Advertisement

Biochemistry (Moscow)

, Volume 80, Issue 2, pp 127–144 | Cite as

AMP-activated protein kinase: Structure, function, and role in pathological processes

  • D. S. NovikovaEmail author
  • A. V. Garabadzhiu
  • G. Melino
  • N. A. Barlev
  • V. G. Tribulovich
Review

Abstract

Recently, AMP-activated protein kinase (AMPK) has emerged as a key regulator of energy balance at cellular and whole-body levels. Due to the involvement in multiple signaling pathways, AMPK efficiently controls ATP-consuming/ATP-generating processes to maintain energy homeostasis under stress conditions. Loss of the kinase activity or attenuation of its expression leads to a variety of metabolic disorders and increases cancer risk. In this review, we discuss recent findings on the structure of AMPK, its activation mechanisms, as well as the consequences of its targets in regulation of metabolism. Particular attention is given to low-molecular-weight compounds that activate or inhibit AMPK; the perspective of therapeutic use of such modulators in treatment of several common diseases is discussed.

Key words

AMP-activated protein kinase energy metabolism metabolic syndrome diabetes type 2 cancer AMPK activators AMPK inhibitors 

Abbreviations

ACC

acetyl-CoA carboxylase

CaMKK

Ca2+/calmodulin-dependent protein kinase kinase

CD36

cluster of differentiation 36 fatty acid translocase

eEF2K

eukaryotic elongation factor-2 kinase

eNOS

endothelial nitric oxide synthase

FOXO3

transcription factor of the forkhead family

GLUT1/GLUT4

glucose transporter 1/glucose transporter 4

G6Pase

glucose 6-phosphatase

GPAT

glycerol phosphate acyl transferase

GS

glycogen synthase

HDAC5

histone deacetylase 5

HIF-1α

hypoxia-inducible factor 1α

HKII

hexokinase II

HMGR

3-hydroxy-3-methyl-glutaryl-CoA reductase

HSL

hormone-sensitive lipase

LKB1

liver kinase B1

MO25

mouse protein-25

mTOR

mammalian target of rapamycin (kinase)

mTORC1

mTOR kinase complex 1

NRF

nuclear respiratory factor

6PFK2

6-phosphofructo-2-kinase

PEPCK

phosphoenolpyruvate carboxykinase

PGC-1α

PPARγ coactivator 1α

PKA

protein kinase A

PPAR

peroxisome proliferator-activated receptor

Raptor

regulatory-associated protein of mTOR

Rheb

GTP-binding protein

SREBP-1c

sterol regulatory element-binding protein 1c

STRAD

STE20-related kinase adapter protein

TAK1

TGF-β-activated kinase-1

TBC1D1/TBC1D4

proteins of TBC1 domain family

TSC2

tuberous sclerosis complex 2 (tuberin)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Davies, S. P., Hawley S. A., Woods, A., Carling, D., Haystead, T. A., and Hardie, D. G. (1994) Purification of the AMP-activated protein kinase on ATP-gamma-Sepharose and analysis of its subunit structure, Eur. J. Biochem., 223, 351–357.PubMedGoogle Scholar
  2. 2.
    Stein, S. C., Woods, A., Jones, N. A., Davison, M. D., and Carling, D. (2000) The regulation of AMP-activated protein kinase by phosphorylation, Biochem. J., 345, 437–443.PubMedCentralPubMedGoogle Scholar
  3. 3.
    Dyck, J. R., Gao, G., Widmer, J., Stapleton, D., Fernandez, C. S., Kemp, B. E., and Witters, L. A. (1996) Regulation of 5′-AMP-activated protein kinase activity by the noncatalytic beta and gamma subunits, J. Biol. Chem., 271, 17798–17803.PubMedGoogle Scholar
  4. 4.
    Stapleton, D., Woollatt, E., Mitchelhill, K. I., Nicholl, J. K., Fernandez, C. S., Michell, B. J., Witters, L. A., Power, D. A., Sutherland, G. R., and Kemp, B. E. (1997) AMP-activated protein kinase isoenzyme family: subunit structure and chromosomal location, FEBS Lett., 409, 452–456.PubMedGoogle Scholar
  5. 5.
    Mitchelhill, K. I., Stapleton, D., Gao, G., House, C., Michell, B., Katsis, F., Witters, L. A., and Kemp, B. E. (1994) AMP-activated protein kinase shares structural and functional homology with the catalytic domain of yeast Snf1 protein kinase, J. Biol. Chem., 269, 2361–1364.PubMedGoogle Scholar
  6. 6.
    Crute, B. E., Seefeld, K., Gamble, J., Kemp, B. E., and Witters, L. A. (1998) Functional domains of the alpha1 catalytic subunit of the AMP-activated protein kinase, J. Biol. Chem., 273, 35347–35354.PubMedGoogle Scholar
  7. 7.
    Hawley, S. A., Davison, M., Woods, A., Davies, S. P., Beri, R. K., Carling, D., and Hardie, D. G. (1996) Characterization of the AMP-activated protein kinase kinase from rat liver and identification of threonine 172 as the major site at which it phosphorylates AMP-activated protein kinase, J. Biol. Chem., 271, 27879–27887.PubMedGoogle Scholar
  8. 8.
    Littler, D. R., Walker, J. R., Davis, T., Wybenga-Groot, L. E., Finerty, P. J., Jr., Newman, E., Mackenzie, F., and Dhe-Paganon, S. (2010) A conserved mechanism of autoinhibition for the AMPK kinase domain: ATP-binding site and catalytic loop refolding as a means of regulation, Acta Crystallogr. Sec. F Struct. Biol. Cryst. Commun., 66, 143–151.Google Scholar
  9. 9.
    Thornton, C., Snowden, M. A., and Carling, D. (1998) Identification of a novel AMP-activated protein kinase beta subunit isoform that is highly expressed in skeletal muscle, J. Biol. Chem., 273, 12443–12450.PubMedGoogle Scholar
  10. 10.
    Xiao, B., Sanders, M. J., Underwood, E., Heath, R., Mayer, F. V., Carmena, D., Jing, C., Walker, P. A., Eccleston, J. F., Haire, L. F., Saiu, P., Howell, S. A., Aasland, R., Martin, S. R., Carling, D., and Gamblin, S. J. (2011) Structure of mammalian AMPK and its regulation by ADP, Nature, 472, 230–233.PubMedCentralPubMedGoogle Scholar
  11. 11.
    Salt, I., Celler, J. W., Hawley, S. A., Prescott, A., Woods, A., Carling, D., and Hardie, D. G. (1998) AMP-activated protein kinase: greater AMP dependence, and preferential nuclear localization, of complexes containing the alpha2 isoform, Biochem. J., 334, 177–187.PubMedCentralPubMedGoogle Scholar
  12. 12.
    Kazgan, N., Williams, T., Forsberg, L. J., and Brenman, J. E. (2010) Identification of a nuclear export signal in the catalytic subunit of AMP-activated protein kinase, Mol. Biol. Cell, 21, 3433–3442.PubMedCentralPubMedGoogle Scholar
  13. 13.
    Woods, A., Cheung, P. C., Smith, F. C., Davison, M. D., Scott, J., Beri, R. K., and Carling, D. (1996) Characterization of AMP-activated protein kinase beta and gamma subunits. Assembly of the heterotrimeric complex in vitro, J. Biol. Chem., 271, 10282–10290.PubMedGoogle Scholar
  14. 14.
    Bieri, M., Mobbs, J. I., Koay, A., Louey, G., Mok, Y. F., Hatters, D. M., Park, J. T., Park, K. H., Neumann, D., Stapleton, D., and Gooley, P. R. (2012) AMP-activated protein kinase β-subunit requires internal motion for optimal carbohydrate binding, Biophys. J., 102, 305–314.PubMedCentralPubMedGoogle Scholar
  15. 15.
    McBride, A., Ghilagaber, S., Nikolaev, A., and Hardie, D. G. (2009) The glycogen-binding domain on the AMPK beta subunit allows the kinase to act as a glycogen sensor, Cell Metab., 9, 23–34.PubMedCentralPubMedGoogle Scholar
  16. 16.
    Iseli, T. J., Walter, M., van Denderen, B. J., Katsis, F., Witters, L. A., Kemp, B. E., Michell, B. J., and Stapleton, D. (2005) AMP-activated protein kinase beta subunit tethers alpha and gamma subunits via its C-terminal sequence (186-270), J. Biol. Chem., 280, 13395–13400.PubMedGoogle Scholar
  17. 17.
    Warden, S. M., Richardson, C., O’Donnell, J., Jr., Stapleton, D., Kemp, B. E., and Witters, L. A. (2001) Post-translational modifications of the beta-1 subunit of AMP-activated protein kinase affect enzyme activity and cellular localization, Biochem. J., 354, 275–283.PubMedCentralPubMedGoogle Scholar
  18. 18.
    Moffat, C., and Harper, E. M. (2010) Metabolic functions of AMPK: aspects of structure and of natural mutations in the regulatory gamma subunits, IUBMB Life, 62, 739–745.PubMedGoogle Scholar
  19. 19.
    Cheung, P. C., Salt, I. P., Davies, S. P., Hardie, D. G., and Carling, D. (2000) Characterization of AMP-activated protein kinase gamma-subunit isoforms and their role in AMP binding, Biochem. J., 346, 659–669.PubMedCentralPubMedGoogle Scholar
  20. 20.
    Scott, J. W., Hawley, S. A., Green, K. A., Anis, M., Stewart, G., Scullion, G. A., Norman, D. G., and Hardie, D. G. (2004) CBS domains form energy-sensing modules whose binding of adenosine ligands is disrupted by disease mutations, J. Clin. Invest., 113, 274–284.PubMedCentralPubMedGoogle Scholar
  21. 21.
    Viana, R., Towler, M. C., Pan, D. A., Carling, D., Viollet, B., Hardie, D. G., and Sanz, P. (2007) A conserved sequence immediately N-terminal to the Bateman domains in AMP-activated protein kinase gamma subunits is required for the interaction with the beta subunits, J. Biol. Chem., 282, 16117–16125.PubMedCentralPubMedGoogle Scholar
  22. 22.
    Chen, L., Jiao, Z. H., Zheng, L. S., Zhang, Y. Y., Xie, S. T., Wang, Z. X., and Wu, J. W. (2009) Structural insight into the autoinhibition mechanism of AMP-activated protein kinase, Nature, 459, 1146–1149.PubMedGoogle Scholar
  23. 23.
    Rudolph, M. J., Amodeo, G. A., and Tong, L. (2010) An inhibited conformation for the protein kinase domain of the Saccharomyces cerevisiae AMPK homolog Snf1, Acta Crystallogr. Sec. F Struct. Biol. Cryst. Commun., 66, 999–1002.Google Scholar
  24. 24.
    Townley, R., and Shapiro, L. (2007) Crystal structures of the adenylate sensor from fission yeast AMP-activated protein kinase, Science, 315, 1726–1729.PubMedGoogle Scholar
  25. 25.
    Xiao, B., Heath, R., Saiu, P., Leiper, F. C., Leone, P., Jing, C., Walker, P. A., Haire, L., Eccleston, J. F., Davis, C. T., Martin, S. R., Carling, D., and Gamblin, S. J. (2007) Structural basis for AMP binding to mammalian AMP-activated protein kinase, Nature, 449, 496–500.PubMedGoogle Scholar
  26. 26.
    Mayer, F. V., Heath, R., Underwood, E., Sanders, M. J., Carmena, D., McCartney, R. R., Leiper, F. C., Xiao, B., Jing, C., Walker, P. A., Haire, L. F., Ogrodowicz, R., Martin, S. R., Schmidt, M. C., Gamblin, S. J., and Carling, D. (2011) ADP regulates SNF1, the Saccharomyces cerevisiae homolog of AMP-activated protein kinase, Cell Metab., 14, 707–714.PubMedCentralPubMedGoogle Scholar
  27. 27.
    Amodeo, G. A., Rudolph, M. J., and Tong, L. (2007) Crystal structure of the heterotrimer core of Saccharomyces cerevisiae AMPK homologue SNF1, Nature, 449, 492–455.PubMedGoogle Scholar
  28. 28.
    Chen, L., Xin, F. J., Wang, J., Hu, J., Zhang, Y. Y., Wan, S., Cao, L. S., Lu, C., Li, P., Yan, S. F., Neumann, D., Schlattner, U., Xia, B., Wang, Z. X., and Wu, J. W. (2013) Conserved regulatory elements in AMPK, Nature, 498, E8–10.PubMedGoogle Scholar
  29. 29.
    Ghillebert, R., Swinnen, E., Wen, J., Vandesteene, L., Ramon, M., Norga, K., Rolland, F., and Winderickx, J. (2011) The AMPK/SNF1/SnRK1 fuel gauge and energy regulator: structure, function and regulation, FEBS J., 278, 3978–3990.PubMedGoogle Scholar
  30. 30.
    Hardie, D. G., and Hawley, S. A. (2001) AMP-activated protein kinase: the energy charge hypothesis revisited, Bioessays, 23, 1112–1119.PubMedGoogle Scholar
  31. 31.
    Mungai, P. T., Waypa, G. B., Jairaman, A., Prakriya, M., Dokic, D., Ball, M. K., and Schumacker, P. T. (2011) Hypoxia triggers AMPK activation through reactive oxygen species-mediated activation of calcium release-activated calcium channels, Mol. Cell. Biol., 31, 3531–3545.PubMedCentralPubMedGoogle Scholar
  32. 32.
    Marsin, A. S., Bertrand, L., Rider, M. H., Deprez, J., Beauloye, C., Vincent, M. F., Van den Berghe, G., Carling, D., and Hue, L. (2000) Phosphorylation and activation of heart PFK-2 by AMPK has a role in the stimulation of glycolysis during ischemia, Curr. Biol., 10, 1247–1255.PubMedGoogle Scholar
  33. 33.
    Wu, S. B., and Wei, Y. H. (2012) AMPK-mediated increase of glycolysis as an adaptive response to oxidative stress in human cells: implication of the cell survival in mitochondrial diseases, Biochim. Biophys. Acta, 1822, 233–247.PubMedGoogle Scholar
  34. 34.
    Musi, N., Fujii, N., Hirshman, M. F., Ekberg, I., Froberg, S., Ljungqvist, O., Thorell, A., and Goodyear, L. J. (2001) AMP-activated protein kinase (AMPK) is activated in muscle of subjects with type 2 diabetes during exercise, Diabetes, 50, 921–927.PubMedGoogle Scholar
  35. 35.
    Johnson, L. N., Noble, M. E., and Owen, D. J. (1996) Active and inactive protein kinases: structural basis for regulation, Cell, 85, 149–158.PubMedGoogle Scholar
  36. 36.
    Suter, M., Riek, U., Tuerk, R., Schlattner, U., Wallimann, T., and Neumann, D. (2006) Dissecting the role of 5′-AMP for allosteric stimulation, activation, and deactivation of AMP-activated protein kinase, J. Biol. Chem., 281, 32207–32216.PubMedGoogle Scholar
  37. 37.
    Hardie, D. G., Ross, F. A., and Hawley, S. A. (2012) AMP-activated protein kinase: a target for drugs both ancient and modern, Chem. Biol., 19, 1222–1236.PubMedGoogle Scholar
  38. 38.
    Viollet, B., Horman, S., Leclerc, J., Lantier, L., Foretz, M., Billaud, M., Giri, S., and Andreelli, F. (2010) AMPK inhibition in health and disease, Crit. Rev. Biochem. Mol. Biol., 45, 276–295.PubMedCentralPubMedGoogle Scholar
  39. 39.
    Sanders, M. J., Grondin, P. O., Hegarty, B. D., Snowden, M. A., and Carling, D. (2007) Investigating the mechanism for AMP activation of the AMP-activated protein kinase cascade, Biochem. J., 403, 139–148.PubMedCentralPubMedGoogle Scholar
  40. 40.
    Chen, L., Wang, J., Zhang, Y. Y., Yan, S. F., Neumann, D., Schlattner, U., Wang, Z. X., and Wu, J. W. (2012) AMP-activated protein kinase undergoes nucleotide-dependent conformational changes, Nat. Struct. Mol. Biol., 19, 716–719.PubMedGoogle Scholar
  41. 41.
    Oakhill, J. S., Chen, Z. P., Scott, J. W., Steel, R., Castelli, L. A., Ling, N., Macaulay, S. L., and Kemp, B. E. (2010) β-Subunit myristoylation is the gatekeeper for initiating metabolic stress sensing by AMP-activated protein kinase, Proc. Natl. Acad. Sci. USA, 107, 19237–19241.PubMedCentralPubMedGoogle Scholar
  42. 42.
    Jin, X., Townley, R., and Shapiro, L. (2007) Structural insight into AMPK regulation: ADP comes into play, Structure, 15, 1285–1295.PubMedGoogle Scholar
  43. 43.
    Shaw, R. J., Kosmatka, M., Bardeesy, N., Hurley, R. L., Witters, L. A., DePinho, R. A., and Cantley, L. C. (2004) The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress, Proc. Natl. Acad. Sci. USA, 101, 3329–3335.PubMedCentralPubMedGoogle Scholar
  44. 44.
    Woods, A., Dickerson, K., Heath, R., Hong, S. P., Momcilovic, M., Johnstone, S. R., Carlson, M., and Carling, D. (2005) Ca2+/calmodulin-dependent protein kinase kinase-beta acts upstream of AMP-activated protein kinase in mammalian cells, Cell Metab., 2, 21–33.PubMedGoogle Scholar
  45. 45.
    Momcilovic, M., Hong, S. P., and Carlson, M. (2006) Mammalian TAK1 activates Snf1 protein kinase in yeast and phosphorylates AMP-activated protein kinase in vitro, J. Biol. Chem., 281, 25336–25343.PubMedGoogle Scholar
  46. 46.
    Woods, A., Johnstone, S. R., Dickerson, K., Leiper, F. C., Fryer, L. G., Neumann, D., Schlattner, U., Wallimann, T., Carlson, M., and Carling, D. (2003) LKB1 is the upstream kinase in the AMP-activated protein kinase cascade, Curr. Biol., 13, 2004–2008.PubMedGoogle Scholar
  47. 47.
    Baas, A. F., Boudeau, J., Sapkota, G. P., Smit, L., Medema, R., Morrice, N. A., Alessi, D. R., and Clevers, H. C. (2003) Activation of the tumor suppressor kinase LKB1 by the STE20-like pseudokinase STRAD, EMBO J., 22, 3062–3072.PubMedCentralPubMedGoogle Scholar
  48. 48.
    Boudeau, J., Baas, A. F., Deak, M., Morrice, N. A., Kieloch, A., Schutowski, M., Prescott, A. R., Clevers, H. C., and Alessi, D. R. (2003) MO25α/β interact with STRADα/β enhancing their ability to bind, activate and localize LKB1 in the cytoplasm, EMBO J., 22, 5102–5104.PubMedCentralPubMedGoogle Scholar
  49. 49.
    McInnes, K. J., Brown, K. A., Hunger, N. I., and Simpson, E. R. (2012) Regulation of LKB1 expression by sex hormones in adipocytes, Int. J. Obes. (Lond.), 36, 982–985.Google Scholar
  50. 50.
    Brown, K. A., McInnes, K. J., Takagi, K., Ono, K., Hunger, N. I., Wang, L., Sasano, H., and Simpson, E. R. (2011) LKB1 expression is inhibited by estradiol-17β in MCF-7 cells, J. Steroid Biochem. Mol. Biol., 127, 439–443.PubMedGoogle Scholar
  51. 51.
    Marignani, P. A. (2005) LKB1, the multitasking tumor suppressor kinase, J. Clin. Pathol., 58, 15–19.PubMedCentralPubMedGoogle Scholar
  52. 52.
    Ji, H., Ramsey, M. R., Hayes, D. N., Fan, C., McNamara, K., Kozlowski, P., Torrice, C., Wu, M. C., Shimamura, T., Perera, S. A., Liang, M. C., Cai, D., Naumov, G. N., Bao, L., Contreras, C. M., Li, D., Chen, L., Krishnamurthy, J., Koivunen, J., Chirieac, L. R., Padera, R. F., Bronson, R. T., Lindeman, N. I., Christiani, D. C., Lin, X., Shapiro, G. I., Janne, P. A., Johnson, B. E., Meyerson, M., Kwiatkowski, D. J., Castrillon, D. H., Bardeesy, N., Sharpless, N. E., and Wong, K. K. (2007) LKB1 modulates lung cancer differentiation and metastasis, Nature, 448, 807–810.PubMedGoogle Scholar
  53. 53.
    Lizcano, J. M., Goransson, O., Toth, R., Deak, M., Morrice, N. A., Boudeau, J., Hawley, S. A., Udd, L., Makela, T. P., Hardie, D. G., and Alessi, D. R. (2004) LKB1 is a master kinase that activates 13 protein kinases of the AMPK subfamily, including the MARK/PAR-1 kinases, EMBO J., 23, 833–843.PubMedCentralPubMedGoogle Scholar
  54. 54.
    Hawley, S. A., Boudeau, J., Reid, J. L., Mustard, K. J., Udd, L., Makela, T. P., Alessi, D. R., and Hardie, D. G. (2003) Complexes between the LKB1 tumor suppressor, STRADα/β and MO25α/β are upstream kinases in the AMP-activated protein kinase cascade, J. Biol., 2, 28.PubMedCentralPubMedGoogle Scholar
  55. 55.
    Hurley, R. L., Anderson, K. A., Franzone, J. M., Kemp, B. E., Means, A. R., and Witters, L. A. (2005) The Ca2+/calmodulin-dependent protein kinase kinases are AMP-activated protein kinase kinases, J. Biol. Chem., 280, 29060–29066.PubMedGoogle Scholar
  56. 56.
    Hawley, S. A., Pan, D. A., Mustard, K. J., Ross, L., Bain, J., Edelman, A. M., Frenguelli, B. G., and Hardie, D. G. (2005) Calmodulin-dependent protein kinase kinase-beta is an alternative upstream kinase for AMP-activated protein kinase, Cell. Metab., 2, 9–19.PubMedGoogle Scholar
  57. 57.
    Stahmann, N., Woods, A., Carling, D., and Heller, R. (2006) Thrombin activates AMP-activated protein kinase in endothelial cells via a pathway involving Ca2+/calmodulin-dependent protein kinase kinase b, Mol. Cell. Biol., 26, 5933–5945.PubMedCentralPubMedGoogle Scholar
  58. 58.
    Tamas, P., Hawley, S. A., Clarke, R. G., Mustard, K. J., Green, K., Hardie, D. G., and Cantrell, D. A. (2006) Regulation of the energy sensor AMP-activated protein kinase by antigen receptor and Ca2+ in T lymphocytes, J. Exp. Med., 203, 1665–1670.PubMedCentralPubMedGoogle Scholar
  59. 59.
    Xie, M., Zhang, D., Dyck, J. R., Li, Y., Zhang, H., Morishima, M., Mann, D. L., Taffet, G. E., Baldini, A., Khoury, D. S., and Schneider, M. D. (2006) A pivotal role for endogenous TGF-beta-activated kinase-1 in the LKB1/AMP-activated protein kinase energy-sensor pathway, Proc. Natl. Acad. Sci. USA, 103, 17378–17383.PubMedCentralPubMedGoogle Scholar
  60. 60.
    Chida, T., Ando, M., Matsuki, T., Masu, Y., Nagaura, Y., Takano-Yamamoto, T., Tamura, S., and Kobayashi, T. (2013) N-Myristoylation is essential for protein phosphatases PPM1A and PPM1B to dephosphorylate their physiological substrates in cells, Biochem. J., 449, 741–749.PubMedGoogle Scholar
  61. 61.
    Steinberg, G. R., and Kemp, B. E. (2009) AMPK in health and disease, Physiol. Rev., 89, 1025–1078.PubMedGoogle Scholar
  62. 62.
    Hurley, R. L., Barre, L. K., Wood, S. D., Anderson, K. A., Kemp, B. E., Means, A. R., and Witters, L. A. (2006) Regulation of AMP-activated protein kinase by multisite phosphorylation in response to agents that elevate cellular cAMP, J. Biol. Chem., 281, 36662–36672.PubMedGoogle Scholar
  63. 63.
    Lin, Y. Y., Kiihl, S., Suhail, Y., Liu, S. Y., Chou, Y. H., Kuang, Z., Lu, J. Y., Khor, C. N., Lin, C. L., Bader, J. S., Irizarry, R., and Boeke, J. D. (2012) Functional dissection of lysine deacetylases reveals that HDAC1 and p300 regulate AMPK, Nature, 482, 251–255.PubMedCentralPubMedGoogle Scholar
  64. 64.
    Kola, B., Boscaro, M., Rutter, G. A., Grossman, A. B., and Korbonits, M. (2006) Expanding role of AMPK in endocrinology, Trends Endocrinol. Metab., 17, 205–215.PubMedGoogle Scholar
  65. 65.
    Stark, R., Ashley, S. E., and Andrews, Z. B. (2013) AMPK and the neuroendocrine regulation of appetite and energy expenditure, Mol. Cell. Endocrinol., 366, 215–223.PubMedGoogle Scholar
  66. 66.
    Frosig, C., Pehmoller, C., Birk, J. B., Richter, E. A., and Wojtaszewski, J. F. (2010) Exercise-induced TBC1D1 Ser237 phosphorylation and 14-3-3 protein binding capacity in human skeletal muscle, J. Physiol., 588, 4539–4548.PubMedCentralPubMedGoogle Scholar
  67. 67.
    Barnes, K., Ingram, J. C., Porras, O. H., Barros, L. F., Hudson, E. R., Fryer, L. G., Foufelle, F., Carling, D., Hardie, D. G., and Baldwin, S. A. (2002) Activation of GLUT1 by metabolic and osmotic stress: potential involvement of AMP-activated protein kinase (AMPK), J. Cell. Sci., 115, 2433–2442.PubMedGoogle Scholar
  68. 68.
    McGee, S. L., van Denderen, B. J., Howlett, K. F., Mollica, J., Schertzer, J. D., Kemp, B. E., and Hargreaves, M. (2008) AMP-activated protein kinase regulates GLUT4 transcription by phosphorylating histone deacetylase 5, Diabetes, 57, 860–867.PubMedGoogle Scholar
  69. 69.
    Jorgensen, S. B., Nielsen, J. N., Birk, J. B., Olsen, G. S., Viollet, B., Andreelli, F., Schjerling, P., Vaulont, S., Hardie, D. G., Hansen, B. F., Richter, E. A., and Wojtaszewski, J. F. (2004) The alpha2-5′AMP-activated protein kinase is a site 2 glycogen synthase kinase in skeletal muscle and is responsive to glucose loading, Diabetes, 53, 3074–3081.PubMedGoogle Scholar
  70. 70.
    Marsin, A. S., Bouzin, C., Bertrand, L., and Hue, L. (2002) The stimulation of glycolysis by hypoxia in activated monocytes is mediated by AMP-activated protein kinase and inducible 6-phosphofructo-2-kinase, J. Biol. Chem., 277, 30778–30783.PubMedGoogle Scholar
  71. 71.
    Lochhead, P. A., Salt, I. P., Walker, K. S., Hardie, D. G., and Sutherland, C. (2000) 5-Aminoimidazole-4-carboxamide riboside mimics the effects of insulin on the expression of the 2 key gluconeogenic genes PEPCK and glucose-6-phosphatase, Diabetes, 49, 896–903.PubMedGoogle Scholar
  72. 72.
    Davies, S. P., Carling, D., Munday, M. R., and Hardie, D. G. (1992) Diurnal rhythm of phosphorylation of rat liver acetyl-CoA carboxylase by the AMP-activated protein kinase, demonstrated using freeze-clamping. Effects of high fat diets, Eur. J. Biochem., 203, 615–623.PubMedGoogle Scholar
  73. 73.
    Li, Y., Xu, S., Mihaylova, M. M., Zheng, B., Hou, X., Jiang, B., Park, O., Luo, Z., Lefai, E., Shyy, J. Y., Gao, B., Wierzbicki, M., Verbeuren, T. J., Shaw, R. J., Cohen, R. A., and Zang, M. (2011) AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice, Cell. Metab., 13, 376–388.PubMedCentralPubMedGoogle Scholar
  74. 74.
    Merrill, G. F., Kurth, E. J., Hardie, D. G., and Winder, W. W. (1997) AICA riboside increases AMP-activated protein kinase, fatty acid oxidation, and glucose uptake in rat muscle, Am. J. Physiol., 273, E1107–1112.PubMedGoogle Scholar
  75. 75.
    Habets, D. D., Coumans, W. A., El Hasnaoui, M., Zarrinpashneh, E., Bertrand, L., Viollet, B., Kiens, B., Jensen, T. E., Richter, E. A., Bonen, A., Glatz, J. F., and Luiken, J. J. (2009) Crucial role for LKB1 to AMPKalpha2 axis in the regulation of CD36-mediated long-chain fatty acid uptake into cardiomyocytes, Biochim. Biophys. Acta, 1791, 212–219.PubMedGoogle Scholar
  76. 76.
    Daval, M., Diot-Dupuy, F., Bazin, R., Hainault, I., Viollet, B., Vaulont, S., Hajduch, E., Ferre, P., and Foufelle, F. (2005) Anti-lipolytic action of AMP-activated protein kinase in rodent adipocytes, J. Biol. Chem., 280, 25250–25257.PubMedGoogle Scholar
  77. 77.
    Clarke, P. R., and Hardie, D. G. (1990) Regulation of HMG-CoA reductase: identification of the site phosphorylated by the AMP-activated protein kinase in vitro and in intact rat liver, EMBO J., 9, 2439–2446.PubMedCentralPubMedGoogle Scholar
  78. 78.
    Muoio, D. M., Seefeld, K., Witters, L. A., and Coleman, R. A. (1999) AMP-activated kinase reciprocally regulates triacylglycerol synthesis and fatty acid oxidation in liver and muscle: evidence that sn-glycerol-3-phosphate acyltransferase is a novel target, Biochem. J., 338, 783–791.PubMedCentralPubMedGoogle Scholar
  79. 79.
    Inoki, K., Zhu, T., and Guan, K. L. (2003) TSC2 mediates cellular energy response to control cell growth and survival, Cell, 115, 577–590.PubMedGoogle Scholar
  80. 80.
    Browne, G. J., Finn, S. G., and Proud, C. G. (2004) Stimulation of the AMP-activated protein kinase leads to activation of eukaryotic elongation factor 2 kinase and to its phosphorylation at a novel site, serine 398, J. Biol. Chem., 279, 12220–12231.PubMedGoogle Scholar
  81. 81.
    Jones, R. G., Plas, D. R., Kubek, S., Buzzai, M., Mu, J., Xu, Y., Birnbaum, M. J., and Thompson, C. B. (2005) AMP-activated protein kinase induces a p53-dependent metabolic checkpoint, Mol. Cell, 18, 283–293.PubMedGoogle Scholar
  82. 82.
    Liang, J., Shao, S. H., Xu, Z. X., Hennessy, B., Ding, Z., Larrea, M., Kondo, S., Dumont, D. J., Gutterman, J. U., Walker, C. L., Slingerland, J. M., and Mills, G. B. (2007) The energy sensing LKB1-AMPK pathway regulates p27(kip1) phosphorylation mediating the decision to enter autophagy or apoptosis, Nat. Cell. Biol., 9, 218–224.PubMedGoogle Scholar
  83. 83.
    Greer, E. L., Oskoui, P. R., Banko, M. R., Maniar, J. M., Gygi, M. P., Gygi, S. P., and Brunet, A. (2007) The energy sensor AMP-activated protein kinase directly regulates the mammalian FOXO3 transcription factor, J. Biol. Chem., 282, 30107–30119.PubMedGoogle Scholar
  84. 84.
    Procopio, C., Andreozzi, F., Laratta, E., Cassese, A., Beguinot, F., Arturi, F., Hribal, M. L., Perticone, F., and Sesti, G. (2009) Leptin-stimulated endothelial nitric-oxide synthase via an adenosine 5′-monophosphate-activated protein kinase/Akt signaling pathway is attenuated by interaction with C-reactive protein, Endocrinology, 150, 3584–3593.PubMedGoogle Scholar
  85. 85.
    Lin, J., Handschin, C., and Spiegelman, B. M. (2005) Metabolic control through the PGC-1 family of transcription coactivators, Cell. Metab., 1, 361–370.PubMedGoogle Scholar
  86. 86.
    Stapleton, D., Mitchelhill, K. I., Gao, G., Widmer, J., Michell, B. J., Teh, T., House, C. M., Fernandez, C. S., Cox, T., Witters, L. A., and Kemp, B. E. (1996) Mammalian AMP-activated protein kinase subfamily, J. Biol. Chem., 271, 611–614.PubMedGoogle Scholar
  87. 87.
    Kim, M., and Tian, R. (2011) Targeting AMPK for cardiac protection: opportunities and challenges, J. Mol. Cell. Cardiol., 51, 548–553.PubMedCentralPubMedGoogle Scholar
  88. 88.
    Zhou, G., Myers, R., Li, Y., Chen, Y., Shen, X., Fenyk-Melody, J., Wu, M., Ventre, J., Doebber, T., Fujii, N., Musi, N., Hirshman, M. F., Goodyear, L. J., and Moller, D. E. (2001) Role of AMP-activated protein kinase in mechanism of metformin action, J. Clin. Invest., 108, 1167–1174.PubMedCentralPubMedGoogle Scholar
  89. 89.
    Breen, D. M., Sanli, T., Giacca, A., and Tsiani, E. (2008) Stimulation of muscle cell glucose uptake by resveratrol through sirtuins and AMPK, Biochem. Biophys. Res. Commun., 374, 117–122.PubMedGoogle Scholar
  90. 90.
    Lee, Y. S., Kim, W. S., Kim, K. H., Yoon, M. J., Cho, H. J., Shen, Y., Ye, J. M., Lee, C. H., Oh, W. K., Kim, C. T., Hohnen-Behrens, C., Gosby, A., Kraegen, E. W., James, D. E., and Kim, J. B. (2006) Berberine, a natural plant product, activates AMP-activated protein kinase with beneficial metabolic effects in diabetic and insulin-resistant states, Diabetes, 55, 2256–2264.PubMedGoogle Scholar
  91. 91.
    Li, H. B., Ge, Y. K., Zheng, X. X., and Zhang, L. (2008) Salidroside stimulated glucose uptake in skeletal muscle cells by activating AMP-activated protein kinase, Eur. J. Pharmacol., 588, 165–169.PubMedGoogle Scholar
  92. 92.
    Gruzman, A., Shamni, O., Ben Yakir, M., Sandovski, D., Elgart, A., Alpert, E., Cohen, G., Hoffman, A., Katzhendler, Y., Cerasi, E., and Sasson, S. (2008) Novel D-xylose derivatives stimulate muscle glucose uptake by activating AMP-activated protein kinase alpha, J. Med. Chem., 51, 8096–8108.PubMedGoogle Scholar
  93. 93.
    Ahn, J., Lee, H., Kim, S., Park, J., and Ha, T. (2008) The anti-obesity effect of quercetin is mediated by the AMPK and MAPK signaling pathways, Biochem. Biophys. Res. Commun., 373, 545–549.PubMedGoogle Scholar
  94. 94.
    Hwang, J. T., Park, I. J., Shin, J. I., Lee, Y. K., Lee, S. K., Baik, H. W., Ha, J., and Park, O. J. (2005) Genistein, EGCG, and capsaicin inhibit adipocyte differentiation process via activating AMP-activated protein kinase, Biochem. Biophys. Res. Commun., 338, 694–699.PubMedGoogle Scholar
  95. 95.
    Kim, T., Davis, J., Zhang, A. J., He, X., and Mathews, S. T. (2009) Curcumin activates AMPK and suppresses gluconeogenic gene expression in hepatoma cells, Biochem. Biophys. Res. Commun., 388, 377–382.PubMedGoogle Scholar
  96. 96.
    Kulkarni, S. S., Karlsson, H. K., Szekeres, F., Chibalin, A. V., Krook, A., and Zierath, J. R. (2011) Suppression of 5′-nucleotidase enzymes promotes AMP-activated protein kinase (AMPK) phosphorylation and metabolism in human and mouse skeletal muscle, J. Biol. Chem., 286, 34567–34574.PubMedCentralPubMedGoogle Scholar
  97. 97.
    Hawley, S. A., Ross, F. A., Chevtzoff, C., Green, K. A., Evans, A., Fogarty, S., Towler, M. C., Brown, L. J., Ogunbayo, O. A., Evans, A. M., and Hardie, D. G. (2010) Use of cells expressing gamma subunit variants to identify diverse mechanisms of AMPK activation, Cell Metab., 11, 554–565.PubMedCentralPubMedGoogle Scholar
  98. 98.
    Gruzman, A., Babai, G., and Sasson, S. (2009) Adenosine monophosphate-activated protein kinase (AMPK) as a new target for antidiabetic drugs: a review on metabolic, pharmacological and chemical considerations, Rev. Diabet. Stud., 6, 13–36.PubMedCentralPubMedGoogle Scholar
  99. 99.
    Lehmann, J. M., Moore, L. B., Smith-Oliver, T. A., Wilkison, W. O., Willson, T. M., and Kliewer, S. A. (1995) An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor gamma (PPAR gamma), J. Biol. Chem., 270, 12953–12956.PubMedGoogle Scholar
  100. 100.
    Fryer, L. G., Parbu-Patel, A., and Carling, D. (2002) The anti-diabetic drugs rosiglitazone and metformin stimulate AMP-activated protein kinase through distinct signaling pathways, J. Biol. Chem., 277, 25226–25232.PubMedGoogle Scholar
  101. 101.
    Krentz, A. J., Bailey, C. J., and Melander, A. (2000) Thiazolidinediones for type 2 diabetes. New agents reduce insulin resistance but need long term clinical trials, BMJ, 321, 252–253.PubMedCentralPubMedGoogle Scholar
  102. 102.
    Corton, J. M., Gillespie, J. G., Hawley, S. A., and Hardie, D. G. (1995) 5-Aminoimidazole-4-carboxamide ribonucleoside. A specific method for activating AMP-activated protein kinase in intact cells, Eur. J. Biochem., 229, 558–565.PubMedGoogle Scholar
  103. 103.
    Lihn, A. S., Pedersen, S. B., Lund, S., and Richelsen, B. (2008) The anti-diabetic AMPK activator AICAR reduces IL-6 and IL-8 in human adipose tissue and skeletal muscle cells, Mol. Cell. Endocrinol., 292, 36–41.PubMedGoogle Scholar
  104. 104.
    Narkar, V. A., Downes, M., Yu, R. T., Embler, E., Wang, Y. X., Banayo, E., Mihaylova, M. M., Nelson, M. C., Zou, Y., Juguilon, H., Kang, H., Shaw, R. J., and Evans, R. M. (2008) AMPK and PPARdelta agonists are exercise mimetics, Cell, 134, 405–415.PubMedCentralPubMedGoogle Scholar
  105. 105.
    Guigas, B., Sakamoto, K., Taleux, N., Reyna, S. M., Musi, N., Viollet, B., and Hue, L. (2009) Beyond AICA riboside: in search of new specific AMP-activated protein kinase activators, IUBMB Life, 61, 18–26.PubMedCentralPubMedGoogle Scholar
  106. 106.
    Cool, B., Zinker, B., Chiou, W., Kifle, L., Cao, N., Perham, M., Dickinson, R., Adler, A., Gagne, G., Iyengar, R., Zhao, G., Marsh, K., Kym, P., Jung, P., Camp, H. S., and Frevert, E. (2006) Identification and characterization of a small molecule AMPK activator that treats key components of type 2 diabetes and the metabolic syndrome, Cell Metab., 3, 403–416.PubMedGoogle Scholar
  107. 107.
    Goransson, O., McBride, A., Hawley, S. A., Ross, F. A., Shpiro, N., Foretz, M., Viollet, B., Hardie, D. G., and Sakamoto, K. (2007) Mechanism of action of A-769662, a valuable tool for activation of AMP-activated protein kinase, J. Biol. Chem., 282, 32549–32560.PubMedCentralPubMedGoogle Scholar
  108. 108.
    Scott, J. W., van Denderen, B. J., Jorgensen, S. B., Honeyman, J. E., Steinberg, G. R., Oakhill, J. S., Iseli, T. J., Koay, A., Gooley, P. R., Stapleton, D., and Kemp, B. E. (2008) Thienopyridone drugs are selective activators of AMP-activated protein kinase beta1-containing complexes, Chem. Biol., 15, 1220–1230.PubMedGoogle Scholar
  109. 109.
    Mirguet, O., Sautet, S., Clement, C. A., Toum, J., Donche, F., Marques, C., Rondet, E., Pizzonero, M., Beaufils, B., Dudit, Y., Huet, P., Trottet, L., Grondin, P., Brusq, J. M., Boursier, E., Saintillan, Y., and Nicodeme, E. (2013) Discovery of pyridones as oral AMPK direct activators, ACS Med. Chem. Lett., 4, 632–636.PubMedCentralPubMedGoogle Scholar
  110. 110.
    Choi, J., He, N., Sung, M. K., Yang, Y., and Yoon, S. (2011) Sanguinarine is an allosteric activator of AMP-activated protein kinase, Biochem. Biophys. Res. Commun., 413, 259–263.PubMedGoogle Scholar
  111. 111.
    Scott, J. W., Ross, F. A., Liu, J. K., and Hardie, D. G. (2007) Regulation of AMP-activated protein kinase by a pseudosubstrate sequence on the gamma subunit, EMBO J., 26, 806–815.PubMedCentralPubMedGoogle Scholar
  112. 112.
    Pang, T., Xiong, B., Li, J. Y., Qiu, B. Y., Jin, G. Z., Shen, J. K., and Li, J. (2007) Conserved alpha-helix acts as autoinhibitory sequence in AMP-activated protein kinase alpha subunits, J. Biol. Chem., 282, 495–506.PubMedGoogle Scholar
  113. 113.
    Peng, C., and Head-Gordon, T. (2011) The dynamical mechanism of auto-inhibition of AMP-activated protein kinase, PLoS Comput. Biol., 7, e1002082.PubMedCentralPubMedGoogle Scholar
  114. 114.
    Xiao, B., Sanders, M. J., Carmena, D., Bright, N. J., Haire, L. F., Underwood, E., Patel, B. R., Heath, R. B., Walker, P. A., Hallen, S., Giordanetto, F., Martin, S. R., Carling, D., and Gamblin, S. J. (2013) Structural basis of AMPK regulation by small molecule activators, Nat. Commun., 4, 3017.PubMedCentralPubMedGoogle Scholar
  115. 115.
    Zhu, L., Chen, L., Zhou, X. M., Zhang, Y. Y., Zhang, Y. J., Zhao, J., Ji, S. R., Wu, J. W., and Wu, Y. (2011) Structural insights into the architecture and allostery of full-length AMP-activated protein kinase, Structure, 19, 515–522.PubMedGoogle Scholar
  116. 116.
    Pang, T., Zhang, Z. S., Gu, M., Qiu, B. Y., Yu, L. F., Cao, P. R., Shao, W., Su, M. B., Li, J. Y., Nan, F. J., and Li, J. (2008) Small molecule antagonizes autoinhibition and activates AMP-activated protein kinase in cells, J. Biol. Chem., 283, 16051–16060.PubMedCentralPubMedGoogle Scholar
  117. 117.
    Yu, L. F., Li, Y. Y., Su, M. B., Zhang, M., Zhang, W., Zhang, L. N., Pang, T., Zhang, R. T., Liu, B., Li, J. Y., Li, J., and Nan, F. J. (2013) Development of novel alkene oxindole derivatives as orally efficacious AMP-activated protein kinase activators, ACS Med. Chem. Lett., 4, 475–480.PubMedCentralPubMedGoogle Scholar
  118. 118.
    Meltzer-Mats, E., Babai-Shani, G., Pasternak, L., Uritsky, N., Getter, T., Viskind, O., Eckel, J., Cerasi, E., Senderowitz, H., Sasson, S., and Gruzman, A. (2013) Synthesis and mechanism of hypoglycemic activity of benzothiazole derivatives, J. Med. Chem., 56, 5335–5350.PubMedGoogle Scholar
  119. 119.
    Kelley, D. E., Goodpaster, B. H., and Storlien, L. (2002) Muscle triglyceride and insulin resistance, Annu. Rev. Nutr., 22, 325–346.PubMedGoogle Scholar
  120. 120.
    Lowell, B. B., and Shulman, G. I. (2005) Mitochondrial dysfunction and type 2 diabetes, Science, 307, 384–387.PubMedGoogle Scholar
  121. 121.
    Kraegen, E. W., Saha, A. K., Preston, E., Wilks, D., Hoy, A. J., Cooney, G. J., and Ruderman, N. B. (2006) Increased malonyl-CoA and diacylglycerol content and reduced AMPK activity accompany insulin resistance induced by glucose infusion in muscle and liver of rats, Am. J. Physiol. Endocrinol. Metab., 290, E471–479.PubMedGoogle Scholar
  122. 122.
    Lee, M. J., Feliers, D., Mariappan, M. M., Sataranatarajan, K., Mahimainathan, L., Musi, N., Foretz, M., Viollet, B., Weinberg, J. M., Choudhury, G. G., and Kasinath, B. S. (2007) A role for AMP-activated protein kinase in diabetes-induced renal hypertrophy, Am. J. Physiol. Endocrinol. Metab., 292, F617–627.Google Scholar
  123. 123.
    Russell, R. R., 3rd, Li, J., Coven, D. L., Pypaert, M., Zechner, C., Palmeri, M., Giordano, F. J., Mu, J., Birnbaum, M. J., and Young, L. H. (2004) AMP-activated protein kinase mediates ischemic glucose uptake and prevents postischemic cardiac dysfunction, apoptosis, and injury, J. Clin. Invest., 114, 495–503.PubMedCentralPubMedGoogle Scholar
  124. 124.
    Calvert, J. W., Gundewar, S., Jha, S., Greer, J. J., Bestermann, W. H., Tian, R., and Lefer, D. J. (2008) Acute metformin therapy confers cardioprotection against myocardial infarction via AMPK-eNOS-mediated signaling, Diabetes, 57, 696–705.PubMedGoogle Scholar
  125. 125.
    Kim, A. S., Miller, E. J., Wright, T. M., Li, J., Qi, D., Atsina, K., Zaha, V., Sakamoto, K., and Young, L. H. (2011) A small molecule AMPK activator protects the heart against ischemia-reperfusion injury, J. Mol. Cell. Cardiol., 51, 24–32.PubMedCentralPubMedGoogle Scholar
  126. 126.
    Chan, A. Y., Soltys, C. L., Young, M. E., Proud, C. G., and Dyck, J. R. (2004) Activation of AMP-activated protein kinase inhibits protein synthesis associated with hypertrophy in the cardiac myocyte, J. Biol. Chem., 279, 32771–32779.PubMedGoogle Scholar
  127. 127.
    Li, H. L., Yin, R., Chen, D., Liu, D., Wang, D., Yang, Q., and Dong, Y. G. (2007) Long-term activation of adenosine monophosphate-activated protein kinase attenuates pressure-overload-induced cardiac hypertrophy, J. Cell. Biochem., 100, 1086–1099.PubMedGoogle Scholar
  128. 128.
    Zhang, P., Hu, X., Xu, X., Fassett, J., Zhu, G., Viollet, B., Xu, W., Wiczer, B., Bernlohr, D. A., Bache, R. J., and Chen, Y. (2008) AMP activated protein kinase-alpha2 deficiency exacerbates pressure-overload-induced left ventricular hypertrophy and dysfunction in mice, Hypertension, 52, 918–924.PubMedCentralPubMedGoogle Scholar
  129. 129.
    Sasaki, H., Asanuma, H., Fujita, M., Takahama, H., Wakeno, M., Ito, S., Ogai, A., Asakura, M., Kim, J., Minamino, T., Takashima, S., Sanada, S., Sugimachi, M., Komamura, K., Mochizuki, N., and Kitakaze, M. (2009) Metformin prevents progression of heart failure in dogs: role of AMP-activated protein kinase, Circulation, 119, 2568–2577.PubMedGoogle Scholar
  130. 130.
    Aguilar, D., Chan, W., Bozkurt, B., Ramasubbu, K., and Deswal, A. (2011) Metformin use and mortality in ambulatory patients with diabetes and heart failure, Circ. Heart Fail., 4, 53–58.PubMedCentralPubMedGoogle Scholar
  131. 131.
    Gundewar, S., Calvert, J. W., Jha, S., Toedt-Pingel, I., Ji, S. Y., Nunez, D., Ramachandran, A., Anaya-Cisneros, M., Tian, R., and Lefer, D. J. (2009) Activation of AMP-activated protein kinase by metformin improves left ventricular function and survival in heart failure, Circ. Res., 104, 403–411.PubMedCentralPubMedGoogle Scholar
  132. 132.
    Ronnett, G. V., Ramamurthy, S., Kleman, A. M., Landree, L. E., and Aja, S. (2009) AMPK in the brain: its roles in energy balance and neuroprotection, J. Neurochem., 109, 17–23.PubMedCentralPubMedGoogle Scholar
  133. 133.
    McCullough, L. D., Zeng, Z., Li, H., Landree, L. E., McFadden, J., and Ronnett, G. V. (2005) Pharmacological inhibition of AMP-activated protein kinase provides neuroprotection in stroke, J. Biol. Chem., 280, 20493–20502.PubMedGoogle Scholar
  134. 134.
    Li, J., Zeng, Z., Viollet, B., Ronnett, G. V., and McCullough, L. D. (2007) Neuroprotective effects of adenosine monophosphate-activated protein kinase inhibition and gene deletion in stroke, Stroke, 38, 2992–2999.PubMedCentralPubMedGoogle Scholar
  135. 135.
    Li, J., Benashski, S. E., Venna, V. R., and McCullough, L. D. (2010) Effects of metformin in experimental stroke, Stroke, 41, 2645–2652.PubMedCentralPubMedGoogle Scholar
  136. 136.
    Ashabi, G., Khodagholi, F., Khalaj, L., Goudarzvand, M., and Nasiri, M. (2014) Activation of AMP-activated protein kinase by metformin protects against global cerebral ischemia in male rats: interference of AMPK/PGC-1α pathway, Metab. Brain Dis., 29, 47–58.PubMedGoogle Scholar
  137. 137.
    Venna, V. R., Li, J., Hammond, M. D., Mancini, N. S., and McCullough, L. D. (2014) Chronic metformin treatment improves post-stroke angiogenesis and recovery after experimental stroke, Eur. J. Neurosci., 39, 2129–2138.PubMedGoogle Scholar
  138. 138.
    Tomkins, A. M., Jones, R., and Bloom, A. (1972) Lactic acidosis occurring during phenformin therapy, Postgrad. Med. J., 48, 386–387.PubMedCentralPubMedGoogle Scholar
  139. 139.
    Owen, M. R., Doran, E., and Halestrap, A. P. (2000) Evidence that metformin exerts its anti-diabetic effects through inhibition of complex I of the mitochondrial respiratory chain, Biochem. J., 348, 607–614.PubMedCentralPubMedGoogle Scholar
  140. 140.
    El-Mir, M. Y., Nogueira, V., Fontaine, E., Averet, N., Rigoulet, M., and Leverve, X. (2000) Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I, J. Biol. Chem., 275, 223–228.PubMedGoogle Scholar
  141. 141.
    Zhang, Y., Wang, Y., Bao, C., Xu, Y., Shen, H., Chen, J., Yan, J., and Chen, Y. (2012) Metformin interacts with AMPK through binding to γ subunit, Mol. Cell. Biochem., 368, 69–76.PubMedGoogle Scholar
  142. 142.
    Foretz, M., Hebrard, S., Leclerc, J., Zarrinpashneh, E., Soty, M., Mithieux, G., Sakamoto, K., Andreelli, F., and Viollet, B. (2010) Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state, J. Clin. Invest., 120, 2355–2369.PubMedCentralPubMedGoogle Scholar
  143. 143.
    Miller, R. A., Chu, Q., Xie, J., Foretz, M., Viollet, B., and Birnbaum, M. J. (2013) Biguanides suppress hepatic glucagon signaling by decreasing production of cyclic AMP, Nature, 494, 256–260.PubMedCentralPubMedGoogle Scholar
  144. 144.
    Evans, J. M., Donnelly, L. A., Emslie-Smith, A. M., Alessi, D. R., and Morris, A. D. (2005) Metformin and reduced risk of cancer in diabetic patients, BMJ, 330, 1304–1305.PubMedCentralPubMedGoogle Scholar
  145. 145.
    Currie, C. J., Poole, C. D., and Gale, E. A. (2009) The influence of glucose-lowering therapies on cancer risk in type 2 diabetes, Diabetologia, 52, 1766–1777.PubMedGoogle Scholar
  146. 146.
    Giovannucci, E., Harlan, D. M., Archer, M. C., Bergenstal, R. M., Gapstur, S. M., Habel, L. A., Pollak, M., Regensteiner, J. G., and Yee, D. (2010) Diabetes and cancer: a consensus report, Diabetes Care, 33, 1674–1685.PubMedCentralPubMedGoogle Scholar
  147. 147.
    Wahdan-Alaswad, R., Fan, Z., Edgerton, S. M., Liu, B., Deng, X. S., Arnadottir, S. S., Richer, J. K., Anderson, S. M., and Thor, A. D. (2013) Glucose promotes breast cancer aggression and reduces metformin efficacy, Cell Cycle, 12, 3759–3769.PubMedCentralPubMedGoogle Scholar
  148. 148.
    Hardie, D. G. (2013) AMPK: a target for drugs and natural products with effects on both diabetes and cancer, Diabetes, 62, 2164–2172.PubMedCentralPubMedGoogle Scholar
  149. 149.
    Hardie, D. G., and Alessi, D. R. (2013) LKB1 and AMPK and the cancer-metabolism linkten years after, BMC Biol., 11, 36.PubMedCentralPubMedGoogle Scholar
  150. 150.
    Faubert, B., Boily, G., Izreig, S., Griss, T., Samborska, B., Dong, Z., Dupuy, F., Chambers, C., Fuerth, B. J., Viollet, B., Mamer, O. A., Avizonis, D., DeBerardinis, R. J., Siegel, P. M., and Jones, R. G. (2013) AMPK is a negative regulator of the Warburg effect and suppresses tumor growth in vivo, Cell Metab., 17, 113–124.PubMedCentralPubMedGoogle Scholar
  151. 151.
    Hsu, C. C., Wang, C. H., Wu, L. C., Hsia, C. Y., Chi, C. W., Yin, P. H., Chang, C. J., Sung, M. T., Wei, Y. H., Lu, S. H., and Lee, H. C. (2013) Mitochondrial dysfunction represses HIF-1α protein synthesis through AMPK activation in human hepatoma HepG2 cells, Biochim. Biophys. Acta, 1830, 4743–4751.PubMedGoogle Scholar
  152. 152.
    Vander Heiden, M. G., Cantley, L. C., and Thompson, C. B. (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation, Science, 324, 1029–1033.Google Scholar
  153. 153.
    Li, J., Benashski, S. E., Siegel, C., Liu, F., and McCullough, L. D. (2010) Adenosine monophosphate activated protein kinase inhibition is protective in both sexes after experimental stroke, Neurosci. Lett., 482, 62–65.PubMedCentralPubMedGoogle Scholar
  154. 154.
    Vingtdeux, V., Davies, P., Dickson, D. W., and Marambaud, P. (2011) AMPK is abnormally activated in tangle- and pre-tangle-bearing neurons in Alzheimer’s disease and other tauopathies, Acta Neuropathol., 121, 337–349.PubMedCentralPubMedGoogle Scholar
  155. 155.
    Kim, T. W., Cho, H. M., Choi, S. Y., Suguira, Y., Hayasaka, T., Setou, M., Koh, H. C., Hwang, E. M., Park, J. Y., Kang, S. J., Kim, H. S., Kim, H., and Sun, W. (2013) (ADP-ribose) polymerase 1 and AMP-activated protein kinase mediate progressive dopaminergic neuronal degeneration in a mouse model of Parkinson’s disease, Cell Death Dis., 4, e919.PubMedCentralPubMedGoogle Scholar
  156. 156.
    Jiang, P., Gan, M., Ebrahim, A. S., Castanedes-Casey, M., Dickson, D. W., and Yen, S. H. (2013) Adenosine monophosphate-activated protein kinase overactivation leads to accumulation of α-synuclein oligomers and decrease of neurites, Neurobiol. Aging, 34, 1504–1515.PubMedCentralPubMedGoogle Scholar
  157. 157.
    Fryer, L. G., Parbu-Patel, A., and Carling, D. (2002) Protein kinase inhibitors block the stimulation of the AMP-activated protein kinase by 5-amino-4-imidazolecarboxamide riboside, FEBS Lett., 531, 189–192.PubMedGoogle Scholar
  158. 158.
    Labuzek, K., Liber, S., Gabryel, B., Buldak, L., and Okopien, B. (2010) Ambivalent effects of compound C (dorsomorphin) on inflammatory response in LPS-stimulated rat primary microglial cultures, Naunyn-Schmiedeberg’s Arch. Pharmacol., 381, 41–57.Google Scholar
  159. 159.
    Bain, J., Plater, L., Elliott, M., Shpiro, N., Hastie, C. J., McLauchlan, H., Klevernic, I., Arthur, J. S., Alessi, D. R., and Cohen, P. (2007) The selectivity of protein kinase inhibitors: a further update, Biochem. J., 408, 297–315.PubMedCentralPubMedGoogle Scholar
  160. 160.
    Handa, N., Takagi, T., Saijo, S., Kishishita, S., Takaya, D., Toyama, M., Terada, T., Shirouzu, M., Suzuki, A., Lee, S., Yamauchi, T., Okada-Iwabu, M., Iwabu, M., Kadowaki, T., Minokoshi, Y., and Yokoyama, S. (2011) Structural basis for compound C inhibition of the human AMP-activated protein kinase α2 subunit kinase domain, Acta Crystallogr. D Biol. Crystallogr., 67, 480–487.PubMedGoogle Scholar
  161. 161.
    Massillon, D., Stalmans, W., van de Werve, G., and Bollen, M. (1994) Identification of the glycogenic compound 5-iodotubercidin as a general protein kinase inhibitor, Biochem. J., 299, 123–128.PubMedCentralPubMedGoogle Scholar
  162. 162.
    Henin, N., Vincent, M. F., and Van den Berghe, G. (1996) Stimulation of rat liver AMP-activated protein kinase by AMP analogues, Biochim. Biophys. Acta, 1290, 197–203.PubMedGoogle Scholar
  163. 163.
    Musi, N., Hayashi, T., Fujii, N., Hirshman, M. F., Witters, L. A., and Goodyear, L. J. (2001) AMP-activated protein kinase activity and glucose uptake in rat skeletal muscle, Am. J. Physiol. Endocrinol. Metab., 280, E677–684.PubMedGoogle Scholar
  164. 164.
    Kerkela, R., Woulfe, K. C., Durand, J. B., Vagnozzi, R., Kramer, D., Chu, T. F., Beahm, C., Chen, M. H., and Force, T. (2009) Sunitinib-induced cardiotoxicity is mediated by off-target inhibition of AMP-activated protein kinase, Clin. Transl. Sci., 2, 15–25.PubMedCentralPubMedGoogle Scholar
  165. 165.
    Laderoute, K. R., Calaoagan, J. M., Madrid, P. B., Klon, A. E., and Ehrlich, P. J. (2010) SU11248 (sunitinib) directly inhibits the activity of mammalian 5′-AMP-activated protein kinase (AMPK), Cancer Biol. Ther., 10, 68–76.PubMedCentralPubMedGoogle Scholar
  166. 166.
    Gan, H. K., Seruga, B., and Knox, J. J. (2009) Sunitinib in solid tumors, Expert. Opin. Investig. Drugs, 18, 821–834.PubMedGoogle Scholar
  167. 167.
    Machrouhi, F., Ouhamou, N., Laderoute, K., Calaoagan, J., Bukhtiyarova, M., Ehrlich, P. J., and Klona, A. E. (2010) The rational design of a novel potent analogue of the 5′-AMP-activated protein kinase inhibitor compound C with improved selectivity and cellular activity, Bioorg. Med. Chem. Lett., 20, 6394–6399.PubMedCentralPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • D. S. Novikova
    • 1
    Email author
  • A. V. Garabadzhiu
    • 1
  • G. Melino
    • 1
  • N. A. Barlev
    • 1
  • V. G. Tribulovich
    • 1
  1. 1.Saint Petersburg State Technological InstituteTechnical UniversitySt. PetersburgRussia

Personalised recommendations