Advertisement

Biochemistry (Moscow)

, Volume 80, Issue 2, pp 145–162 | Cite as

Methylation of miRNA genes and oncogenesis

  • V. I. Loginov
  • S. V. Rykov
  • M. V. Fridman
  • E. A. BragaEmail author
Review

Abstract

Interaction between microRNA (miRNA) and messenger RNA of target genes at the posttranscriptional level provides fine-tuned dynamic regulation of cell signaling pathways. Each miRNA can be involved in regulating hundreds of protein-coding genes, and, conversely, a number of different miRNAs usually target a structural gene. Epigenetic gene inactivation associated with methylation of promoter CpG-islands is common to both protein-coding genes and miRNA genes. Here, data on functions of miRNAs in development of tumor-cell phenotype are reviewed. Genomic organization of promoter CpG-islands of the miRNA genes located in inter- and intragenic areas is discussed. The literature and our own results on frequency of CpG-island methylation in miRNA genes from tumors are summarized, and data regarding a link between such modification and changed activity of miRNA genes and, consequently, protein-coding target genes are presented. Moreover, the impact of miRNA gene methylation on key oncogenetic processes as well as affected signaling pathways is discussed.

Key words

miRNA CpG-islands methylation target genes epigenetic mechanisms oncogenesis 

Abbreviations

BC

breast cancer

CC

colon cancer

CLL

chronic lymphocytic leukemia

EMT

epithelial-mesenchymal transition

miRNA

microRNA

NSCLC

non-small cell lung cancer

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Makarova, Yu. A., and Kramerov, D. A. (2007) Non-coding RNAs, Biochemistry (Moscow), 72, 1161–1178.Google Scholar
  2. 2.
    Lopez-Serra, P., and Esteller, M. (2012) DNA methylation-associated silencing of tumor-suppressor miRNAs in cancer, Oncogene, 31, 1609–1622.PubMedCentralPubMedGoogle Scholar
  3. 3.
    Djebali, S., Davis, C. A., Merkel, A., Dobin, A., Lassmann, T., Mortazavi, A., Tanzer, A., Lagarde, J., Lin, W., Schlesinger, F., Xue, C., Marinov, G. K., Khatun, J., Williams, B. A., Zaleski, C., Rozowsky, J., Roder, M., Kokocinski, F., Abdelhamid, R. F., Alioto, T., Antoshechkin, I., Baer, M. T., Bar, N. S., Batut, P., Bell, K., Bell, I., Chakrabortty, S., Chen, X., Chrast, J., Curado, J., Derrien, T., Drenkow, J., Dumais, E., Dumais, J., Duttagupta, R., Falconnet, E., Fastuca, M., Fejes-Toth, K., Ferreira, P., Foissac, S., Fullwood, M. J., Gao, H., Gonzalez, D., Gordon, A., Gunawardena, H., Howald, C., Jha, S., Johnson, R., Kapranov, P., King, B., Kingswood, C., Luo, O. J., Park, E., Persaud, K., Preall, J. B., Ribeca, P., Risk, B., Robyr, D., Sammeth, M., Schaffer, L., See, L. H., Shahab, A., Skancke, J., Suzuki, A. M., Takahashi, H., Tilgner, H., Trout, D., Walters, N., Wang, H., Wrobel, J., Yu, Y., Ruan, X., Hayashizaki, Y., Harrow, J., Gerstein, M., Hubbard, T., Reymond, A., Antonarakis, S. E., Hannon, G., Giddings, M. C., Ruan, Y., Wold, B., Carninci, P., Guigo, R., and Gingeras, T. R. (2012) Landscape of transcription in human cells, Nature, 489, 101–108.PubMedCentralPubMedGoogle Scholar
  4. 4.
    Gerstein, M. B., Kundaje, A., Hariharan, M., Landt, S. G., Yan, K. K., Cheng, C., Mu, X. J., Khurana, E., Rozowsky, J., Alexander, R., Min, R., Alves, P., Abyzov, A., Addleman, N., Bhardwaj, N., Boyle, A. P., Cayting, P., Charos, A., Chen, D. Z., Cheng, Y., Clarke, D., Eastman, C., Euskirche, G., Frietze, S., Fu, Y., Gertz, J., Grubert, F., Harmanci, A., Jain, P., Kasowski, M., Lacroute, P., Leng, J., Lian, J., Monahan, H., O’Geen, H., Ouyang, Z., Partridge, E. C., Patacsil, D., Pauli, F., Raha, D., Ramirez, L., Reddy, T. E., Reed, B., Shi, M., Slifer, T., Wang, J., Wu, L., Yang, X., Yip, K. Y., Zilberman-Schapira, G., Batzoglou, S., Sidow, A., Farnham, P. J., Myers, R. M., Weissman, S. M., and Snyder, M. (2012) Architecture of the human regulatory network derived from ENCODE data, Nature, 489, 91–100.PubMedCentralPubMedGoogle Scholar
  5. 5.
    Dweep, H., Sticht, C., Pandey, P., and Gretz, N. (2011) miRWalk-database: prediction of possible miRNA binding sites by “walking” the genes of three genomes, J. Biomed. Inform., 44, 839–847.PubMedGoogle Scholar
  6. 6.
    Friedman, R. C., Farh, K. K., Burge, C. B., and Bartel, D. P. (2009) Most mammalian mRNAs are conserved targets of miRNAs, Genome Res., 19, 92–105.PubMedCentralPubMedGoogle Scholar
  7. 7.
    Graves, P., and Zeng, Y. (2012) Most mammalian mRNAs are conserved targets of miRNAs, Genom. Proteom. Bioinform., 10, 239–245.Google Scholar
  8. 8.
    Orom, U. A., Nielsen, F. C., and Lund, A. H. (2008) MiRNA-10a binds the 5′UTR of ribosomal protein mRNAs and enhances their translation, Mol. Cell, 30, 460–471.PubMedGoogle Scholar
  9. 9.
    Wang, W. X., Wilfred, B. R., Xie, K., Jennings, M. H., Hu, Y. H., Stromberg, A. J., and Nelson, P. T. (2010) Individual miRNAs (miRNAs) display distinct mRNA targeting “rules”, RNA Biol., 7, 373–380.PubMedCentralPubMedGoogle Scholar
  10. 10.
    Jones, P. A., and Baylin, S. B. (2007) The epigenomics of cancer, Cell, 128, 683–692.PubMedCentralPubMedGoogle Scholar
  11. 11.
    Kushlinskiy, N. E., and Nemtsova, M. V. (2014) Molecular mechanisms of tumor growth, Patogenez, 12, 4–14.Google Scholar
  12. 12.
    Kunej, T., Godnic, I., Ferdin, J., Horvat, S., Dovc, P., and Calin, G. A. (2011) Epigenetic regulation of miRNAs in cancer: an integrated review of literature, Mutat. Res., 717, 77–84.PubMedGoogle Scholar
  13. 13.
    Melo, S. A., and Esteller, M. (2011) Dysregulation of miRNAs in cancer: playing with fire, FEBS Lett., 585, 2087–2099.PubMedGoogle Scholar
  14. 14.
    Landi, M. T., Zhao, Y., Rotunno, M., Koshiol, J., Liu, H., Bergen, A. W., Rubagotti, M., Goldstein, A. M., Linnoila, I., Marincola, F. M., Tucker, M. A., Bertazzi, P. A., Pesatori, A. C., Caporaso, N. E., McShane, L. M., and Wang, E. (2010) MiRNA expression differentiates histology and predicts survival of lung cancer, Clin. Cancer Res., 16, 430–441.PubMedCentralPubMedGoogle Scholar
  15. 15.
    Tavazoie, S. F., Alarcon, C., Oskarsson, T., Padua, D., Wang, Q., Bos, P. D., Gerald, W. L., and Massague, J. (2008) Endogenous human miRNAs that suppress breast cancer metastasis, Nature, 451, 147–152.PubMedCentralPubMedGoogle Scholar
  16. 16.
    Ebrahimi, F., Gopalan, V., Smith, R. A., and Lam, A. K. (2014) miR-126 in human cancers: clinical roles and current perspectives, Exp. Mol. Pathol., 96, 98–107.PubMedGoogle Scholar
  17. 17.
    Bartel, D. P. (2009) MiRNAs: target recognition and regulatory functions, Cell, 136, 215–233.PubMedCentralPubMedGoogle Scholar
  18. 18.
    Chan, J. A., Krichevsky, A. M., and Kosik, K. S. (2005) MiRNA-21 is an antiapoptotic factor in human glioblastoma cells, Cancer Res., 65, 6029–6033.PubMedGoogle Scholar
  19. 19.
    Si, M. L., Zhu, S., Wu, H., Lu, Z., Wu, F., and Mo, Y. Y. (2007) miR-21-mediated tumor growth, Oncogene, 26, 2799–2803.PubMedGoogle Scholar
  20. 20.
    He, L., He, X., Lim, L. P., de Stanchina, E., Xuan, Z., Liang, Y., Xue, W., Zender, L., Magnus, J., and Ridzon, D. (2007) A miRNA component of the p53 tumor suppressor network, Nature, 447, 1130–1134.PubMedGoogle Scholar
  21. 21.
    Tarasov, V., Jung, P., Verdoodt, B., Lodygin, D., Epanchintsev, A., Menssen, A., Meister, G., and Hermeking, H. (2007) Differential regulation of miRNAs by p53 revealed by massively parallel sequencing: miR-34a is a p53 target that induces apoptosis and G1-arrest, Cell Cycle, 6, 1586–1593.PubMedGoogle Scholar
  22. 22.
    Hermeking, H. (2010) The miR-34 family in cancer and apoptosis, Cell Death Differ., 17, 193–199.PubMedGoogle Scholar
  23. 23.
    Yu, C. C., Chen, Y. W., Chiou, G. Y., Tsai, L. L., Huang, P. I., and Chang, C. Y. (2011) MiRNA let-7a represses chemoresistance and tumorigenicity in head and neck cancer via stem-like properties ablation, Oral Oncol., 47, 202–210.PubMedGoogle Scholar
  24. 24.
    Wang, S., Tang, Y., Cui, H., Zhao, X., Luo, X., and Pan, W. (2011) Let-7/miR-98 regulate Fas and Fas-mediated apoptosis, Genes Immun., 12, 149–154.PubMedGoogle Scholar
  25. 25.
    Hanahan, D., and Weinberg, R. A. (2011) Hallmarks of cancer: the next generation, Cell, 144, 646–674.PubMedGoogle Scholar
  26. 26.
    Liu, Z. L., Wang, H., Liu, J., and Wang, Z. X. (2013) MiRNA-21 (miR-21) expression promotes growth, metastasis, and chemo- or radioresistance in non-small cell lung cancer cells by targeting PTEN, Mol. Cell Biochem., 372, 35–45.PubMedGoogle Scholar
  27. 27.
    Talotta, F., Cimmino, A., Matarazzo, M. R., Casalino, L., De Vita, G., D’Esposito, M., Di Lauro, R., and Verde, P. (2009) An autoregulatory loop mediated by miR-21 and PDCD4 controls the AP-1 activity in RAS transformation, Oncogene, 28, 73–84.PubMedGoogle Scholar
  28. 28.
    Xiao, D., Ohlendorf, J., Chen, Y., Taylor, D. D., Rai, S. N., Waigel, S., Zacharias, W., Hao, H., and McMasters, K. M. (2012) Identifying mRNA, miRNA and protein profiles of melanoma exosomes, PLoS One, 7, e46874.PubMedCentralPubMedGoogle Scholar
  29. 29.
    Arroyo, J. D., Chevillet, J. R., Kroh, E. M., Ruf, I. K., Pritchard, C. C., and Gibson, D. F. (2011) Argonaute2 complexes carry a population of circulating miRNAs independent of vesicles in human plasma, Proc. Natl. Acad. Sci. USA, 108, 5003–5008.PubMedCentralPubMedGoogle Scholar
  30. 30.
    Lim, P. K., Bliss, S. A., Patel, S. A., Taborga, M., Dave, M. A., and Gregory, L. A. (2011) Gap junction-mediated import of miRNA from bone marrow stromal cells can elicit cell cycle quiescence in breast cancer cells, Cancer Res., 71, 1550–1560.PubMedGoogle Scholar
  31. 31.
    Deng, S., Calin, G. A., Croce, C. M., Coukos, G., and Zhang, L. (2008) Mechanisms of miRNA deregulation in human cancer, Cell Cycle, 7, 2643–2646.PubMedGoogle Scholar
  32. 32.
    Chang, T. C., Yu, D., Lee, Y. S., Wentzel, E. A., Arking, D. E., and West, K. M. (2008) Widespread miRNA repression by Myc contributes to tumorigenesis, Nature Genet., 40, 43–50.PubMedCentralPubMedGoogle Scholar
  33. 33.
    Kumar, M. S., Lu, J., Mercer, K. L., Golub, T. R., and Jacks, T. (2007) Impaired miRNA processing enhances cellular transformation and tumorigenesis, Nature Genet., 39, 673–677.PubMedGoogle Scholar
  34. 34.
    Calin, G. A., Ferracin, M., Cimmino, A., Di Leva, G., Shimizu, M., Wojcik, S. E., Iorio, M. V., Visone, R., Sever, N. I., Fabbri, M., Iuliano, R., Palumbo, T., Pichiorri, F., Roldo, C., Garzon, R., Sevignani, C., Rassenti, L., Alder, H., Volinia, S., Liu, C. G., Kipps, T. J., Negrini, M., and Croce, C. M. (2005) A miRNA signature associated with prognosis and progression in chronic lymphocytic leukemia, N. Engl. J. Med., 353, 1793–1801.PubMedGoogle Scholar
  35. 35.
    Jones, P. A. (2012) Functions of DNA methylation: islands, start sites, gene bodies and beyond, Nature Rev. Genet., 13, 484–492.PubMedGoogle Scholar
  36. 36.
    Bandres, E., Agirre, X., Bitarte, N., RamiRez, N., Zarate, R., Roman-Gomez, J., Prosper, F., and Garcia-Foncillas, J. (2009) Epigenetic regulation of miRNA expression in colorectal cancer, Int. J. Cancer, 125, 2737–2743.PubMedGoogle Scholar
  37. 37.
    Lodygin, D., Tarasov, V., Epanchintsev, A., Berking, C., Knyazeva, T., Korner, H., Knyazev, P., Diebold, J., and Hermeking, H. (2008) Inactivation of miR-34a by aberrant CpG methylation in multiple types of cancer, Cell Cycle, 7, 2591–2600.PubMedGoogle Scholar
  38. 38.
    Mudduluru, G., Ceppi, P., Kumarswamy, R., Scagliotti, G. V., Papotti, M., and Allgayer, H. (2011) Regulation of Axl receptor tyrosine kinase expression by miR-34a and miR-199a/b in solid cancer, Oncogene, 30, 2888–2899.PubMedGoogle Scholar
  39. 39.
    Tanaka, N., Toyooka, S., Soh, J., Kubo, T., Yamamoto, H., Maki, Y., Muraoka, T., Shien, K., Furukawa, M., Ueno, T., Asano, H., Tsukuda, K., Aoe, K., and Miyoshi, S. (2012) Frequent methylation and oncogenic role of miRNA-34b/c in small-cell lung cancer, Lung Cancer, 76, 32–38.PubMedGoogle Scholar
  40. 40.
    Watanabe, K., Emoto, N., Hamano, E., Sunohara, M., Kawakami, M., Kage, H., Kitano, K., Nakajima, J., Goto, A., Fukayama, M., Nagase, T., Yatomi, Y., Ohishi, N., and Takai, D. (2012) Genome structure-based screening identified epigenetically silenced miRNA associated with invasiveness in non-small-cell lung cancer, Int. J. Cancer, 130, 2580–2590.PubMedGoogle Scholar
  41. 41.
    Chim, C. S., Wong, K. Y., Qi, Y., Loong, F., Lam, W. L., Wong, L. G., Jin, D. Y., Costello, J. F., and Liang, R. (2010) Epigenetic inactivation of the miR-34a in hematological malignancies, Carcinogenesis, 31, 745–750.PubMedGoogle Scholar
  42. 42.
    Vrba, L., Munoz-Rodriguez, J. L., Stampfer, M. R., and Futscher, B. W. (2013) miRNA gene promoters are frequent targets of aberrant DNA methylation in human breast cancer, PLoS One, 8, e54398.PubMedCentralPubMedGoogle Scholar
  43. 43.
    Kozaki, K., and Inazawa, J. (2012) Tumor-suppressive miRNA silenced by tumor-specific DNA hypermethylation in cancer cells, Cancer Sci., 103, 837–845.PubMedGoogle Scholar
  44. 44.
    Marco, A., Ninova, M., Ronshaugen, M., and Griffiths-Jones, S. (2013) Clusters of miRNAs emerge by new hairpins in existing transcripts, Nucleic Acids Res., 41, 7745–7752.PubMedCentralPubMedGoogle Scholar
  45. 45.
    Saito, Y., Friedman, J. M., Chihara, Y., Egger, G., Chuang, J. C., and Liang, G. (2009) Epigenetic therapy upregulates the tumor suppressor miRNA-126 and its host gene EGFL7 in human cancer cells, Biochem. Biophys. Res. Commun., 379, 726–731.PubMedGoogle Scholar
  46. 46.
    Png, K. J., Yoshida, M., Zhang, X. H., Shu, W., Lee, H., Rimner, A., Chan, T. A., Comen, E., Andrade, V. P., Kim, S. W., King, T. A., Hudis, C. A., Norton, L., Hicks, J., Massague, J., and Tavazoie, S. F. (2011) MiRNA-335 inhibits tumor reinitiation and is silenced through genetic and epigenetic mechanisms in human breast cancer, Genes Dev., 25, 226–231.PubMedCentralPubMedGoogle Scholar
  47. 47.
    Grady, W. M., Parkin, R. K., Mitchell, P. S., Lee, J. H., Kim, Y. H., Tsuchiya, K. D., Washington, M. K., Paraskeva, C., Willson, J. K., Kaz, A. M., Kroh, E. M., Allen, A., Fritz, B. R., Markowitz, S. D., and Tewari, M. (2008) Epigenetic silencing of the intronic miRNA hsa-miR-342 and its host gene EVL in colorectal cancer, Oncogene, 27, 3880–3888.PubMedGoogle Scholar
  48. 48.
    Toyota, M., Suzuki, H., Sasaki Y., Maruyama, R., Imai, K., Shinomura, Y., and Tokino, T. (2008) Epigenetic silencing of miRNA-34b/c and B-cell translocation gene 4 is associated with CpG island methylation in colorectal cancer, Cancer Res., 68, 4123–4132.PubMedGoogle Scholar
  49. 49.
    Kashuba, V. I., Li, J., Wang, F., Senchenko, V. N., Protopopov, A., Malyukova, A., Kutsenko, A. S., Kadyrova, E., Zabarovska, V. I., Muravenko, O. V., Zelenin, A. V., Kisselev, L. L., Kuzmin, I., Minna, J. D., Winberg, G., Ernberg, I., Braga, E., Lerman, M. I., Klein, G., and Zabarovsky, E. R. (2004) RBSP3 (HYA22) is a tumor suppressor gene implicated in major epithelial malignancies, Proc. Natl. Acad. Sci. USA, 101, 4906–4911.PubMedCentralPubMedGoogle Scholar
  50. 50.
    Zhu, Y., Lu, Y., Zhang, Q., Liu, J. J., Li, T. J., Yang, J. R., Zeng, C., and Zhuang, S. M. (2012) MiRNA-26a/b and their host genes cooperate to inhibit the G1/S transition by activating the pRb protein, Nucleic Acids Res., 40, 4615–4625.PubMedCentralPubMedGoogle Scholar
  51. 51.
    Alajez, N. M., Lenarduzzi, M., and Ito, E. (2011) MiR-218 suppresses nasopharyngeal cancer progression through downregulation of survivin and the SLIT2-ROBO1 pathway, Cancer Res., 71, 2381–2391.PubMedGoogle Scholar
  52. 52.
    Suzuki, H., Yamamoto, E., and Nojima, M. (2010) Methylation-associated silencing of miRNA-34b/c in gastric cancer and its involvement in an epigenetic field defect, Carcinogenesis, 31, 2066–2073.PubMedGoogle Scholar
  53. 53.
    Vogt, M., Munding, J., Gruner, M., Liffers, S. T., Verdoodt, B., Hauk, J., Steinstraesser, L., Tannapfel, A., and Hermeking, H. (2011) Frequent concomitant inactivation of miR-34a and miR-34b/c by CpG methylation in colorectal, pancreatic, mammary, ovarian, urothelial, and renal cell carcinomas and soft tissue sarcomas, Virchows Arch., 458, 313–322.PubMedGoogle Scholar
  54. 54.
    Khodyrev, D. S., Pronina, I. V., Rykov, S. V., Beresneva, E. V., Fridman, M. V., Kazubskaya, T. P., Loginov, V. I., and Braga, E. A. (2012) Methylation of miRNA gene group is involved in regulating expression of the target genes RAR-beta2 and NKIRAS1 in lung cancer, Mol. Biol. (Moscow), 46, 773–785.Google Scholar
  55. 55.
    Rykov, S. V., Khodyrev, D. S., Beresneva, E. V., Pronina, I. V., Korchagina, E. L., Kazubskaya, T. P., Loginov, V. I., and Braga, E. A. (2012) Methylation profiles for miRNA gene group in the lung, kidney, and colon cancer, Med. Genet., 11, 26–31.Google Scholar
  56. 56.
    Beresneva, E. V., Rykov, S. V., Khodyrev, D. S., Pronina, I. V., Ermilova, V. D., Kazubskaya, T. P., Braga, E. A., and Loginov, V. I. (2013) Methylation profile for miRNA gene group in clear cell renal cell carcinoma; a relation with tumor progression, Genetika, 49, 366–375.PubMedGoogle Scholar
  57. 57.
    Lujambio, A., Calin, G. A., Villanueva, A., Ropero, S., Sanchez-Cespedes, M., Blanco, D., Montuenga, L. M., Rossi, S., Nicoloso, M. S., Faller, W. J., Gallagher, W. M., Eccles, S. A., Croce, C. M., and Esteller, M. A. (2008) A miRNA DNA methylation signature for human cancer metastasis, Proc. Natl. Acad. Sci. USA, 105, 13556–13561.PubMedCentralPubMedGoogle Scholar
  58. 58.
    Cannell, I. G., and Bushell, M. (2010) Regulation of Myc by miR-34c: a mechanism to prevent genomic instability? Cell Cycle, 9, 2726–2730.PubMedGoogle Scholar
  59. 59.
    Langevin, S. M., Stone, R. A., Bunker, C. H., Lyons-Weiler, M. A., LaFramboise, W. A., Kelly, L., Seethala, R. R., Grandis, J. R., Sobol, R. W., and Taioli, E. (2011) MiRNA-137 promoter methylation is associated with poorer overall survival in patients with squamous cell carcinoma of the head and neck, Cancer, 117, 1454–1462.PubMedCentralPubMedGoogle Scholar
  60. 60.
    Balaguer, F., Link, A., Lozano, J. J., Cuatrecasas, M., Nagasaka, T., Boland, C. R., and Goel, A. (2010) Epigenetic silencing of miR-137 is an early event in colorectal carcinogenesis, Cancer Res., 70, 6609–6618.PubMedCentralPubMedGoogle Scholar
  61. 61.
    Wiklund, E. D., Gao, S., Hulf, T., Sibbritt, T., Nair, S., Costea, D. E., Villadsen, S. B., Bakholdt, V., Bramsen, J. B., Srensen, J. A., Krogdahl, A., Clark, S. J., and Kjems, J. (2011) MiRNA alterations and associated aberrant DNA methylation patterns across multiple sample types in oral squamous cell carcinoma, PLoS One, 6, e27840.PubMedCentralPubMedGoogle Scholar
  62. 62.
    Chen, X., Wang, J., Shen, H., Lu, J., Li, C., Hu, D. N., Dong, X. D., Yan, D., and Tu, L. (2011) Epigenetics, miRNAs, and carcinogenesis: functional role of miRNA-137 in uveal melanoma, Invest. Ophthalmol. Vis. Sci., 52, 1193–1199.PubMedGoogle Scholar
  63. 63.
    Shimizu, T., Suzuki, H., Nojima, M., Kitamura, H., Yamamoto, E., Maruyama, R., Ashida, M., Hatahira, T., Kai, M., Masumori, N., Tokino, T., Imai, K., Tsukamoto, T., and Toyota, M. (2013) Methylation of a panel of miRNA genes is a novel biomarker for detection of bladder cancer, Eur. Urol., 63, 1091–1100.PubMedGoogle Scholar
  64. 64.
    Zhu, X., Li, Y., Shen, H., Li, H., Long, L., Hui, L., and Xu, W. (2013) miR-137 inhibits the proliferation of lung cancer cells by targeting Cdc42 and Cdk6, FEBS Lett., 587, 73–81.PubMedGoogle Scholar
  65. 65.
    Althoff, K., Beckers, A., Odersky, A., Mestdagh, P., Koster, J., Bray, I. M., Bryan, K., Vandesompele, J., Speleman, F., Stallings, R. L., Schramm, A., Eggert, A., Sprussel, A., and Schulte, J. H. (2013) MiR-137 functions as a tumor suppressor in neuroblastoma by downregulating KDM1A, Int. J. Cancer, 135, 1064–1073.Google Scholar
  66. 66.
    Chen, L., Wang, X., Wang, H., Li, Y., Yan, W., Han, L., Zhang, K., Zhang, J., Wang, Y., Feng, Y., Pu, P., Jiang, T., Kang, C., and Jiang, C. (2012) miR-137 is frequently down-regulated in glioblastoma and is a negative regulator of Cox-2, Eur. J. Cancer, 48, 3104–3111.PubMedGoogle Scholar
  67. 67.
    Wu, J., Qian, J., Li, C., Kwok, L., Cheng, F., Liu, P., Perdomo, C., Kotton, D., Vaziri, C., Anderlind, C., Spira, A., Cardoso, W. V., and Lu, J. (2010) miR-129 regulates cell proliferation by downregulating Cdk6 expression, Cell Cycle, 9, 1809–1818.PubMedGoogle Scholar
  68. 68.
    Huang, Y. W., Liu, J. C., Deatherage, D. E., Luo, J., Mutch, D. G., Goodfellow, P. J., Miller, D. S., and Huang, T. H. (2009) Epigenetic repression of miRNA-129-2 leads to overexpression of SOX4 oncogene in endometrial cancer, Cancer Res., 69, 9038–9046.PubMedCentralPubMedGoogle Scholar
  69. 69.
    Anwar, S. L., Albat, C., Krech, T., Hasemeier, B., Schipper, E., Schweitzer, N., Vogel, A., Kreipe, H., and Lehmann, U. (2013) Concordant hypermethylation of intergenic miRNA genes in human hepatocellular carcinoma as new diagnostic and prognostic marker, Int. J. Cancer, 133, 660–670.PubMedGoogle Scholar
  70. 70.
    Chen, X., Zhang, L., Zhang, T., Hao, M., Zhang, X., Zhang, J., Xie, Q., Wang, Y., Guo, M., Zhuang, H., and Lu, F. (2013) Methylation-mediated repression of miRNA 129-2 enhances oncogenic SOX4 expression in HCC, Liver Int., 33, 476–486.PubMedGoogle Scholar
  71. 71.
    Pronina, I. V., Rykov, S. V., Beresneva, E. V., Khodyrev, D. S., Kazubskaya, T. P., Braga, E. A., and Loginov, V. I. (2012) Altered expression level for miRNA gene group and protein-coding genes RAR-beta2 and NKIRAS1 in the lung, kidney, and breast cancer, Med. Genet., 11, 20–25.Google Scholar
  72. 72.
    Rykov, S. V., Khodyrev, D. S., Pronina, I. V., Kazubskaya, T. P., Loginov, V. I., and Braga, E. A. (2013) Novel miRNA genes susceptible to methylation in lung cancer, Genetika, 49, 896–901.PubMedGoogle Scholar
  73. 73.
    Zhao, J. J., Yang, J., Lin, J., Yao, N., Zhu, Y., Zheng, J., Xu, J., Cheng, J. Q., Lin, J. Y., and Ma, X. (2009) Identification of miRNAs associated with tumorigenesis of retinoblastoma by miRNA microarray analysis, Childs Nerv. Syst., 25, 13–20.PubMedGoogle Scholar
  74. 74.
    Yu, X., Song, H., Xia, T., Han, S., Xiao, B., Luo, L., Xi, Y., and Guo, J. (2013) Growth inhibitory effects of three miR-129 family members on gastric cancer, Gene, 532, 87–93.PubMedGoogle Scholar
  75. 75.
    Kang, M., Li, Y., Liu, W., Wang, R., Tang, A., Hao, H., Liu, Z., and Ou, H. (2013) miR-129-2 suppresses proliferation and migration of esophageal carcinoma cells through down-regulation of SOX4 expression, Int. J. Mol. Med., 32, 51–58.PubMedGoogle Scholar
  76. 76.
    Lujambio, A., and Esteller, M. (2009) How epigenetics can explain human metastasis: a new role for miRNAs, Cell Cycle, 8, 377–382.PubMedGoogle Scholar
  77. 77.
    Ceppi, P., Mudduluru, G., Kumarswamy, R., Rapa, I., Scagliotti, G. V., Papotti, M., and Allgayer, H. (2010) Loss of miR-200c expression induces an aggressive, invasive, and chemoresistant phenotype in non-small cell lung cancer, Mol. Cancer Res., 8, 1207–1216.PubMedGoogle Scholar
  78. 78.
    Park, S. M., Gaur, A. B., Lengyel, E., and Peter, M. E. (2008) The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2, Genes Dev., 22, 894–907.PubMedCentralPubMedGoogle Scholar
  79. 79.
    Tellez, C. S., Juri, D. E., Do, K., Bernauer, A. M., Thomas, C. L., Damiani, L. A., Tessema, M., Leng, S., and Belinsky, S. A. (2011) EMT and stem cell-like properties associated with miR-205 and miR-200 epigenetic silencing are early manifestations during carcinogen-induced transformation of human lung epithelial cells, Cancer Res., 71, 3087–3097.PubMedCentralPubMedGoogle Scholar
  80. 80.
    Men, D., Liang, Y., and Chen, L. (2014) Decreased expression of miRNA-200b is an independent unfavorable prognostic factor for glioma patients, Cancer Epidemiol., 38, 152–156.PubMedGoogle Scholar
  81. 81.
    Vilming Elgaaen, B., Olstad, O. K., Haug, K. B., Brusletto, B., Sandvik, L., Staff, A. C., Gautvik, K. M., and Davidson, B. (2014) Global miRNA expression analysis of serous and clear cell ovarian carcinomas identifies differentially expressed miRNAs including miR-200c-3p as a prognostic marker, BMC Cancer, 14, 80.PubMedCentralPubMedGoogle Scholar
  82. 82.
    Wang, Y., Zhao, W., and Fu, Q. (2013) miR-335 suppresses migration and invasion by targeting ROCK1 in osteosarcoma cells, Mol. Cell Biochem., 384,1–2, 105–111.PubMedGoogle Scholar
  83. 83.
    Gong, M., Ma, J., Guillemette, R., Zhou, M., Yang, Y., Hock, J. M., and Yu, X. (2014) miR-335 inhibits small cell lung cancer bone metastases via IGF-IR and RANKL pathways, Mol. Cancer Res., 12, 101–110.PubMedGoogle Scholar
  84. 84.
    Liu, X. H., Lu, K. H., Wang, K. M., Sun, M., Zhang, E. B., Yang, J. S., Yin, D. D., Liu, Z. L., Zhou, J., Liu, Z. J., De, W., and Wang, Z. X. (2012) MiRNA-196a promotes nonsmall cell lung cancer cell proliferation and invasion through targeting HOXA5, BMC Cancer, 12, 348.PubMedCentralPubMedGoogle Scholar
  85. 85.
    Huang, F., Tang, J., Zhuang, X., Zhuang, Y., Cheng, W., Chen, W., Yao, H., and Zhang, S. (2014) MiR-196a promotes pancreatic cancer progression by targeting nuclear factor kappa-B-inhibitor alpha, PLoS One, 9, e87897.PubMedCentralPubMedGoogle Scholar
  86. 86.
    Hou, T., Ou, J., Zhao, X., Huang, X., Huang, Y., and Zhang, Y. (2014) MiRNA-196a promotes cervical cancer proliferation through the regulation of FOXO1 and p27Kip1, Br. J. Cancer, 110, 1260–1268.PubMedGoogle Scholar
  87. 87.
    Brueckner, B., Stresemann, C., Kuner, R., Mund, C., Musch, T., Meister, M., Sültmann, H., and Lyko, F. (2007) The human let-7a-3 locus contains an epigenetically regulated miRNA gene with oncogenic function, Cancer Res., 67, 1419–1423.PubMedGoogle Scholar
  88. 88.
    Gao, X. N., Lin, J., Li, Y. H., Gao, L., Wang, X. R., Wang, W., Kang, H. Y., Yan, G. T., Wang, L. L., and Yu, L. (2011) MiRNA-193a represses c-kit expression and functions as a methylation-silenced tumor suppressor in acute myeloid leukemia, Oncogene, 30, 3416–3428.PubMedGoogle Scholar
  89. 89.
    Nakano, H., Yamada, Y., Miyazawa, T., and Yoshida, T. (2013) Gain-of-function miRNA screens identify miR-193a regulating proliferation and apoptosis in epithelial ovarian cancer cells, Int. J. Oncol., 42, 1875–1882.PubMedCentralPubMedGoogle Scholar
  90. 90.
    Yu, T., Li, J., Yan, M., Liu, L., Lin, H., Zhao, F., Sun, L., Zhang, Y., Cui, Y., Zhang, F., Li, J., He, X., and Yao, M. (2014) MiRNA-193a-3p and -5p suppress the metastasis of human non-small-cell lung cancer by downregulating the ERBB4/PIK3R3/mTOR/S6K2 signaling pathway, Oncogene; DOI:10.1038/onc.2013.574.Google Scholar
  91. 91.
    Tili, E., Michaille, J. J., Luo, Z., Volinia, S., Rassenti, L. Z., Kipps, T. J., and Croce, C. M. (2012) The down-regulation of miR-125b in chronic lymphocytic leukemias leads to metabolic adaptation of cells to a transformed state, Blood, 120, 2631–2638.PubMedCentralPubMedGoogle Scholar
  92. 92.
    Puissegur, M. P., Eichner, R., Quelen, C., Coyaud, E., Mari, B., Lebrigand, K., Broccardo, C., Nguyen-Khac, F., Bousquet, M., and Brousset, P. (2012) B-cell regulator of immunoglobulin heavy-chain transcription (Bright)/ARID3a is a direct target of the oncomir miRNA-125b in progenitor B-cells, Leukemia, 26, 2224–2232.PubMedGoogle Scholar
  93. 93.
    Wu, N., Lin, X., Zhao, X., Zheng, L., Xiao, L., Liu, J., Ge, L., and Cao, S. (2013) MiR-125b acts as an oncogene in glioblastoma cells and inhibits cell apoptosis through p53 and p38MAPK-independent pathways, Br. J. Cancer, 109, 2853–2863.PubMedCentralPubMedGoogle Scholar
  94. 94.
    Le, M. T., Shyh-Chang, N., Khaw, S. L., Chin, L., Teh, C., Tay, J., O’Day, E., Korzh, V., Yang, H., Lal, A., Lieberman, J., Lodish, H. F., and Lim, B. (2011) Conserved regulation of p53 network dosage by miRNA-125b occurs through evolving miRNA-target gene pairs, PLoS Genet., 7, e1002242.PubMedCentralPubMedGoogle Scholar
  95. 95.
    Soto-Reyes, E., Gonzalez-Barrios, R., Cisneros-Soberanis, F., Herrera-Goepfert, R., Perez, V., Cantu, D., Prada, D., Castro, C., Recillas-Targa, F., and Herrera, L. A. (2012) Disruption of CTCF at the miR-125b1 locus in gynecological cancers, BMC Cancer, 12, 40.PubMedCentralPubMedGoogle Scholar
  96. 96.
    Saito, Y., and Saito, H. (2012) Role of CTCF in the regulation of miRNA expression, Front. Genet., 3, 186.PubMedCentralPubMedGoogle Scholar
  97. 97.
    Cairo, S., Wang, Y., de Reynies, A., Duroure, K., Dahan, J., Redon, M. J., Fabre, M., McClelland, M., Wang, X. W., Croce, C. M., and Buendia, M. A. (2010) Stem cell-like microRNA signature driven by Myc in aggressive liver cancer, Proc. Natl. Acad. Sci. USA, 107, 20471–20476.PubMedCentralPubMedGoogle Scholar
  98. 98.
    Zhang, Y., Yan, L. X., Wu, Q. N., Du, Z. M., Chen, J., Liao, D. Z., Huang, M. Y., Hou, J. H., Wu, Q. L., Zeng, M. S., Huang, W. L., Zeng, Y. X., and Shao, J. Y. (2011) miR-125b is methylated and functions as a tumor suppressor by regulating the ETS1 proto-oncogene in human invasive breast cancer, Cancer Res., 71, 3552–3562.PubMedGoogle Scholar
  99. 99.
    Singh, P. K., Preus, L., Hu, Q., Yan, L., Long, M. D., Morrison, C. D., Nesline, M., Johnson, C. S., Koochekpour, S., Kohli, M., Liu, S., Trump, D. L., Sucheston-Campbell, L. E., and Campbell, M. J. (2014) Serum miRNA expression patterns that predict early treatment failure in prostate cancer patients, Oncotarget, 5, 824–840.PubMedCentralPubMedGoogle Scholar
  100. 100.
    Ferracin, M., Bassi, C., Pedriali, M., Pagotto, S., D’Abundo, L., Zagatti, B., Corra, F., Musa, G., Callegari, E., Lupini, L., Volpato, S., Querzoli, P., and Negrini, M. (2013) miR-125b targets erythropoietin and its receptor and their expression correlates with metastatic potential and ERBB2/HER2 expression, Mol. Cancer, 12, 130.PubMedCentralPubMedGoogle Scholar
  101. 101.
    Feliciano, A., Castellvi, J., Artero-Castro, A., Leal, J. A., Romagosa, C., Hernandez-Losa, J., Peg, V., Fabra, A., Vidal, F., Kondoh, H., Ramon, Y., Cajal, S., and Lleonart, M. E. (2013) miR-125b acts as a tumor suppressor in breast tumorigenesis via its novel direct targets ENPEP, CK2-α, CCNJ, and MEGF9, PLoS One, 8, e76247.PubMedCentralPubMedGoogle Scholar
  102. 102.
    Tang, J. T., Wang, J. L., Du, W., Hong, J., Zhao, S. L., Wang, Y. C., Xiong, H., Chen, H. M., and Fang, J. Y. (2011) MiRNA 345, a methylation-sensitive miRNA is involved in cell proliferation and invasion in human colorectal cancer, Carcinogenesis, 32, 1207–1215.PubMedGoogle Scholar
  103. 103.
    Shiu, T. Y., Huang, S. M., Shih, Y. L., Chu, H. C., Chang, W. K., and Hsieh, T. Y. (2013) Hepatitis C virus core protein down-regulates p21 (Waf1/Cip1) and inhibits curcumin-induced apoptosis through miRNA-345 targeting in human hepatoma cells, PLoS One, 8, e61089.PubMedCentralPubMedGoogle Scholar
  104. 104.
    Incoronato, M., Urso, L., Portela, A., Laukkanen, M. O., Soini, Y., Quintavalle, C., Keller, S., Esteller, M., and Condorelli, G. (2011) Epigenetic regulation of miR-212 expression in lung cancer, PLoS One, 6, e27722.PubMedCentralPubMedGoogle Scholar
  105. 105.
    Schultz, N. A., Andersen, K. K., Roslind, A., Willenbrock, H., Wojdemann, M., and Johansen, J. S. (2012) Prognostic miRNAs in cancer tissue from patients operated for pancreatic cancer — five miRNAs in a prognostic index, World J. Surg., 36, 2699–2707.PubMedGoogle Scholar
  106. 106.
    Scapoli, L., Palmieri, A., Lo Muzio, L., Pezzetti, F., Rubini, C., Girardi, A., Farinella, F., Mazzotta, M., and Carinci, F. (2010) MiRNA expression profiling of oral carcinoma identifies new markers of tumor progression, Int. J. Immunopathol. Pharmacol., 23, 1229–1234.PubMedGoogle Scholar
  107. 107.
    Incoronato, M., Garofalo, M., Urso, L., Romano, G., Quintavalle, C., Zanca, C., Iaboni, M., Nuovo, G., Croce, C. M., and Condorelli, G. (2010) miR-212 increases tumor necrosis factor-related apoptosis-inducing ligand sensitivity in non-small cell lung cancer by targeting the antiapoptotic protein PED, Cancer Res., 70, 3638–3646.PubMedGoogle Scholar
  108. 108.
    Xu, L., Wang, F., Xu, X. F., Mo, W. H., Xia, Y. J., Wan, R., Wang, X. P., and Guo, C. Y. (2011) Down-regulation of miR-212 expression by DNA hypermethylation in human gastric cancer cells, Med. Oncol., 28, 189–196.Google Scholar
  109. 109.
    Li, Y., Zhang, D., Chen, C., Ruan, Z., Li, Y., and Huang, Y. (2012) MiRNA-212 displays tumor-promoting properties in non-small cell lung cancer cells and targets the hedgehog pathway receptor PTCH1, Mol. Biol. Cell, 23, 1423–1434.PubMedCentralPubMedGoogle Scholar
  110. 110.
    Liang, X., Zeng, J., Wang, L., Fang, M., Wang, Q., Zhao, M., Xu, X., Liu, Z., Li, W., Liu, S., Yu, H., Jia, J., and Chen, C. (2013) Histone demethylase retinoblastoma binding protein 2 is overexpressed in hepatocellular carcinoma and negatively regulated by hsa-miR-212, PLoS One, 8, e69784.PubMedCentralPubMedGoogle Scholar
  111. 111.
    Meng, X., Wu, J., Pan, C., Wang, H., Ying, X., Zhou, Y., Yu, H., Zuo, Y., Pan, Z., Liu, R. Y., and Huang, W. (2013) Genetic and epigenetic down-regulation of miRNA-212 promotes colorectal tumor metastasis via dysregulation of MnSOD, Gastroenterology, 145, 426–436.PubMedGoogle Scholar
  112. 112.
    Park, J. K., Henry, J. C., Jiang, J., Esau, C., Gusev, Y., Lerner, M. R., Postier, R. G., Brackett, D. J., and Schmittgen, T. D. (2011) miR-132 and miR-212 are increased in pancreatic cancer and target the retinoblastoma tumor suppressor, Biochem. Biophys. Res. Commun., 406, 518–523.PubMedCentralPubMedGoogle Scholar
  113. 113.
    Furuta, M., Kozaki, K. I., Tanaka, S., Arii, S., Imoto, I., and Inazawa, J. (2010) miR-124 and miR-203 are epigenetically silenced tumor-suppressive miRNAs in hepato-cellular carcinoma, Carcinogenesis, 31, 766–776.PubMedGoogle Scholar
  114. 114.
    Mazar, J., DeBlasio, D., Govindarajan, S. S., Zhang, S., and Perera, R. J. (2011) Epigenetic regulation of miRNA-375 and its role in melanoma development in humans, FEBS Lett., 585, 2467–2476.PubMedGoogle Scholar
  115. 115.
    Li, X., Lin, R., and Li, J. (2011) Epigenetic silencing of miRNA-375 regulates PDK1 expression in esophageal cancer, Dig. Dis. Sci., 56, 2849–2856.PubMedGoogle Scholar
  116. 116.
    Kong, K. L., Kwong, D. L., Chan, T. H., Law, S. Y., Chen, L., Li, Y., Qin, Y. R., and Guan, X. Y. (2012) MiRNA-375 inhibits tumor growth and metastasis in esophageal squamous cell carcinoma through repressing insulin-like growth factor 1 receptor, Gut, 61, 33–42.PubMedGoogle Scholar
  117. 117.
    Wilting, S. M., Verlaat, W., Jaspers, A., Makazaji, N. A., Agami, R., Meijer, C. J., Snijders, P. J., and Steenbergen, R. D. (2013) Methylation-mediated transcriptional repression of miRNAs during cervical carcinogenesis, Epigenetics, 8, 220–228.PubMedCentralPubMedGoogle Scholar
  118. 118.
    Yu, L., Todd, N. W., Xing, L., Xie, Y., Zhang, H., Liu, Z., Fang, H., Zhang, J., Katz, R. L., and Jiang, F. (2010) Early detection of lung adenocarcinoma in sputum by a panel of miRNA markers, Int. J. Cancer, 127, 2870–2878.PubMedCentralPubMedGoogle Scholar
  119. 119.
    Nishikawa, E., Osada, H., Okazaki, Y., Arima, C., Tomida, S., Tatematsu, Y., Taguchi, A., Shimada, Y., Yanagisawa, K., Yatabe, Y., Toyokuni, S., Sekido, Y., and Takahashi, T. (2011) miR-375 is activated by ASH1 and inhibits YAP1 in a lineage-dependent manner in lung cancer, Cancer Res., 71, 6165–6173.PubMedGoogle Scholar
  120. 120.
    Zhao, H., Zhu, L., Jin, Y., Ji, H., Yan, X., and Zhu, X. (2012) miR-375 is highly expressed and possibly transactivated by achaete-scute complex homolog 1 in small-cell lung cancer cells, Acta Biochim. Biophys. Sin. (Shanghai), 44, 177–182.Google Scholar
  121. 121.
    Friboulet, L., Barrios-Gonzales, D., Commo, F., Olaussen, K. A., Vagner, S., Adam, J., Goubar, A., Dorvault, N., Lazar, V., Job, B., Besse, B., Validire, P., Girard, P., Lacroix, L., Hasmats, J., Dufour, F., Andre, F., and Soria, J. C. (2011) Molecular characteristics of ERCC1-negative versus ERCC1-positive tumors in resected NSCLC, Clin. Cancer Res., 17, 5562–5572.PubMedGoogle Scholar
  122. 122.
    Li, Y., Jiang, Q., Xia, N., Yang, H., and Hu, C. (2012) Decreased expression of miRNA-375 in non-small cell lung cancer and its clinical significance, J. Int. Med. Res., 40, 1662–1669.PubMedGoogle Scholar
  123. 123.
    Zhang, L., Sullivan, P. S., Goodman, J. C., Gunaratne, P. H., and Marchetti, D. (2011) MiRNA-1258 suppresses breast cancer brain metastasis by targeting heparanase, Cancer Res., 71, 645–654.PubMedCentralPubMedGoogle Scholar
  124. 124.
    Liu, H., Chen, X., Gao, W., and Jiang, G. (2012) The expression of heparanase and miRNA-1258 in human non-small cell lung cancer, Tumor Biol., 33, 1327–1334.Google Scholar
  125. 125.
    Tang, D., Zhang, Q., Zhao, S., Wang, J., Lu, K., Song, Y., Zhao, L., Kang, X., Wang, J., Xu, S., and Tian, L. (2013) The expression and clinical significance of miRNA-1258 and heparanase in human breast cancer, Clin. Biochem., 46, 926–932.PubMedGoogle Scholar
  126. 126.
    Huang, J., Wang, Y., Guo, Y., and Sun, S. (2010) Down-regulated miRNA-152 induces aberrant DNA methylation in hepatitis B virus-related hepatocellular carcinoma by targeting DNA methyltransferase 1, Hepatology, 52, 60–70.PubMedGoogle Scholar
  127. 127.
    Ruo-Kai, L., Han-Shui, H., Jer-Wei, C., Chih-Yi, C., and Jung-Ta, C. (2007) Alteration of DNA methyltransferases contributes to 5′CpG methylation and poor prognosis in lung cancer, Lung Cancer, 55, 205–213.Google Scholar
  128. 128.
    Fabbri, M., Garzon, R., Cimmino, A., Liu, Z., Zanesi, N., and Callegari, E. (2007) MiRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B, Proc. Natl. Acad. Sci. USA, 104, 15805–15810.PubMedCentralPubMedGoogle Scholar
  129. 129.
    Sun, X., Wang, Z. M., Song, Y., Tai, X. H., Ji, W. Y., and Gu, H. (2014) MiRNA-126 modulates the tumor microenvironment by targeting calmodulin-regulated spectrin-associated protein 1 (Camsap1), Int. J. Oncol., 44, 1678–1684.PubMedGoogle Scholar
  130. 130.
    Yu, Q., Liu, S. L., Wang, H., Shi, G., Yang, P., and Chen, X. L. (2013) miR-126 suppresses the proliferation of cervical cancer cells and alters cell sensitivity to the chemotherapeutic drug bleomycin, Asian Pac. J. Cancer Prev., 14, 6569–6572.Google Scholar
  131. 131.
    Zhou, Y., Feng, X., Liu, Y. L., Ye, S. C., Wang, H., Tan, W. K., Tian, T., Qiu, Y. M., and Luo, H. S. (2013) Down-regulation of miR-126 is associated with colorectal cancer cells proliferation, migration and invasion by targeting IRS-1 via the AKT and ERK1/2 signaling pathways, PLoS One, 8, e81203.PubMedCentralPubMedGoogle Scholar
  132. 132.
    Krysan, K., Kusko, R., Grogan, T., O’Hearn, J., Reckamp, K. L., Walser, T. C., Garon, E. B., Lenburg, M. E., Sharma, S., Spira, A. E., Elashoff, D., and Dubinett, S. M. (2014) PGE2-driven expression of c-Myc and oncomiR-17-92 contributes to apoptosis resistance in NSCLC, Mol. Cancer Res., 12, 765–774.PubMedGoogle Scholar
  133. 133.
    Wu, M. F., Yang, J., Xiang, T., Shi, Y. Y., and Liu, L. J. (2014) miR-21 targets Fas ligand-mediated apoptosis in breast cancer cell line MCF-7, J. Huazhong Univ. Sci. Technol. Med. Sci., 34, 190–194.PubMedGoogle Scholar
  134. 134.
    Ren, W., Wang, X., Gao, L., Li, S., Yan, X., Zhang, J., Huang, C., Zhang, Y., and Zhi, K. (2014) MiR-21 modulates chemosensitivity of tongue squamous cell carcinoma cells to cisplatin by targeting PDCD4, Mol. Cell Biochem., 390, 253–262.PubMedGoogle Scholar
  135. 135.
    Rokavec, M., Oner, M. G., Li, H., Jackstadt, R., Jiang, L., Lodygin, D., Kaller, M., Horst, D., Ziegler, P. K., Schwitalla, S., Slotta-Huspenina, J., Bader, F. G., Greten, F. R., and Hermeking, H. (2014) IL-6R/STAT3/miR-34a feedback loop promotes EMT-mediated colorectal cancer invasion and metastasis, J. Clin. Invest., 124, 1853–1867.PubMedCentralPubMedGoogle Scholar
  136. 136.
    Weng, W., Wang, M., Xie, S., Long, Y., Li, F., Sun, F., Yu, Y., and Li, Z. (2014) YY1-C/EBPα-miR34a regulatory circuitry is involved in renal cell carcinoma progression, Oncol. Rep., 31, 1921–1927.PubMedGoogle Scholar
  137. 137.
    Tang, H., Yao, L., Tao, X., Yu, Y., Chen, M., Zhang, R., and Xu, C. (2013) miR-9 functions as a tumor suppressor in ovarian serous carcinoma by targeting TLN1, Int. J. Mol. Med., 32, 381–388.PubMedGoogle Scholar
  138. 138.
    White, R. A., Neiman, J. M., Reddi, A., Han, G., Birlea, S., Mitra, D., Dionne, L., Fernandez, P., Murao, K., Bian, L., Keysar, S. B., Goldstein, N. B., Song, N., Bornstein, S., Han, Z., Lu, X., Wisell, J., Li, F., Song, J., Lu, S. L., Jimeno, A., Roop, D. R., and Wang, X. J. (2013) Epithelial stem cell mutations that promote squamous cell carcinoma metastasis, J. Clin. Invest., 123, 4390–4404.PubMedCentralPubMedGoogle Scholar
  139. 139.
    Yu, T., Liu, K., Wu, Y., Fan, J., Chen, J., Li, C., Yang, Q., and Wang, Z. (2013) MiRNA-9 inhibits the proliferation of oral squamous cell carcinoma cells by suppressing expression of CXCR4 via the Wnt/β-catenin signaling pathway, Oncogene, 33, 5017–5027.PubMedGoogle Scholar
  140. 140.
    Gomez, G. G., Volinia, S., Croce, C. M., Zanca, C., Li, M., Emnett, R., Gutmann, D. H., Brennan, C. W., Furnari, F. B., and Cavenee, W. K. (2014) Suppression of miRNA-9 by mutant EGFR signaling upregulates FOXP1 to enhance glioblastoma tumorigenicity, Cancer Res., 74, 1429–1439.PubMedGoogle Scholar
  141. 141.
    Aksamitiene, E., Kigatkin, A., and Kholodenko, B. (2012) Cross-talk between mitogenic Ras/MAPK and survival PI3K/Akt pathways: a fine balance, Biochem. Soc. Trans., 40, 139–146.PubMedGoogle Scholar
  142. 142.
    Vlachos, I. S., Kostoulas, N., Vergoulis, T., Georgakilas, G., Reczko, M., Maragkakis, M., Paraskevopoulou, M. D., Prionidis, K., Dalamagas, T., and Hatzigeorgiou, A. G. (2012) DIANA miRPath v.2.0: investigating the combinatorial effect of miRNAs in pathways, Nucleic Acids Res., 40, 498–504.Google Scholar
  143. 143.
    Xu, Y., and Pasche, B. (2007) TGF-beta signaling alterations and susceptibility to colorectal cancer, Hum. Mol. Genet., 16, 14–20.Google Scholar
  144. 144.
    Fu, J., Tang, W., Du, P., Wang, G., Chen, W., Li, J., Zhu, Y., Gao, J., and Cui, L. (2012) Identifying miRNA-mRNA regulatory network in colorectal cancer by a combination of expression profile and bioinformatics analysis, BMC Syst. Biol., 6, 68.PubMedCentralPubMedGoogle Scholar
  145. 145.
    Huang, D. W., Sherman, B. T., and Lempicki, R. A. (2009) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists, Nucleic Acids Res., 37, 1–13.PubMedCentralGoogle Scholar
  146. 146.
    Kanehisa, M., Goto, S., Sato, Y., Furumichi, M., and Tanabe, M. (2012) KEGG for integration and interpretation of large-scale molecular data sets, Nucleic Acids Res., 40, 109–114.Google Scholar
  147. 147.
    Kristensen, H., Haldrup, C., Strand, S., Mundbjerg, K., Mortensen, M. M., Thorsen, K., Ostenfeld, M. S., Wild, P. J., Arsov, C., Goering, W., Visakorpi, T., Egevad, L., Lindberg, J., Gronberg, H., Hoyer, S., Borre, M., Orntoft, T. F., and Sorensen, K. D. (2014) Hypermethylation of the GABRE~miR-452~miR-224 promoter in prostate cancer predicts biochemical recurrence after radical prostatectomy, Clin. Cancer Res., 20, 2169–2181.PubMedGoogle Scholar
  148. 148.
    Yamada, N., Noguchi, S., Mori, T., Naoe, T., Maruo, K., and Akao, Y. (2013) Tumor-suppressive miRNA-145 targets catenin δ-1 to regulate Wnt/β-catenin signaling in human colon cancer cells, Cancer Lett., 335, 332–342.PubMedGoogle Scholar
  149. 149.
    Polyanovski, O. L., Lebedenko, E. N., and Deyev, S. M. (2012) ERBB-oncogenes — targets for monoclonal antibodies, Biochemistry (Moscow), 77, 227–245.Google Scholar
  150. 150.
    Wang, J., Yang, B., Han, L., Li, X., Tao, H., Zhang, S., and Hu, Y. (2013) Demethylation of miR-9-3 and miR-193a genes suppresses proliferation and promotes apoptosis in non-small cell lung cancer cell lines, Cell Physiol. Biochem., 32, 1707–1719.PubMedGoogle Scholar
  151. 151.
    Aydogdu, E., Katchy, A., Tsouko, E., Lin, C-Y., Haldosen, L.-A., Helguero, L., and Williams, C. (2012) MiRNA-regulated gene networks during mammary cell differentiation are associated with breast cancer, Carcinogenesis, 33, 1502–1511.PubMedGoogle Scholar
  152. 152.
    Sandhu, R., Rivenbark, A. G., Mackler, R. M., Livasy, C. A., and Coleman, W. B. (2014) Dysregulation of miRNA expression drives aberrant DNA hypermethylation in basal-like breast cancer, Int. J. Oncol., 44, 563–572.PubMedCentralPubMedGoogle Scholar
  153. 153.
    Zhou, Y., Hu, Y., Yang, M., Jat, P., Li, K., Lombardo, Y., Xiong, D., Coombes, R. C., Raguz, S., and Yague, E. (2014) The miR-106b~25 cluster promotes bypass of doxorubicin-induced senescence and increase in motility and invasion by targeting the E-cadherin transcriptional activator EP300, Cell Death Differ., 21, 462–474.PubMedGoogle Scholar
  154. 154.
    Chen, D., Li, Y., Mei, Y., Geng, W., Yang, J., Hong, Q., Feng, Z., Cai, G., Zhu, H., Shi, S., Bai, X. Y., and Chen, X. (2014) miR-34a regulates mesangial cell proliferation via the PDGFR-β/Ras-MAPK signaling pathway, Cell Mol. Life Sci., 71, 4027–4042.PubMedCentralPubMedGoogle Scholar
  155. 155.
    Ma, Y., Qin, H., and Cui, Y. (2013) MiR-34a targets GAS1 to promote cell proliferation and inhibit apoptosis in papillary thyroid carcinoma via PI3K/Akt/Bad pathway, Biochem. Biophys. Res. Commun., 441, 958–963.PubMedGoogle Scholar
  156. 156.
    Okada, N., Lin, C. P., Ribeiro, M. C., Biton, A., Lai, G., He, X., Bu, P., Vogel, H., Jablons, D. M., Keller, A. C., Wilkinson, J. E., He, B., Speed, T. P., and He, L. (2014) A positive feedback between p53 and miR-34 miRNAs mediates tumor suppression, Genes Dev., 28, 438–450.PubMedCentralPubMedGoogle Scholar
  157. 157.
    Tam, W. L., and Weinberg, R. A. (2013) The epigenetics of epithelial-mesenchymal plasticity in cancer, Nature Med., 19, 1438–1449.PubMedCentralPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • V. I. Loginov
    • 1
    • 2
  • S. V. Rykov
    • 3
  • M. V. Fridman
    • 4
  • E. A. Braga
    • 1
    • 2
    Email author
  1. 1.Institute of General Pathology and PathophysiologyMoscowRussia
  2. 2.Research Center of Medical GeneticsRussian Academy of Medical SciencesMoscowRussia
  3. 3.Research Institute for Genetics and Selection of Industrial MicroorganismsMoscowRussia
  4. 4.Vavilov Institute of General GeneticsRussian Academy of SciencesMoscowRussia

Personalised recommendations