Biochemistry (Moscow)

, Volume 80, Issue 1, pp 61–66 | Cite as

Effect of trehalose on oxygen evolution and electron transfer in photosystem 2 complexes

  • M. D. MamedovEmail author
  • I. O. Petrova
  • D. V. Yanykin
  • A. A. Zaspa
  • A. Yu. Semenov


The pigment-protein complex of photosystem 2 (PS 2) catalyzes the light-driven oxidation of water molecule and the reduction of plastoquinone. In this work, we studied the effect of the disaccharide trehalose, which is unique in its physicochemical properties, on isolated PS 2 complex. It was found that trehalose significantly stimulated the steady-state rate of oxygen evolution. The study of single flash-induced fluorescence decay kinetics demonstrated that trehalose did not affect the rate of Q A oxidation, although it led to an increase in the relative fractions of PS 2 reaction centers capable of Q A oxidation. Trehalose also prevented PS 2 complexes from being inactivated on prolonged storage. We propose that in the presence of trehalose, which affects the extent of hydration, the protein can preferentially exist in a more optimal conformation for effective functioning.

Key words

photosystem 2 water-oxidizing complex oxygen evolution trehalose chlorophyll fluorescence plastoquinone oxidation 







primary electron donor

PS 2

photosystem 2

QA and QB

primary and secondary quinone acceptors


reaction center


water-oxidizing complex


redox-active tyrosine 161 of D1 protein


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Goussias, C., Boussac, A., and Rutherford, A. W. (2002) Photosystem II and photosynthetic oxidation of water: an overview, Philos. Trans. R. Soc. London, Ser. B, 357, 1369–1381.PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Wydrzynski, T. J., and Satoh K. (2005) in Photosystem II: The Light-Driven Water:Plastoquinone Oxidoreductase, Springer, New York.CrossRefGoogle Scholar
  3. 3.
    Kok, B., Forbush, B., and McGloin, M. (1970) Cooperation of charges in photosynthetic O2 evolution. I. A linear four-step mechanism, Photochem. Photobiol., 11, 467–475.CrossRefGoogle Scholar
  4. 4.
    Shinkarev, V. P. (2004) in Photosystem II: Oxygen Evolution and Chlorophyll a Fluorescence Induced by Multiple Flashes (Papageorgiou, G. C., ed.) Kluwer Academic Publishers, Dordrecht, pp. 197–229.Google Scholar
  5. 5.
    Renger, G., and Kuhn, P. (2007) Reaction pattern and mechanism of light induced oxidative water splitting in photosynthesis, Biochim. Biophys. Acta, 1767, 458–471.PubMedCrossRefGoogle Scholar
  6. 6.
    Dau, H., and Haumann, M. (2007) Eight steps preceding O-O bond formation in oxygenic photosynthesis — a basic reaction cycle of the photosystem II manganese complex, Biochim. Biophys. Acta, 1767, 472–483.PubMedCrossRefGoogle Scholar
  7. 7.
    Barber, J. (2008) Photosynthetic generation of oxygen, Trans. R. Soc. B, 363, 2665–2674.CrossRefGoogle Scholar
  8. 8.
    Crowe, J. H., Crowe, L. M., and Jackson, S. A. (1983) Preservation of structural and functional activity in lyophilized sarcoplasmic reticulum, Arch. Biochem. Biophys., 220, 477–484.PubMedCrossRefGoogle Scholar
  9. 9.
    Sun, W. Q., and Davidson, P. (1998) Protein inactivation in amorphous sucrose and trehalose matrices: effects of phase separation and crystallization, Biochim. Biophys. Acta, 1425, 235–244.PubMedCrossRefGoogle Scholar
  10. 10.
    Francia, F., Dezi, M., Mallardi, A., Palazzo, G., Cordone, L., and Venturoli, G. (2008) Protein-matrix coupling/uncoupling in “dry” systems of photosynthetic reaction center embedded in trehalose/sucrose: the origin of trehalose peculiarity, J. Am. Chem. Soc., 130, 10240–10246.PubMedCrossRefGoogle Scholar
  11. 11.
    Jain, N. K., and Roy, I. (2009) Effect of trehalose on protein structure, Protein Sci., 18, 24–36.PubMedCentralPubMedGoogle Scholar
  12. 12.
    Allakhverdiev, S. I., Los, D. A., Mohanty, P., Nishiyama, Y., and Murata, N. (2007) Glycinebetaine alleviates the inhibitory effect of moderate heat stress on the repair of photosystem II during photoinhibition, Biochim. Biophys. Acta, 1767, 1363–1371.PubMedCrossRefGoogle Scholar
  13. 13.
    Chen, T. H., and Murata, N. (2011) Glycinebetaine protects plants against abiotic stress: mechanisms and biotechnological applications, Plant Cell Environ., 34, 1–20.PubMedCrossRefGoogle Scholar
  14. 14.
    Fernandez, O., Bethencourt, L., Quero, A., Sangwan, R. S., and Clement, C. (2010) Trehalose and plant stress responses: friend or foe? Trend Plant Sci., 15, 409–417.CrossRefGoogle Scholar
  15. 15.
    Ohtake, S., and Wang, Y. J. (2011) Trehalose: current use and future applications, J. Pharm. Sci., 100, 2020–2053.PubMedCrossRefGoogle Scholar
  16. 16.
    Jun, S.-S., Choi, H. J., Lee, H. Y., and Hong, Y-N. (2008) Altered physiology in trehalose-producing transgenic tobacco plants: enhanced tolerance to drought and salinity stresses, J. Plant Biol., 51, 327–336.CrossRefGoogle Scholar
  17. 17.
    Garg, A. K., Kim, J.-K., Owens, T. G., Ranwala, A. P., Choi, Y. D., Kochian, L. V., and Ray, J. Wu. (2002) Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses, Proc. Natl. Acad. Sci. USA, 99, 15898–15903.PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Hincha, D. K., Hofner, R., Schwab, K. B., Heber, U., and Schmitt, J. M. (1987) Membrane rupture is the common cause of damage to chloroplast membranes in leaves injured by freezing or excessive wilting, Plant Physiol., 83, 251–253.PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Apostolova, E., Bushova, M., and Tenchov, B. (2005) in Research Photosynthesis (Murata, N., ed.) Vol. IV, Kluwer Academic Publishers, pp. 165–168.Google Scholar
  20. 20.
    Francia, E., Malferrari, M., Sacquin-Mora, S., and Venturoli, G. (2009) Charge recombination kinetics and protein dynamics in wild type and carotenoid-less bacterial reaction centers: studies in trehalose glasses, J. Phys. Chem., 113, 10389–10398.CrossRefGoogle Scholar
  21. 21.
    Haag, E., Irrgang, K. D., Boekema, E. J., and Renger, G. (1990) Functional and structural analysis of photosystem II core complexes from spinach with high oxygen evolution capacity, Eur. J. Biochem., 189, 47–53.PubMedCrossRefGoogle Scholar
  22. 22.
    Ford, R. C., and Evans, M. C. W. (1983) Isolation of a photosystem 2 preparation from higher plants with highly enriched oxygen evolution activity, FEBS Lett., 160, 159–164.CrossRefGoogle Scholar
  23. 23.
    Lerbret, A., Bordat, P., Affouard, F., Descamps, M., and Migliardo, F. (2005) How homogeneous are the trehalose, maltose, and sucrose water solutions? An insight from molecular dynamics simulations, J. Phys. Chem. B, 109, 11046–11057.PubMedCrossRefGoogle Scholar
  24. 24.
    Govindjee (1995) Sixty-three years since Kautsky: chlorophyll a fluorescence, Aust. J. Plant Physiol., 22, 131–160.CrossRefGoogle Scholar
  25. 25.
    Pospisil, P., and Dau, H. (2000) Chlorophyll fluorescence transients of photosystem II membrane particles as a tool for studying photosynthetic oxygen evolution, Photosynth. Res., 65, 41–52.PubMedCrossRefGoogle Scholar
  26. 26.
    Bukhov, N. G., Egorova, E. A., Govindacharya, S., and Carpentier, R. (2004) Changes in polyphasic chlorophyll a fluorescence induction curve upon inhibition of donor or acceptor side of photosystem II in isolated thylakoids, Biochim. Biophys. Acta, 1657, 121–130.PubMedCrossRefGoogle Scholar
  27. 27.
    Zhu X-G., Govindjee Baker N. R., deSturler E., Ort D. R., and Long S. P. (2005) Chlorophyll a fluorescence induction kinetics in leaves predicted from a model describing each discrete step of excitation energy and electron transfer associated with photosystem II, Planta, 223, 114–133.PubMedCrossRefGoogle Scholar
  28. 28.
    Petrova, I. O., Kurashov, V. N., Semenov, A. Yu., and Mamedov, M. D. (2011) Manganese-depleted/reconstituted photosystem II core complexes in solution and liposomes, J. Photochem. Photobiol. B: Biol., 104, 372–376.CrossRefGoogle Scholar
  29. 29.
    Krieger, A., Rutherford, A. W., and Johnson, G. N. (1995) On the determination of redox midpoint potential of the primary quinone electron acceptor, QA, in photosystem II, Biochim. Biophys. Acta, 1229, 193–201.CrossRefGoogle Scholar
  30. 30.
    Allakhverdiev, S. I., Hayashi, H., Nishiyama, Y., Ivanov, A. G., Aliev, J. A., Klimov, V. V., Murata, N., and Carpentier, R. (2003) Glycinebetaine protects the D1/D2/Cyt b559 complex of photosystem II against photo-induced and heat-induced inactivation, J. Plant Physiol., 160, 41–49.PubMedCrossRefGoogle Scholar
  31. 31.
    Bowes, J. M., and Crofts, A. R. (1980) Binary oscillations in the rate of reoxidation of the primary acceptor of photo-system II, Biochim. Biophys. Acta, 590, 373–384.PubMedCrossRefGoogle Scholar
  32. 32.
    Eaton-Rye, J. J., and Govindjee (1988) Electron-transfer through the quinone acceptor complex of photosystem II after one or two actinic flashes in bicarbonate-depleted spinach thylakoid membranes, Biochim. Biophys. Acta, 935, 248–257.CrossRefGoogle Scholar
  33. 33.
    De Wijn, R., and van Gorkom, H. J. (2001) Kinetics of electron transfer from Q(a) to Q(b) in photosystem II, Biochemistry, 40, 11912–11922.PubMedCrossRefGoogle Scholar
  34. 34.
    Rova M., Mamedov F., Magnuson A., Fredriksson P.-O., and Styring S. (1998) Coupled activation of the donor and the acceptor side of photosystem II during photoactivation of the oxygen evolving cluster, Biochemistry, 37, 11039–11045.PubMedCrossRefGoogle Scholar
  35. 35.
    Halverson, K. M., and Barry, B. A. (2003) Sucrose and glycerol effects on photosystem II, Biophys. J., 85, 1317–1325.PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Sigfridsson, K. G. V., Bernat, G., Mamedov, F., and Styring, S. (2004) Molecular interference of Cd(2+) with photosystem II, Biochim. Biophys. Acta, 1659, 19–31.PubMedCrossRefGoogle Scholar
  37. 37.
    Roose J. L., Frankel L. K., and Bricker T. M. (2010) Documentation of significant electron transport defects on the reducing side of photosystem II upon removal of the PsbP and PsbQ extrinsic proteins, Biochemistry, 49, 36–41.PubMedCrossRefGoogle Scholar
  38. 38.
    Muh, F., Glockner, C., Hellmich, J., and Zouni, A. (2012) Light-induced quinone reduction in photosystem II, Biochim. Biophys. Acta, 1817, 44–65.PubMedCrossRefGoogle Scholar
  39. 39.
    Renger, G. (1999) in Concepts in Photobiology: Photosynthesis and Photomorphogenesis, Molecular Mechanism of Water Oxidation (Singhal, G. S., Renger, G., Govindjee, Irrgang, K.-D., and Sopory, S. K., eds.) Kluwer Academic Publishers, Dordrecht, Narosa Publishing Co., Delhi, pp. 292–329.Google Scholar
  40. 40.
    Rappaport F., Guergova-Kuras M., Nixon P. J., Diner B. A., and Lavergne J. (2002) Kinetics and pathways of charge recombination in photosystem II, Biochemistry, 41, 8518–8527.PubMedCrossRefGoogle Scholar
  41. 41.
    Mamedov, F., Rintamaki, E., Aro, E.-M., Andersons, B., and Styring, S. (2002) Influence of protein phosphorylation on the electron-transport properties of photosystem II, Photosynth. Res., 74, 61–72.PubMedCrossRefGoogle Scholar
  42. 42.
    Malferrari, M., Francia, F., and Venturoli, G. (2011) Coupling between electron transfer and protein-solvent dynamics: FTIR and laser-flash spectroscopy studies in photosynthetic reaction center films at different hydration levels, J. Phys. Chem., 115, 14732–14750.CrossRefGoogle Scholar
  43. 43.
    Polander, P. C., and Barry, B. A. (2012) A hydrogen-bonding network plays a catalytic role in photosynthetic oxygen evolution, Proc. Natl. Acad. Sci. USA, 109, 6112–6117.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • M. D. Mamedov
    • 1
    • 2
    Email author
  • I. O. Petrova
    • 1
  • D. V. Yanykin
    • 2
  • A. A. Zaspa
    • 1
  • A. Yu. Semenov
    • 1
    • 3
  1. 1.Belozersky Institute of Physical-Chemical BiologyLomonosov Moscow State UniversityMoscowRussia
  2. 2.Institute of Basic Biological ProblemsRussian Academy of SciencesPushchino, Moscow RegionRussia
  3. 3.Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations