Advertisement

Biochemistry (Moscow)

, Volume 80, Issue 1, pp 31–44 | Cite as

Role of loop L5-6 connecting transmembrane segments M5 and M6 in biogenesis and functioning of yeast Pma1 H+-ATPase

  • V. V. PetrovEmail author
Article

Abstract

The L5-6 loop is a short extracytoplasmic stretch (714-DNSLDID) connecting transmembrane segments M5 and M6 and forming along with segments M4 and M8 the core through which cations are transported by H+-, Ca2+-, K+,Na+-, H+,K+-, and other P2-ATPases. To study structure-function relationships within this loop of the yeast plasma membrane Pma1 H+-ATPase, alanine- and cysteine-scanning mutagenesis has been employed. Ala and Cys substitutions for the most conserved residue (Leu717) led to complete block in biogenesis preventing the enzyme from reaching secretory vesicles. The Ala replacement at Asp714 led to five-fold decrease in the mutant expression and loss of its activity, while the Cys substitution blocked biogenesis completely. Replacements of other residues did not lead to loss of enzymatic activity. Additional replacements were made for Asp714 and Asp720 (Asp→Asn/Glu). Of the substitutions made at Asp714, only D714N partially restored the mutant enzyme biogenesis and functioning. However, all mutant enzymes with substituted Asp720 were active. The expressed mutants (34–95% of the wild-type level) showed activity high enough (35–108%) to be analyzed in detail. One of the mutants (I719A) had three-fold reduced coupling ratio between ATP hydrolysis and H+ transport; however, the I719C mutation was rather indistinguishable from the wild-type enzyme. Thus, substitutions at two of the seven positions seriously affected biogenesis and/or functioning of the enzyme. Taken together, these results suggest that the M5–M6 loop residues play an important role in protein stability and function, and they are probably responsible for proper arrangement of transmembrane segments M5 and M6 and other domains of the enzyme. This might also be important for the regulation of the enzyme.

Key words

yeast plasma membrane secretory vesicles biogenesis Pma1 H+-ATPase H+ transport site-directed mutagenesis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Serrano R., Kielland-Brandt M. C., and Fink G. R. (1986) Yeast plasma membrane ATPase is essential for growth and has homology with (Na+,K+)K+- and Ca2+-ATPases, Nature, 319, 689–693.PubMedCrossRefGoogle Scholar
  2. 2.
    Lutsenko S., and Kaplan J. H. (1995) Organization of P-type ATPases: significance of structural diversity, Biochemistry, 34, 15607–15613.PubMedCrossRefGoogle Scholar
  3. 3.
    Axelsen, K. B., and Palmgren, M. G. (1998) Evolution of substrate specificities in the P-type ATPase superfamily, J. Mol. Evol., 46, 84–101.PubMedCrossRefGoogle Scholar
  4. 4.
    Toyosima, C., Nakasako, M., Nomura, H., and Ogawa, H. (2000) Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 resolution, Nature, 405, 647–655.CrossRefGoogle Scholar
  5. 5.
    Toyosima C., and Nomura H. (2002) Structural changes in the calcium pump accompanying the dissociation of calcium, Nature, 418, 605–611.CrossRefGoogle Scholar
  6. 6.
    Goffeau, A., and Slayman, C. W. (1981) The protontranslocating ATPase of the fungal plasma membrane, Biochim. Biophys. Acta, 639, 197–223.PubMedCrossRefGoogle Scholar
  7. 7.
    Warnke, J., and Slayman, C. L. (1980) Metabolic modulation of stoichiometry in a proton pump, Biochim. Biophys. Acta, 591, 224–233.CrossRefGoogle Scholar
  8. 8.
    Petrov, V. V., Padmanabha, K. P., Nakamoto, R. K., Allen, K. E., and Slayman, C. W. (2000) Functional role of charged residues in the transmembrane segments of the yeast plasma membrane H+-ATPase, J. Biol. Chem., 275, 15709–15716.PubMedCrossRefGoogle Scholar
  9. 9.
    Guerra, G., Petrov, V. V., Allen, K. E., Miranda, M., Pardo, J. P., and Slayman, C. W. (2007) Role of transmembrane segment M8 in the biogenesis and function of yeast plasma-membrane H+-ATPase, Biochim. Biophys. Acta, 1768, 2383–2392.PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Appel H. J. (2004) How do P-type ATPases transport ions? Bioelectrochemistry, 63, 149–156.CrossRefGoogle Scholar
  11. 11.
    Morth J. P., Pedersen B. P., Toustrup-Jensen M. S., Sorensen T. L., Petersen J., Andersen J. P., Vilsen B., and Nissen P. (2007) Crystal structure of the sodium-potassium pump, Nature, 450, 1043–1049.PubMedCrossRefGoogle Scholar
  12. 12.
    Shinoda, T., Ogawa, H., Cornelius, F., and Toyosima, C. (2009) Crystal structure of the sodium-potassium pump at 2.4 resolution, Nature, 459, 446–450.PubMedCrossRefGoogle Scholar
  13. 13.
    Auer M., Scarborough G. A., and Kuhlbrandt W. (1998) Three-dimensional map of the plasma membrane H+-ATPase in the open conformation, Nature, 392, 840–843.PubMedCrossRefGoogle Scholar
  14. 14.
    Pedersen B. P., Buch-Pedersen M., Morth J. J. P., Palmgren M. G., and Nissen P. (2007) Crystal structure of the plasma membrane proton pump, Nature, 450, 1111–1114.PubMedCrossRefGoogle Scholar
  15. 15.
    Andersen, J. P., and Vilsen, B. (1994) Amino acids Asn796 and Thr799 of the Ca2+-ATPase of sarcoplasmic reticulum bind Ca2+ at different sites, J. Biol. Chem., 269, 15931–15936.PubMedGoogle Scholar
  16. 16.
    Rice, W. J., and MacLennan, D. H. (1996) Scanning mutagenesis reveals a similar pattern of mutation sensitivity in transmembrane sequences M4, M5, and M6, but not in M8, of the Ca2+-ATPase of sarcoplasmic reticulum (SERCA1a), J. Biol. Chem., 271, 31412–31419.PubMedCrossRefGoogle Scholar
  17. 17.
    Zhang Z., Lewis D., Strock C., Inesi G., Nakasako M., Nomura H., and Toyoshima C. (2000) Detailed characterization of the cooperative mechanism of Ca2+ binding and catalytic activation in the Ca2+ transport (SERCA) ATPase, Biochemistry, 39, 8758–8767.PubMedCrossRefGoogle Scholar
  18. 18.
    Vilsen B., and Andersen J. P. (1998) Mutation to the glutamate in the fourth membrane segment of Na+,K+-ATPase and Ca2+-ATPase affects cation binding from both sides of the membrane and destabilizes the occluded enzyme forms, Biochemistry, 37, 10961–10971.PubMedCrossRefGoogle Scholar
  19. 19.
    Jewell-Motz, E. A., and Lingrel, J. B. (1993) Site-directed mutagenesis of the Na,K-ATPase: consequences of substitutions of negatively-charged amino acids localized in the transmembrane domains, Biochemistry, 32, 13523–13530.PubMedCrossRefGoogle Scholar
  20. 20.
    Kuntzweiler, T. A., Arguello, J. M., and Lingrel, J. B. (1996) Asp804 and Asp808 in the transmembrane domain of the Na,K-ATPase α subunit are cation coordinating residues, J. Biol. Chem., 271, 29682–29687.PubMedCrossRefGoogle Scholar
  21. 21.
    Nielsen J. M., Pedersen P. A., Karlish S. J. D., and Jorgensen P. L. (1998) Importance of intramembrane carboxylic acids for occlusion of K+ ions at equilibrium in renal Na,K-ATPase, Biochemistry, 37, 1961–1968.PubMedCrossRefGoogle Scholar
  22. 22.
    Ambesi, A., Pan, R. L., and Slayman, C. W. (1996) Alanine-scanning mutagenesis along membrane segment 4 of the yeast plasma membrane H+-ATPase. Effects on structure and function, J. Biol. Chem., 271, 22999–23005.PubMedCrossRefGoogle Scholar
  23. 23.
    Dutra, M. B., Ambesi, A., and Slayman, C. W. (1998) Structure-function relationships in membrane segment 5 of the yeast Pma1 H+-ATPase, J. Biol. Chem., 273, 17411–17417.PubMedCrossRefGoogle Scholar
  24. 24.
    Miranda-Arango, M., Pardo, J. P., and Petrov, V. V. (2009) Role of transmembrane segment M6 in the biogenesis and function of the yeast Pma1 H+-ATPase, J. Biomol. Struct. Dyn., 26, 866–868.Google Scholar
  25. 25.
    Miranda, M., Pardo, J. P., and Petrov, V. V. (2011) Structure-function relationships in membrane segment 6 of the yeast plasma membrane Pma1 H+-ATPase, Biochim. Biophys. Acta, 1808, 1781–1789.PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Petrov, V. V. (2009) Heat shock affects functioning of the yeast Pma1 H+-ATPase, J. Biomol. Struct. Dyn., 26, 857–858.Google Scholar
  27. 27.
    Petrov V. V. (2010) Point mutations in Pma1 H+-ATPase of Saccharomyces cerevisiae: influence on its expression and activity, Biochemistry (Moscow), 75, 1055–1063.CrossRefGoogle Scholar
  28. 28.
    Wei, Y., Chen, J., Rosas, G., Tompkins, D. A., Holt, P. A., and Rao, R. (2000) Phenotypic screening of mutations in Pmr1, the yeast secretory pathway Ca2+/Mn2+-ATPase, reveals residues critical for ion selectivity and transport, J. Biol. Chem., 275, 23927–23932.PubMedCrossRefGoogle Scholar
  29. 29.
    Mandal, D., Woolf, T. B., and Rao, R. (2000) Manganese selectivity of pmr1, the yeast secretory pathway ion pump, is defined by residue Gln783 in transmembrane segment 6. Residue Asp778 is essential for cation transport, J. Biol. Chem., 275, 23933–23938.PubMedCrossRefGoogle Scholar
  30. 30.
    MacLennan, D. H., Rice, W. J., and Green, N. M. (1997) The mechanism of Ca2+ transport by sarco(endo)plasmic reticulum Ca2+-ATPases, J. Biol. Chem., 272, 28815–28818.PubMedCrossRefGoogle Scholar
  31. 31.
    Morsomme, P., Slayman, C. W., and Goffeau, A. (2000) Mutagenic study of the structure, function and biogenesis of the yeast plasma membrane H+-ATPase, Biochim. Biophys. Acta, 1469, 133–157.PubMedCrossRefGoogle Scholar
  32. 32.
    Jorgensen, P. L., Hakansson, K. O., and Karlish, S. J. (2003) Structure and mechanism of Na,K-ATPase: functional sites and their interactions, Annu. Rev. Physiol., 65, 817–849.PubMedCrossRefGoogle Scholar
  33. 33.
    Capendeguy, O., and Horisberger, J.-D. (2005) The role of the third extracellular loop of the Na+,K+-ATPase α-subunit in a luminal gating mechanism, J. Physiol., 565, 207–218.PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Capendeguy, O., Chodanovski, P., Michielin, O., and Horisberger, J.-D. (2006) Access of extracellular cations to their binding sites in Na,K-ATPase: role of the second extracellular loop of the α-subunit, J. Gen. Physiol., 127, 341–352.PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Capendeguy, O., Iwaszkiewicz, J., Michielin, O., and Horisberger, J.-D. (2008) The fourth extracellular loop of the α-subunit of Na,K-ATPase: functional evidence for close proximity with the second extracellular loop, J. Biol. Chem., 283, 27850–27858.PubMedCrossRefGoogle Scholar
  36. 36.
    Munson, K. B., Gutierrez, C., Balaji, V. N., Ramnarayan, K., and Sachs, G. (1991) Identification of an extracytoplasmic region of H+,K+-ATPase labeled by a K+-competitive photoaffinity inhibitor, J. Biol. Chem., 266, 18976–18988.PubMedGoogle Scholar
  37. 37.
    Besancon, M., Simon, A., Sachs, G., and Shin, J. M. (1997) Sites of reaction of the gastric H,K-ATPase with extracytoplasmic thiol reagents, J. Biol. Chem., 272, 22438–22446.PubMedCrossRefGoogle Scholar
  38. 38.
    Seto-Young, D., Na, S., Monk, B. C., Haber, J. E., and Perlin, D. S. (1994) Mutational analysis of the first extra-cellular loop region of the H+-ATPase from Saccharomyces cerevisiae, J. Biol. Chem., 269, 23988–23995.PubMedGoogle Scholar
  39. 39.
    Lutsenko, S., Anderko, R., and Kaplan, J. H. (1995) Membrane disposition of the M5–M6 hairpin of Na+,K+-ATPase alpha subunit is ligand dependent, Proc. Natl. Acad. Sci. USA, 92, 7936–7940.PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Gatto, C., Lutsenko, S., Shin, J. M., Sachs, G., and Kaplan, J. H. (1999) Stabilization of the H,K-ATPase M5M6 membrane hairpin by K+ ions. Mechanistic significance for P2-type ATPases, J. Biol. Chem., 274, 13737–13740.PubMedCrossRefGoogle Scholar
  41. 41.
    Mikhailova L., Mandal A. K., and Arguello J. M. (2002) Catalytic phosphorylation of Na,K-ATPase drives the outward movement of its cation-binding H5–H6 hairpin, Biochemistry, 41, 8195–8202.PubMedCrossRefGoogle Scholar
  42. 42.
    Nakamoto, R. K., Rao, R., and Slayman, C. W. (1991) Expression of the yeast plasma membrane H+-ATPase in secretory vesicles. A new strategy for directed mutagenesis, J. Biol. Chem., 266, 7940–7949.PubMedGoogle Scholar
  43. 43.
    Petrov, V. V., and Slayman, C. W. (1995) Site-directed mutagenesis of the yeast PMA1 H+-ATPase. Structural and functional role of cysteine residues, J. Biol. Chem., 270, 28535–28540.PubMedCrossRefGoogle Scholar
  44. 44.
    Petrov V. V. (2009). Functioning of Saccharomyces cerevisiae Pma1 H+-ATPase carrying the minimal number of cysteine residues, Biochemistry (Moscow), 74, 1155–1163.CrossRefGoogle Scholar
  45. 45.
    Hager, K. M., Mandala, S. M., Davenport, J. W., Speicher, D. W., Benz, E. J., Jr., and Slayman, C. W. (1986) Amino acid sequence of the plasma membrane ATPase of Neurospora crassa: deduction from genomic and cDNA sequences, Proc. Natl. Acad. Sci. USA, 83, 7693–7697.PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Nakamoto, R. K., Verjovski-Almeida, S., Allen, K. E., Ambesi, A., Rao, R., and Slayman, C. W. (1998) Substitutions of aspartate 378 in the phosphorylation domain of the yeast PMA1 H+-ATPase disrupt protein folding and biogenesis, J. Biol. Chem., 273, 7338–7344.PubMedCrossRefGoogle Scholar
  47. 47.
    Fabiato, A., and Fabiato, F. (1979) Calculator programs for computing the composition of the solutions containing multiple metals and ligands used for experiments in skinned muscle cells, J. Physiol. (Paris), 75, 463–505.Google Scholar
  48. 48.
    Fiske, C. H., and Subbarow, Y. (1925) The colorimetric determination of phosphorus, J. Biol. Chem., 66, 375–400.Google Scholar
  49. 49.
    Bensadoun, A., and Weinstein, D. (1976) Assay of proteins in the presence of interfering materials, Anal. Biochem., 70, 241–250.PubMedCrossRefGoogle Scholar
  50. 50.
    Kyte, J., and Doolittle, R. F. (1982) A simple method for displaying the hydropathic character of a protein, J. Mol. Biol., 157, 105–132.PubMedCrossRefGoogle Scholar
  51. 51.
    Serrano, R. (1988) Structure and function of proton translocating ATPase in plasma membranes of plants and fungi, Biochim. Biophys. Acta, 947, 1–28.PubMedCrossRefGoogle Scholar
  52. 52.
    Ambesi, A., Miranda, M., Petrov, V. V., and Slayman, C. W. (2000) Biogenesis and function of the yeast plasma-membrane H+-ATPase, J. Exp. Biol., 203, 156–160.Google Scholar
  53. 53.
    Ferreira, T., Mason, A. B., Pypaert, M., Allen, K. E., and Slayman, C. W. (2002) Quality control in the yeast secretory pathway: a misfolded PMA1 H+-ATPase reveals two checkpoints, J. Biol. Chem., 277, 21027–21040.PubMedCrossRefGoogle Scholar
  54. 54.
    Mason, A. B., Allen, K. E., and Slayman, C. W. (2014) C-terminal truncations of the Saccharomyces cerevisiae PMA1 H+-ATPase have major impacts on protein trafficking, quality control, and function, Eukaryot. Cell, 13, 43–52.PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Petrov, V. V., Pardo, J. P., and Slayman, C. W. (1997) Reactive cysteines of the yeast plasma membrane H+-ATPase (PMA1): mapping the sites of inactivation by N-ethylmaleimide, J. Biol. Chem., 277, 1688–1693.CrossRefGoogle Scholar
  56. 56.
    Petrov, V. V. (2012) Cysteine residues of the yeast Pma1 H+-ATPase: structural and functional role, in Cysteine: Biosynthesis, Chemical Structure and Toxicity (Chorkina, F. V., and Karataev, A. I., eds.) Nova Science Publishers, Hauppauge, N.Y., pp. 31–60.Google Scholar
  57. 57.
    Supply, P., Wach, A., and Goffeau, A. (1993) Enzymatic properties of the PMA2 plasma membrane-bound H+-ATPase of Saccharomyces cerevisiae, J. Biol. Chem., 268, 19753–19759.PubMedGoogle Scholar
  58. 58.
    Petrov, V. V. (1987) Investigation of Ion and Metabolite Transport into Yeast Saccharomyces carlsbergensis Plasma Membrane Vesicles: Ph. D. Thesis [in Russian], Pushchino.Google Scholar
  59. 59.
    Morrison, K. L., and Weiss, G. A. (2001) Combinatorial alanine-scanning, Curr. Opin. Chem. Biol., 5, 302–307.PubMedCrossRefGoogle Scholar
  60. 60.
    Mittal, A., Jayaram, B., Shenoy, S., and Bawa, T. S. (2010) A stoichiometry driven universal spatial organization of backbones of folded proteins: are there Chargaff’s rules for protein folding? J. Biomol. Struct. Dyn., 28, 133–142.PubMedCrossRefGoogle Scholar
  61. 61.
    Mittal, A., and Jayaram, B. (2011) Backbones of folded proteins reveal novel invariant amino acid neighborhoods, J. Biomol. Struct. Dyn., 28, 443–454.PubMedCrossRefGoogle Scholar
  62. 62.
    Serrano, R. (1983) In vivo glucose activation of the yeast plasma membrane ATPase, FEBS Lett., 156, 11–14.PubMedCrossRefGoogle Scholar
  63. 63.
    Sychrova, H., and Kotyk, A. (1985) Condition of activation of the yeast plasma membrane ATPase, FEBS Lett., 183, 21–24.PubMedCrossRefGoogle Scholar
  64. 64.
    Okorokov, L. A., and Petrov, V. V. (1986) Isolation of plasma membrane vesicles from the yeast Saccharomyces carlsbergensis suitable for solute transport studies, Biol. Membr. (Moscow), 3, 549–556.Google Scholar
  65. 65.
    Tomashevsky, A. A., and Petrov, V. V. (2011) Point mutation in M9-M10 loop of the yeast Pma1 H+-ATPase affects both ATPase functioning and polyphosphate (PolyP) distribution, J. Biomol. Struct. Dyn., 28, 1025–1026.Google Scholar
  66. 66.
    Tomashevski, A. A., and Petrov, V. V. (2013) Point mutations in the yeast Pma1 H+-ATPase affect polyphosphate (PolyP) distribution, J. Biomol. Struct. Dyn., 31, 123–124.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.Skryabin Institute of Biochemistry and Physiology of MicroorganismsRussian Academy of SciencesPushchinoRussia

Personalised recommendations