholar
  4. 4.
    Hu, S., Dong, H., Zhang, H., Wang, S., Hou, L., and Chen, S. (2012) Noninvasive limb remote ischemic preconditioning contributes neuroprotective effects via activation of adenosine A1 receptor and redox status after transient focal cerebral ischemia in rats, Brain Res., 1459, 81–90.PubMedCrossRefGoogle Scholar
  5. 5.
    Dirnagl, U., Becker, K., and Meisel, A. (2009) Preconditioning and tolerance against cerebral ischemia: from experimental strategies to clinical use, Lancet Neurol., 8, 398–412.PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Koch, S. (2010) Preconditioning the human brain: practical considerations for proving cerebral protection, Transl. Stroke Res., 1, 161–169.PubMedCrossRefGoogle Scholar
  7. 7.
    Obrenovitch, T. P. (2008) Molecular physiology of preconditioning-induced brain tolerance to ischemia, Physiol. Rev., 88, 211–247.PubMedCrossRefGoogle Scholar
  8. 8.
    Kitagawa, K., Matsumoto, M., Tagaya, M., Hata, R., Ueda, H., Niinobe, M., Handa, N., Fukunaga, R., Kimura, K., Mikoshiba, K., and Kamada, T. (1990) “Ischemic tolerance” phenomenon found in the brain, Brain Res., 528, 21–24.PubMedCrossRefGoogle Scholar
  9. 9.
    Stagliano, N. E., Perez-Pinzon, M. A., Moskowitz, M. A., and Huang, P. L. (1999) Focal ischemic preconditioning induces rapid tolerance to middle cerebral artery occlusion in mice, J. Cereb. Blood Flow Metab., 19, 757–761.PubMedCrossRefGoogle Scholar
  10. 10.
    Bruer, U., Weih, M. K., Isaev, N. K., Meisel, A., Ruscher, K., Bergk, A., Trendelenburg, G., Wiegand, F., Victorov, I. V., and Dirnagl, U. (1997) Induction of tolerance in rat cortical neurons: hypoxic preconditioning, FEBS Lett., 414, 117–121.PubMedCrossRefGoogle Scholar
  11. 11.
    Grabb, M. C., and Choi, D. W. (1999) Ischemic tolerance in murine cortical cell culture: critical role for NMDA receptors, J. Neurosci., 19, 1657–1662.PubMedGoogle Scholar
  12. 12.
    Sakaki, T., Yamada, K., Otsuki, H., Yuguchi, T., Kohmura, E., and Hayakawa, T. (1995) Brief exposure to hypoxia induces bFGF mRNA and protein and protects rat cortical neurons from prolonged hypoxic stress, Neurosci. Res., 23, 289–296.PubMedCrossRefGoogle Scholar
  13. 13.
    Romera, C., Hurtado, O., Botella, S. H., Lizasoain, I., Cardenas, A., and Fernandez-Tome, P. (2004) In vitro ischemic tolerance involves up-regulation of glutamate transport partly mediated by the TACE/ADAM17-tumor necrosis factor-alpha pathway, J. Neurosci., 24, 1350–1357.PubMedCrossRefGoogle Scholar
  14. 14.
    McLaughlin, B., Hartnett, K. A., Erhardt, J. A., Legos, J. J., White, R. F., Barone, F. C., and Aizenman, E. (2003) Caspase 3 activation is essential for neuroprotection in preconditioning, Proc. Natl. Acad. Sci. USA, 100, 715–720.PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Hoyte, L. C., Papadakis, M., Barber, P. A., and Buchan, A. M. (2006) Improved regional cerebral blood flow is important for the protection seen in a mouse model of late phase ischemic preconditioning, Brain Res., 1121, 231–237.PubMedCrossRefGoogle Scholar
  16. 16.
    Vlasov, T. D., Korzhevskii, D. E., and Polyakova, E. A. (2005) Ischemic preconditioning of the rat brain as a method of endothelial protection from ischemic/repercussion injury, Neurosci. Behav. Physiol., 35, 567–572.PubMedCrossRefGoogle Scholar
  17. 17.
    Nakamura, H., Katsumata, T., Nishiyama, Y., Otori, T., Katsura, K., and Katayama, Y. (2006) Effect of ischemic preconditioning on cerebral blood flow after subsequent lethal ischemia in gerbils, Life Sci., 78, 1713–1719.PubMedCrossRefGoogle Scholar
  18. 18.
    Hashiguchi, A., Yano, S., Morioka, M., Hamada, J., Ushio, Y., and Takeuchi, Y. (2004) Up-regulation of endothelial nitric oxide synthase via phosphatidylinositol 3-kinase pathway contributes to ischemic tolerance in the CA1 subfield of gerbil hippocampus, J. Cereb. Blood Flow Metab., 24, 271–279.PubMedCrossRefGoogle Scholar
  19. 19.
    Cho, S., Park, E. M., Zhou, P., Frys, K., Ross, M. E., and Iadecola, C. (2005) Obligatory role of inducible nitric oxide synthase in ischemic preconditioning, J. Cereb. Blood Flow Metab., 25, 493–501.PubMedCrossRefGoogle Scholar
  20. 20.
    Atochin, D. N., Clark, J., Demchenko, I. T., Moskowitz, M. A., and Huang, P. L. (2003) Rapid cerebral ischemic preconditioning in mice deficient in endothelial and neuronal nitric oxide synthases, Stroke, 34, 1299–1303.PubMedCrossRefGoogle Scholar
  21. 21.
    Tokuno, S., Chen, F., Pernow, J., Jiang, J., and Valen, G. (2002) Effects of spontaneous or induced brain ischemia on vessel reactivity: the role of inducible nitric oxide synthase, Life Sci., 71, 679–692.PubMedCrossRefGoogle Scholar
  22. 22.
    Rybnikova, E., Gluschenko, T., Tulkova, E., Churilova, A., Jaroshevich, O., Baranova, K., and Samoilov, M. (2008) Preconditioning induces prolonged expression of transcription factors pCREB and NF-kappa B in the neocortex of rats before and following severe hypobaric hypoxia, J. Neurochem., 106, 1450–1458.PubMedGoogle Scholar
  23. 23.
    Stroev, S. A., Tjulkova, E. I., Tugoy, I. A., Gluschenko, T. S., Samoilov, M. O., and Pelto-Huikko, M. (2007) Effects of preconditioning by mild hypobaric hypoxia on the expression of manganese superoxide dismutase in the rat hippocampus, Neurochem. J., 1, 312–317.CrossRefGoogle Scholar
  24. 24.
    Del Zoppo, G. J., Becker, K. J., and Hallenbeck, J. M. (2001) Inflammation after stroke: is it harmful? Arch. Neurol., 58, 669–672.PubMedGoogle Scholar
  25. 25.
    Bowen, K. K., Naylor, M., and Vemuganti, R. (2006) Prevention of inflammation is a mechanism of preconditioning-induced neuroprotection against focal cerebral ischemia, Neurochem. Int., 49, 127–135.PubMedCrossRefGoogle Scholar
  26. 26.
    Carr-White, G., Koh, T., DeSouza, A., Haxby, E., Kemp, M., and Hooper, J. (2004) Chronic stable ischemia protects against myocyte damage during beating heart coronary surgery, Eur. J. Cardiothorac. Surg., 25, 772–778.PubMedCrossRefGoogle Scholar
  27. 27.
    Hazell, A. S. (2007) Excitotoxic mechanisms in stroke: an update of concepts and treatment strategies, Neurochem. Int., 50, 941–953.PubMedCrossRefGoogle Scholar
  28. 28.
    Liu, Y. X., Zhang, M., Liu, L. Z., Cui, X., Hu, Y. Y., and Li, W. B. (2012) The role of glutamate transporter-1a in the induction of brain ischemic tolerance in rats, Glia, 60, 112–124.PubMedCrossRefGoogle Scholar
  29. 29.
    Zhang, M., Li, W. B., Geng, J. X., Li, Q. J., Sun, X. C., and Xian, X. H. (2007) The upregulation of glial glutamate transporter-1 participates in the induction of brain ischemic tolerance in rats, J. Cereb. Blood Flow Metab., 27, 1352–1368.PubMedCrossRefGoogle Scholar
  30. 30.
    Rochelle, D., and Schwartz-Bloom, R. S. (2001) Gamma-aminobutyric acid a neurotransmission and cerebral ischemia, J. Neurochem., 77, 353–371.CrossRefGoogle Scholar
  31. 31.
    Dave, K. R., Lange-Asschenfeldt, C., Raval, A. P., Prado, R., Busto, R., and Saul, I. (2005) Ischemic preconditioning ameliorates excitotoxicity by shifting glutamate/gamma-aminobutyric acid release and biosynthesis, J. Neurosci. Res., 82, 665–673.PubMedCrossRefGoogle Scholar
  32. 32.
    Dave, K. R., DeFazio, R. A., Raval, A. P., Torraco, A., Saul, I., and Barrientos, A. (2008) Ischemic preconditioning targets the respiration of synaptic mitochondria via protein kinase C epsilon, J. Neurosci., 28, 4172–4182.PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Dave, K. R., Saul, I., Busto, R., Ginsberg, M. D., Sick, T. J., and Perez-Pinzon, M. A. (2001) Ischemic preconditioning preserves mitochondrial function after global cerebral ischemia in rat hippocampus, J. Cereb. Blood Flow Metab., 21, 1401–1410.PubMedCrossRefGoogle Scholar
  34. 34.
    Waldenstrom, A., Haney, M., Biber, B., Kavianipour, M., Moritz, T., and Stranden, P. (2010) Ischemic preconditioning is related to decreasing levels of extracellular adenosine that may be metabolically useful in the at-risk myocardium: an experimental study in the pig, Acta Physiol. (Oxford), 199, 1–9.CrossRefGoogle Scholar
  35. 35.
    Yoneda, T., Benedetti, C., Urano, F., Clark, S. G., Harding, H. P., and Ron, D. (2004) Compartment-specific perturbation of protein handling activates genes encoding mitochondrial chaperones, J. Cell Sci., 117, 4055–4066.PubMedCrossRefGoogle Scholar
  36. 36.
    DeGracia, D. J., and Hu, B. R. (2007) Irreversible translation arrest in the reperfused brain, J. Cereb. Blood Flow Metab., 27, 875–893.PubMedCentralPubMedGoogle Scholar
  37. 37.
    Ghaemmaghami, S., Huh, W. K., Bower, K., Howson, R. W., Belle, A., and Dephoure, N. (2003) Global analysis of protein expression in yeast, Nature, 425, 737–741.PubMedCrossRefGoogle Scholar
  38. 38.
    Hebert, D. N., and Molinari, M. (2007) In and out of the ER: protein folding, quality control, degradation, and related human diseases, Physiol. Rev., 8, 1377–1408.CrossRefGoogle Scholar
  39. 39.
    Liu, C., Chen, S., Kamme, F., and Hu, B. R. (2005) Ischemic preconditioning prevents protein aggregation after transient cerebral ischemia, Neuroscience, 134, 69–80.PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Balduini, W., Carloni, S., and Buonocore, G. (2009) Autophagy in hypoxia-ischemia induced brain injury: evidence and speculations, Autophagy, 5, 221–223.PubMedCrossRefGoogle Scholar
  41. 41.
    Shintani, T., and Klionsky, D. J. (2004) Autophagy in health and disease: a double-edged sword, Science, 306, 990–995.PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Park, H. K., Chu, K., Jung, K. H., Lee, S. T., Bahn, J. J., and Kim, M. (2009) Autophagy is involved in the ischemic preconditioning, Neurosci. Lett., 451, 16–19.PubMedCrossRefGoogle Scholar
  43. 43.
    McStay, G. P., Salvesen, G. S., and Green, D. R. (2008) Overlapping cleavage motif selectivity of caspases: implications for analysis of apoptotic pathways, Cell Death Differ., 15, 322–331.PubMedCrossRefGoogle Scholar
  44. 44.
    Salvesen, G. S. (2002) Caspases and apoptosis, Essays Biochem., 38, 9–19.PubMedGoogle Scholar
  45. 45.
    Troy, C. M., and Salvesen, G. S. (2002) Caspases on the brain, J. Neurosci. Res., 69, 145–150.PubMedCrossRefGoogle Scholar
  46. 46.
    Namura, S., Zhu, J., Fink, K., Endres, M., Srinivasan, A., Tomaselli, K. J., Yuan, J., and Moskowitz, M. A. (1998) Activation and cleavage of caspase-3 in apoptosis induced by experimental cerebral ischemia, J. Neurosci., 18, 3659–3668.PubMedGoogle Scholar
  47. 47.
    Clark, R. S., Kochanek, P. M., Chen, M., Watkins, S. C., Marion, D. W., Chen, J., Hamilton, R. L., Loeffert, J. E., and Graham, S. H. (1999) Increases in Bcl-2 and cleavage of caspase-1 and caspase-3 in human brain after head injury, FASEB J., 13, 813–821.PubMedGoogle Scholar
  48. 48.
    Kuida, K., Zheng, T. S., Na, S., Kuan, C., Yang, D., Karasuyama, H., Rakic, P., and Flavell, R. A. (1996) Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice, Nature, 384, 368–372.PubMedCrossRefGoogle Scholar
  49. 49.
    Khalil, H., Peltzer, N., Walicki, J., Yang, J. Y., Dubuis, G., Gardiol, N., Held, W., Bigliardi, P., Marsland, B., Liaudet, L., and Widmann, C. (2012) Caspase-3 protects stressed organs against cell death, Mol. Cell Biol., 32, 4523–4533.PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Yang, J. Y., Michod, D., Walicki, J., Murphy, B. M., Kasibhatla, S., Martin, S. J., and Widmann, C. (2004) Partial cleavage of RasGAP by caspases is required for cell survival in mild stress conditions, Mol. Cell Biol., 24, 10425–10436.PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Launay, S., Hermine, O., Fontenay, M., Kroemer, G., Solary, E., and Garrido, C. (2005) Vital functions for lethal caspases, Oncogene, 24, 5137–5148.PubMedCrossRefGoogle Scholar
  52. 52.
    Cowan, K. N., Leung, W. C., Mar, C., Bhattacharjee, R., Zhu, Y., and Rabinovitch, M. (2005) Caspases from apoptotic myocytes degrade extracellular matrix: a novel remodeling paradigm, FASEB J., 19, 1848–1850.PubMedGoogle Scholar
  53. 53.
    Krebs, J. F., Srinivasan, A., Wong, A. M., Tomaselli, K. J., Fritz, L. C., and Wu, J. C. (2000) Heavy membrane-associated caspase 3: identification, isolation, and characterization, Biochemistry, 39, 16056–16063.PubMedCrossRefGoogle Scholar
  54. 54.
    Denault, J. B., and Salvesen, G. S. (2003) Human caspase-7 activity and regulation by its N-terminal peptide, J. Biol. Chem., 278, 34042–34050.PubMedCrossRefGoogle Scholar
  55. 55.
    Pelletier, M., Cartron, P. F., Delaval, F., Meflah, K., Vallette, F. M., and Oliver, L. (2004) Caspase-3 activation is controlled by a sequence located in the N-terminus of its large subunit, Biochem. Biophys. Res. Commun., 316, 93–99.PubMedCrossRefGoogle Scholar
  56. 56.
    Ditzel, M., Broemer, M., Tenev, T., Bolduc, C., Lee, T. V., Rigbolt, K. T., Elliott, R., Zvelebil, M., Blagoev, B., Bergmann, A., and Meier, P. (2008) Inactivation of effector caspases through nondegradative polyubiquitinylation, Mol. Cell, 32, 540–553.PubMedCentralPubMedCrossRefGoogle Scholar
  57. 57.
    Pelletier, M., Oliver, L., Meflah, K., and Vallette, F. M. (2005) Caspase-3 can be pseudo-activated by a Ca2+-dependent proteolysis at a non-canonical site, FEBS Lett., 579, 2364–2368.PubMedCrossRefGoogle Scholar
  58. 58.
    Faleiro, L., Kobayashi, R., Fearnhead, H., and Lazebnik, Y. (1997) Multiple species of CPP32 and Mch2 are the major active caspases present in apoptotic cells, EMBO J., 16, 2271–2281.PubMedCentralPubMedCrossRefGoogle Scholar
  59. 59.
    Miller, M. A., Karacay, B., Zhu, X., O’Dorisio, M. S., and Sandler, A. D. (2006) Caspase 8L, a novel inhibitory isoform of caspase 8, is associated with undifferentiated neuroblastoma, Apoptosis, 11, 15–24.PubMedCrossRefGoogle Scholar
  60. 60.
    Beaujouin, M., Baghdiguian, S., Glondu-Lassis, M., Berchem, G., and Liaudet-Coopman, E. (2006) Overexpression of both catalytically active and inactive cathepsin D by cancer cells enhances apoptosis-dependent chemo-sensitivity, Oncogene, 25, 1967–1973.PubMedCentralPubMedCrossRefGoogle Scholar
  61. 61.
    Levine, B., and Kroemer, G. (2008) Autophagy in the pathogenesis of disease, Cell, 132, 27–42.PubMedCentralPubMedCrossRefGoogle Scholar
  62. 62.
    Parkhitko, A. A., Favorova, O. O., and Henske, E. P. (2013) Autophagy: mechanisms, regulation and its role in tumorigenesis, Biochemistry (Moscow), 78, 355–367.CrossRefGoogle Scholar
  63. 63.
    Ossovskaya, V. S., and Bunnett, N. W. (2004) Proteaseactivated receptors: contribution to physiology and disease, Physiol. Rev., 84, 579–621.PubMedCrossRefGoogle Scholar
  64. 64.
    Vu, T. K., Hung, D. T., Wheaton, V. I., and Coughlin, S. R. (1991) Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation, Cell, 64, 1057–1068.PubMedCrossRefGoogle Scholar
  65. 65.
    Bohm, S. K., Khitin, L. M., Grady, E. F., Aponte, G., Payan, D. G., and Bunnett, N. W. (1996) Mechanisms of desensitization and resensitization of proteinase-activated receptor-2, J. Biol. Chem., 271, 22003–22016.PubMedCrossRefGoogle Scholar
  66. 66.
    Luo, W., Wang, Y., and Reiser, G. (2007) Protease-activated receptors in the brain: receptor expression, activation, and functions in neurodegeneration and neuroprotection, Brain Res. Rev., 56, 331–345.PubMedCrossRefGoogle Scholar
  67. 67.
    Striggow, F., Riek-Burchardt, M., Kiesel, A., Schmidt, W., Henrich-Noack, P., Breder, J., Krug, M., Reymann, K. G., and Reiser, G. (2001) Four different types of protease-activated receptors are widely expressed in the brain and are up-regulated in hippocampus by severe ischemia, Eur. J. Neurosci., 14, 595–608.PubMedCrossRefGoogle Scholar
  68. 68.
    Davydova, O. N., Yakovlev, A. A., Lyzhin, A. A., Khaspekov, L. G., and Gulyaeva, N. V. (2010) Deprivation of growth factors leads to specific increase in expression of the PAR-2 receptor mRNA in primary cell cultures of cerebellum, Neirokhimiya, 27, 309–314.Google Scholar
  69. 69.
    Yakovlev, A. A., Kvichansky, A. A., Lyzhin, A. A., Khaspekov, L. G., and Gulyaeva, N. V. (2013) Glutamate treatment and preconditioning differently affect cathepsin B release and intracellular proteases in primary cultures of cerebellar granular cells, Neurochem. J., 30, 117–127.Google Scholar
  70. 70.
    Jin, G., Hayashi, T., Kawagoe, J., Takizawa, T., Nagata, T., Nagano, I., Syoji, M., and Abe, K. (2005) Deficiency of PAR-2 gene increases acute focal ischemic brain injury, J. Cereb. Blood Flow Metab., 25, 302–313.PubMedCrossRefGoogle Scholar
  71. 71.
    Database MEROPS (http://merops.sanger.ac.uk/).
  72. 72.
    Schilling, O., and Overall, C. M. (2008) Proteome-derived, database-searchable peptide libraries for identifying protease cleavage sites, Nature Biotechnol., 26, 685–694.CrossRefGoogle Scholar
  73. 73.
    Verspurten, J., Gevaert, K., Declercq, W., and Vandenabeele, P. (2009) Site predicting the cleavage of proteinase substrates, Trends Biochem. Sci., 34, 319–323.PubMedCrossRefGoogle Scholar
  74. 74.
  75. 75.
    Onufriev, M. V., Yakovlev, A. A., Lyzhin, A. A., Stepanichev, M. Yu., Khaspekov, L. G., and Gulyaeva, N. V. (2009) A secreted caspase-3-substrate-cleaving activity at low pH belongs to cathepsin B: a study on primary brain cell cultures, Biochemistry (Moscow), 74, 281–287.CrossRefGoogle Scholar
  76. 76.
    Yakovlev, A. A., Gorokhovatsky, A. Yu., Onufriev, M. V., Beletsky, I. P., and Gulyaeva, N. V. (2008) Brain cathepsin B cleaves a caspase substrate, Biochemistry (Moscow), 73, 332–336.CrossRefGoogle Scholar
  77. 77.
    Mort, J. S., and Recklies, A. D. (1986) Interrelationship of active and latent secreted human cathepsin B precursors, Biochem. J., 233, 57–63.PubMedCentralPubMedGoogle Scholar
  78. 78.
    Pietras, R. J., and Roberts, J. A. (1981) Cathepsin B-like enzymes. Subcellular distribution and properties in neoplastic and control cells from human ectocervix, J. Biol. Chem., 256, 8536–8544.PubMedGoogle Scholar
  79. 79.
    Sloane, B. F., Moin, K., Sameni, M., Tait, L. R., Rozhin, J., and Ziegler, G. (1994) Membrane association of cathepsin B can be induced by transfection of human breast epithelial cells with c-Ha-ras oncogene, J. Cell Sci., 107, 373–384.PubMedGoogle Scholar
  80. 80.
    Guinec, N., Dalet-Fumeron, V., and Pagano, M. (1992) Quantitative study of the binding of cysteine proteinases to basement membranes, FEBS Lett., 308, 305–308.PubMedCrossRefGoogle Scholar
  81. 81.
    Barrett, A. J., and Kirschke, H. (1981) Cathepsin B, cathepsin H, and cathepsin L, Methods Enzymol., 80, 535–561.PubMedCrossRefGoogle Scholar
  82. 82.
    Rowan, A. D., Feng, R., Konishi, Y., and Mort, J. S. (1993) Demonstration by electrospray mass spectrometry that the peptidyl dipeptidase activity of cathepsin B is capable of rat cathepsin B C-terminal processing, Biochem. J., 294, 923–927.PubMedCentralPubMedGoogle Scholar
  83. 83.
    Pohl, J., Davinic, S., Blaha, I., Strop, P., and Kostka, V. (1987) Chromophoric and fluorophoric peptide substrates cleaved through the dipeptidyl carboxypeptidase activity of cathepsin B, Analyt. Biochem., 165, 96–101.PubMedCrossRefGoogle Scholar
  84. 84.
    Polgar, L., and Csoma, C. (1987) Dissociation of ionizing groups in the binding cleft inversely controls the endo- and exopeptidase activities of cathepsin B, J. Biol. Chem., 262, 14448–14453.PubMedGoogle Scholar
  85. 85.
    Takahashi, T., Dehdarani, A. H., Yonezawa, S., and Tang, J. (1986) Porcine spleen cathepsin B is an exopeptidase, J. Biol. Chem., 261, 9375–9381.PubMedGoogle Scholar
  86. 86.
    Khouri, H. E., Plouffe, C., Hasnain, S., Hirama, T., Storer, A. C., and Menard, R. (1991) A model to explain the pH-dependent specificity of cathepsin B-catalyzed hydrolyses, Biochem. J., 275, 751–757.PubMedCentralPubMedGoogle Scholar
  87. 87.
    Willenbrock, F., and Brocklehurst, K. (1985) A general framework of cysteine-proteinase mechanism deduced from studies on enzymes with structurally different analogous catalytic-site residues Asp158 and -161 (papain and actinidin), Gly196 (cathepsin B) and Asn165 (cathepsin H). Kinetic studies up to pH 8 of the hydrolysis of N-alphabenzyloxycarbonyl-L-arginyl-L-arginine 2-naphthylamide catalyzed by cathepsin B and of L-arginine 2-naphthylamide catalyzed by cathepsin H, Biochem. J., 227, 521–528.PubMedCentralPubMedGoogle Scholar
  88. 88.
    Turk, B., Bieth, J. G., Bjork, I., Dolenc, I., Turk, D., Cimerman, N., Kos, J., Colic, A., Stoka, V., and Turk, V. (1995) Regulation of the activity of lysosomal cysteine proteinases by pH-induced inactivation and/or endogenous protein inhibitors, cystatins, Biol. Chem. Hoppe Seyler, 376, 225–230.PubMedCrossRefGoogle Scholar
  89. 89.
    Afkhami-Goli, A., Noorbakhsh, F., Keller, A. J., Vergnolle, N., Westaway, D., Jhamandas, J. H., Andrade-Gordon, P., Hollenberg, M. D., Arab, H., Dyck, R. H., and Power, C. (2007) Proteinase-activated receptor-2 exerts protective and pathogenic cell type-specific effects in Alzheimer’s disease, J. Immunol., 179, 5493–5503.PubMedCrossRefGoogle Scholar
  90. 90.
    Khan, M. Y., Agarwal, S. K., and Ahmad, S. (1992) Structure-activity relationship in buffalo spleen cathepsin B, J. Biochem., 111, 732–735.PubMedGoogle Scholar
  91. 91.
    Medina, D. L., Fraldi, A., Bouche, V., Annunziata, F., Mansueto, G., Spampanato, C., Puri, C., Pignata, A., Martina, J. A., Sardiello, M., Palmieri, M., Polishchuk, R., Puertollano, R., and Ballabio, A. (2011) Transcriptional activation of lysosomal exocytosis promotes cellular clearance, Dev. Cell, 21, 421–430.PubMedCentralPubMedCrossRefGoogle Scholar
  92. 92.
    Jaiswal, J. K., Andrews, N. W., and Simon, S. M. (2002) Membrane proximal lysosomes are the major vesicles responsible for calcium-dependent exocytosis in nonsecretory cells, Cell Biol., 159, 625–635.CrossRefGoogle Scholar
  93. 93.
    Li, D., Ropert, N., Koulakoff, A., Giaume, C., and Oheim, M. (2008) Lysosomes are the major vesicular compartment undergoing Ca2+-regulated exocytosis from cortical astrocytes, J. Neurosci., 28, 7648–7658.PubMedCrossRefGoogle Scholar
  94. 94.
    Reddy, A., Caler, E. V., and Andrews, N. W. (2001) Plasma membrane repair is mediated by Ca2+-regulated exocytosis of lysosomes, Cell, 106, 157–169.PubMedCrossRefGoogle Scholar
  95. 95.
    Annunziata, I., Patterson, A., Helton, D., Hu, H., Moshiach, S., Gomero, E., Nixon, R., and d’Azzo, A. (2013) Lysosomal NEU1 deficiency affects amyloid precursor protein levels and amyloid-β secretion via deregulated lysosomal exocytosis, Nature Commun., 4, 2734.CrossRefGoogle Scholar
  96. 96.
    Dou, Y., Wu, H. J., Li, H. Q., Qin, S., Wang, Y. E., Li, J., Lou, H. F., Chen, Z., Li, X. M., Luo, Q. M., and Duan, S. (2012) Microglial migration mediated by ATP-induced ATP release from lysosomes, Cell Res., 22, 1022–1033.PubMedCentralPubMedCrossRefGoogle Scholar
  97. 97.
    Chen, G., Zhang, Z., Wei, Z., Cheng, Q., Li, X., Li, W., Duan, S., and Gu, X. (2012) Lysosomal exocytosis in Schwann cells contributes to axon remyelination, Glia, 60, 295–305.PubMedCrossRefGoogle Scholar
  98. 98.
    Papadakis, M., Hadley, G., Xilouri, M., Hoyte, L. C., Nagel, S., McMenamin, M. M., Tsaknakis, G., Watt, S. M., Drakesmith, C. W., Chen, R., Wood. M. J., Zhao, Z., Kessler, B., Vekrellis, K., and Buchan, A. M. (2013) Tsc1 (hamartin) confers neuroprotection against ischemia by inducing autophagy, Nature Med., 19, 351–357.PubMedCentralPubMedCrossRefGoogle Scholar
  99. 99.
    Cavallo-Medved, D., Dosescu, J., Linebaugh, B. E., Sameni, M., Rudy, D., and Sloane, B. F. (2003) Mutant K-ras regulates cathepsin B localization on the surface of human colorectal carcinoma cells, Neoplasia, 5, 507–519.PubMedCentralPubMedCrossRefGoogle Scholar
  100. 100.
    Almeida, P. C., Nantes, I. L., Chagas, J. R., Rizzi, C. C., Faljoni-Alario, A., Carmona, E., Juliano, L., Nader, H. B., and Tersariol, I. L. (2001) Cathepsin B activity regulation. Heparin-like glycosaminoglycans protect human cathepsin B from alkaline pH-induced inactivation, J. Biol. Chem., 276, 944–951.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.Institute of Higher Nervous Activity and NeurophysiologyRussian Academy of SciencesMoscowRussia

Personalised recommendations