Biochemistry (Moscow)

, Volume 79, Issue 13, pp 1635–1652 | Cite as

Human herpes simplex virus: Life cycle and development of inhibitors

  • M. K. Kukhanova
  • A. N. KorovinaEmail author
  • S. N. Kochetkov


WHO reports that 90% of human population is infected by different types of herpesviruses, which develop latency or cause oral and genital herpes, conjunctivitis, eczema herpeticum, and other diseases. Herpesvirus almost always accompanies HIV-infection and complicates AIDS treatment. Herpes simplex virus type 1 is one of the most wide spread viruses from the Herpesviridae family. HSV virion, genome structure, replication mechanisms, antiherpes drug development strategies, including design of prodrugs, and mutations causing ACV-resistance in clinical HSV isolates are discussed in this review.

Key words

HSV herpes simplex life cycle replication drugs mutations resistance 





adenine arabinoside


(E)-5-(2-bromovinyl)-2′-deoxyuridine (brivudin)




DNA-dependent activator of interferon regulatory factor




host cell factor 1

HHV-6A, 6B, 7, 8

human herpes virus


human immunodeficiency virus


acyclovir H-phosphonate


herpes simplex virus-1


γ-interferon-inducible protein


interferon regulatory factor 3


latency associated transcript


nuclear domain 10




phosphonoformic acid




ribonucleotide reductase


varicella zoster virus


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bello-Morales, R., Crespillo, A. J., Fraile-Ramos, A., Tabares, E., Alcina, A., and Lopez-Guerrero, J. A. (2012) Role of the small GTPase Rab27a during herpes simplex virus infection of oligodendrocytic cells, BMC Microbiol., 12, 265.PubMedCentralPubMedGoogle Scholar
  2. 2.
    Schuppe, H. C., Meinhardt, A., Allam, J. P., Bergmann, M., Weidner, W., and Haidl, G. (2008) Chronic orchitis: a neglected cause of male infertility? Andrologia, 40, 84–91.PubMedGoogle Scholar
  3. 3.
    Cardone, G., Heymann, J. B., Cheng, N., Trus, B. L., and Steven, A. C. (2012) Procapsid assembly, maturation, nuclear exit: dynamic steps in the production of infectious herpes virions, Adv. Exp. Med. Biol., 726, 423–439.PubMedCentralPubMedGoogle Scholar
  4. 4.
    Raab-Traub, N. (2012) Novel mechanisms of EBV-induced oncogenesis, Curr. Opin. Virol., 2, 453–458.PubMedGoogle Scholar
  5. 5.
    Mesri, E. A., Cesarman, E., and Boshoff, C. (2010) Kaposi’s sarcoma and its associated herpes virus, Nature Rev. Cancer, 10, 707–719.Google Scholar
  6. 6.
    Webre, J. M., Hill, J. M., Nolan, N. M., Clement, C., McFerrin, H. E., Bhattacharjee, P. S., Hsia, V., Neumann, D. M., Foster, T. P., Lukiw, W. J., and Thompson, H. W. (2012) Rabbit and mouse models of HSV-1 latency, reactivation, and recurrent eye diseases, J. Biomed. Biotechnol., 2012, 612316.PubMedCentralPubMedGoogle Scholar
  7. 7.
    Grinde, B. (2013) Herpes viruses: latency and reactivation — viral strategies and host response, J. Oral Microbiol., 5, 22766; 10.3402/jom.v5i0.22766.Google Scholar
  8. 8.
    Mocarski, E. S., and Roizman, B. (1982) Structure and role of the herpes simplex virus DNA termini in inversion, circularization and generation of virion DNA, Cell, 31, 89–97.PubMedGoogle Scholar
  9. 9.
    Grunewald, K., Desai, P., Winkler, D. C., Heymann, J. B., Belnap, D. M., Baumeister, W., and Steven, A. C. (2003) Three-dimensional structure of herpes simplex virus from cryoelectron tomography, Science, 302, 1396–1398.PubMedGoogle Scholar
  10. 10.
    Yudovin-Farber, I., Gurt, I., Hope, R., Domb, A. J., and Katz, E. (2009) Inhibition of herpes simplex virus by polyamines, Antiviral Chem. Chemother., 20, 87–98.Google Scholar
  11. 11.
    Radtke, K., Kieneke, D., Wolfstein, A., Michael, K., Steffen, W., Scholz, T., Karger, A., and Sodeik, B. (2010) Plus-and-minus-end directed microtubule motors bind simultaneously to herpes simplex virus capsids using different inner tegument structures, PLoS Pathog., 6, e1000991.PubMedCentralPubMedGoogle Scholar
  12. 12.
    Jovasevic, V., Liang, L., and Roizman, B. (2008) Proteolytic cleavage of VP1-2 is required for release of herpes simplex virus 1 DNA into the nucleus, J. Virol., 82, 3311–3319.PubMedCentralPubMedGoogle Scholar
  13. 13.
    Ace, C. I., McKee, T. A., Ryan, J. M., Cameron, J. M., and Preston, C. M. (1989) Construction and characterization of a herpes simplex virus type 1 mutant unable to transinduce immediate-early gene expression, J. Virol., 63, 2260–2269.PubMedCentralPubMedGoogle Scholar
  14. 14.
    Barzilai, A., Zivony-Elbom, I., Sarid, R., Noah, E., and Frenkel, N. (2006) The herpes simplex virus type 1 vhs-UL41 gene secures viral replication by temporarily evading apoptotic cellular response to infection: Vhs-UL41 activity might require interactions with elements of cellular mRNA degradation machinery, J. Virol., 80, 505–513.PubMedCentralPubMedGoogle Scholar
  15. 15.
    Gibson, W., and Roizman, B. (1972) Proteins specified by herpes simplex virus. 8. Characterization and composition of multiple capsid forms of subtypes 1 and 2, J. Virol., 10, 1044–1052.PubMedCentralPubMedGoogle Scholar
  16. 16.
    Sheaffer, A. K., Newcomb, W. W., Gao, M., Yu, D., Weller, S. K., Brown, J. C., and Tenney, D. J. (2001) Herpes simplex virus DNA cleavage and packaging proteins associate with the procapsid prior to its maturation, J. Virol., 75, 687–698.PubMedCentralPubMedGoogle Scholar
  17. 17.
    Brown, J. C., and Newcomb, W. W. (2011) Herpes virus capsid assembly: insights from structural analysis, Curr. Opin. Virol., 1, 142–149.PubMedCentralPubMedGoogle Scholar
  18. 18.
    Chowdhury, S., Chouljenko, V. N., Nadheri, M., and Kousoulas, K. G. (2013) The amino terminus of herpes simplex virus type-1 (HSV-1) glycoprotein K (gK) is required for virion entry via the paired immunoglobulin-like type-2 receptor alpha (PILRalpha), J. Virol., 87, 3305–3313.PubMedCentralPubMedGoogle Scholar
  19. 19.
    Kieff, E. D., Bachenheimer, S. L., and Roizman, B. (1971) Size, composition, and structure of the deoxyribonucleic acid of herpes simplex virus subtypes 1 and 2, J. Virol., 8, 125–132.PubMedCentralPubMedGoogle Scholar
  20. 20.
    Jenkins, F. J., and Roizman, B. (1986) Herpes simplex virus 1 recombinants with non-inverting genomes frozen in different isomeric arrangements are capable of independent replication, J. Virol., 59, 494–499.PubMedCentralPubMedGoogle Scholar
  21. 21.
    Roizman, B., Zhou, G., and Du, T. (2011) Checkpoints in productive and latent infections with herpes simplex virus 1: conceptualization of the issues, J. Neurovirol., 17, 512–517.PubMedGoogle Scholar
  22. 22.
    Jurak, I., Kramer, M. F., Mellor, J. C., van Lint, A. L., Roth, F. P., Knipe, D. M., and Coen, D. M. (2010) Numerous conserved and divergent microRNAs expressed by herpes simplex viruses 1 and 2, J. Virol., 84, 4659–4672.PubMedCentralPubMedGoogle Scholar
  23. 23.
    Honess, R. W., and Roizman, B. (1974) Regulation of herpes virus macromolecular synthesis. I. Cascade regulation of the synthesis of three groups of viral proteins, J. Virol., 14, 8–19.PubMedCentralPubMedGoogle Scholar
  24. 24.
    Chou, J., and Roizman, B. (1986) The terminal a sequence of the herpes simplex virus genome contains the promoter of a gene located in the repeat sequences of the L component, J. Virol., 57, 629–637.PubMedCentralPubMedGoogle Scholar
  25. 25.
    Arii, J., Uema, M., Morimoto, T., Sagara, H., Akashi, H., Ono, E., Arase, H., and Kawaguchi, Y. (2009) Entry of herpes simplex virus 1 and other alpha-herpes viruses via the paired immunoglobulin-like type 2 receptor alpha, J. Virol., 83, 4520–4527.PubMedCentralPubMedGoogle Scholar
  26. 26.
    Herold, B. C., Visalli, R. J., Susmarski, N., Brandt, C. R., and Spear, P. G. (1994) Glycoprotein C-independent binding of herpes simplex virus to cells requires cell surface heparan sulfate and glycoprotein B, J. Gen. Virol., 75, 1211–1222.PubMedGoogle Scholar
  27. 27.
    Gianni, T., Amasio, M., and Campadelli-Fiume, G. (2009) Herpes simplex virus gD forms distinct complexes with fusion executors gB and gH/gL in part through the C-terminal profusion domain, J. Biol. Chem., 284, 17370–17382.PubMedCentralPubMedGoogle Scholar
  28. 28.
    Avitabile, E., Forghieri, C., and Campadelli-Fiume, G. (2009) Cross talk among the glycoproteins involved in herpes simplex virus entry and fusion: the interaction between gB and gH/gL does not necessarily require gD, J. Virol., 83, 10752–10760.PubMedCentralPubMedGoogle Scholar
  29. 29.
    Baldwin, J., Shukla, D., and Tiwari, V. (2013) Members of 3-O-sulfotransferases (3-OST) family: a valuable tool from zebrafish to humans for understanding herpes simplex virus entry, Open Virol. J., 7, 5–11.PubMedCentralPubMedGoogle Scholar
  30. 30.
    Zhou, G., Galvan, V., Campadelli-Fiume, G., and Roizman, B. (2000) Glycoprotein D or J delivered in trans blocks apoptosis in SK-N-SH cells induced by a herpes simplex virus 1 mutant lacking intact genes expressing both glycoproteins, J. Virol., 74, 11782–11791.PubMedCentralPubMedGoogle Scholar
  31. 31.
    Satoh, T., Arii, J., Suenaga, T., Wang, J., Kogure, A., Uehori, J., Arase, N., Shiratori, I., Tanaka, S., Kawaguchi, Y., Spear, P. G., Lanier, L. L., and Arase, H. (2008) PILRalpha is a herpes simplex virus-1 entry coreceptor that associates with glycoprotein B, Cell, 132, 935–944.PubMedCentralPubMedGoogle Scholar
  32. 32.
    Sodeik, B., Ebersold, M. W., and Helenius, A. (1997) Microtubule-mediated transport of incoming herpes simplex virus 1 capsids to the nucleus, J. Cell Biol., 136, 1007–1021.PubMedCentralPubMedGoogle Scholar
  33. 33.
    Ojala, P. M., Sodeik, B., Ebersold, M. W., Kutay, U., and Helenius, A. (2000) Herpes simplex virus type 1 entry into host cells: reconstitution of capsid binding and uncoating at the nuclear pore complex in vitro, Mol. Cell. Biol., 20, 4922–4931.PubMedCentralPubMedGoogle Scholar
  34. 34.
    Abaitua, F., and O’Hare, P. (2008) Identification of a highly conserved, functional nuclear localization signal within the N-terminal region of herpes simplex virus type 1 VP1-2 tegument protein, J. Virol., 82, 5234–5244.PubMedCentralPubMedGoogle Scholar
  35. 35.
    Copeland, A. M., Newcomb, W. W., and Brown, J. C. (2009) Herpes simplex virus replication: roles of viral proteins and nucleoporins in capsid-nucleus attachment, J. Virol., 83, 1660–1668.PubMedCentralPubMedGoogle Scholar
  36. 36.
    Calle, A., Ugrinova, I., Epstein, A. L., Bouvet, P., Diaz, J. J., and Greco, A. (2008) Nucleolin is required for an efficient herpes simplex virus type 1 infection, J. Virol., 82, 4762–4773.PubMedCentralPubMedGoogle Scholar
  37. 37.
    Everett, R. D., Freemont, P., Saitoh, H., Dasso, M., Orr, A., Kathoria, M., and Parkinson, J. (1998) The disruption of ND10 during herpes simplex virus infection correlates with the Vmw110- and proteasome-dependent loss of several PML isoforms, J. Virol., 72, 6581–6591.PubMedCentralPubMedGoogle Scholar
  38. 38.
    Simpson-Holley, M., Colgrove, R. C., Nalepa, G., Harper, J. W., and Knipe, D. M. (2005) Identification and functional evaluation of cellular and viral factors involved in the alteration of nuclear architecture during herpes simplex virus 1 infection, J. Virol., 79, 12840–12851.PubMedCentralPubMedGoogle Scholar
  39. 39.
    Jenkins, H. L., and Spencer, C. A. (2001) RNA polymerase II holoenzyme modifications accompany transcription reprogramming in herpes simplex virus type 1-infected cells, J. Virol., 75, 9872–9884.PubMedCentralPubMedGoogle Scholar
  40. 40.
    Hardy, W. R., and Sandri-Goldin, R. M. (1994) Herpes simplex virus inhibits host cell splicing, and regulatory protein ICP27 is required for this effect, J. Virol., 68, 7790–7799.PubMedCentralPubMedGoogle Scholar
  41. 41.
    Matis, J., and Kudelova, M. (2001) Early shutoff of host protein synthesis in cells infected with herpes simplex viruses, Acta Virol., 45, 269–277.PubMedGoogle Scholar
  42. 42.
    Neumann, L., Kraas, W., Uebel, S., Jung, G., and Tampe, R. (1997) The active domain of the herpes simplex virus protein ICP47: a potent inhibitor of the transporter associated with antigen processing, J. Mol. Biol., 272, 484–492.PubMedGoogle Scholar
  43. 43.
    Mackem, S., and Roizman, B. (1982) Structural features of the herpes simplex virus alpha gene 4, 0, and 27 promoter-regulatory sequences which confer alpha regulation on chimeric thymidine kinase genes, J. Virol., 44, 939–949.PubMedCentralPubMedGoogle Scholar
  44. 44.
    Herrera, F. J., and Triezenberg, S. J. (2004) VP16-dependent association of chromatin-modifying coactivators and underrepresentation of histones at immediate-early gene promoters during herpes simplex virus infection, J. Virol., 78, 9689–9696.PubMedCentralPubMedGoogle Scholar
  45. 45.
    Orzalli, M. H., DeLuca, N. A., and Knipe, D. M. (2012) Nuclear IFI16 induction of IRF-3 signaling during herpesviral infection and degradation of IFI16 by the viral ICP0 protein, Proc. Natl. Acad. Sci. USA, 109, E3008–3017.Google Scholar
  46. 46.
    Boutell, C., and Everett, R. D. (2012) Regulation of alphaherpes virus infections by the ICP0 family of proteins, J. Gen. Virol., 94, 465–481.PubMedGoogle Scholar
  47. 47.
    Takaoka, A., Wang, Z., Choi, M. K., Yanai, H., Negishi, H., Ban, T., Lu, Y., Miyagishi, M., Kodama, T., Honda, K., Ohba, Y., and Taniguchi, T. (2007) DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response, Nature, 448, 501–505.PubMedGoogle Scholar
  48. 48.
    Pham, T. H., Kwon, K. M., Kim, Y. E., Kim, K. K., and Ahn, J. H. (2013) DNA sensing-independent inhibition of herpes simplex virus type-1 replication by DAI/ZBP1, J. Virol., 87, 3076–3086.PubMedCentralPubMedGoogle Scholar
  49. 49.
    Guo, L., Wu, W. J., Liu, L. D., Wang, L. C., Zhang, Y., Wu, L. Q., Guan, Y., and Li, Q. H. (2012) Herpes simplex virus 1 ICP22 inhibits the transcription of viral gene promoters by binding to and blocking the recruitment of P-TEFb, PloS one, 7, e45749.PubMedCentralPubMedGoogle Scholar
  50. 50.
    Yager, D. R., and Marcy, A. I. (1990) Translation regulation of herpes simplex virus DNA polymerase, J. Virol., 64, 2217–2225.PubMedCentralPubMedGoogle Scholar
  51. 51.
    Skaliter, R., and Lehman, I. R. (1994) Rolling circle DNA replication in vitro by a complex of herpes simplex virus type 1-encoded enzymes, Proc. Natl. Acad. Sci. USA, 91, 10665–10669.PubMedCentralPubMedGoogle Scholar
  52. 52.
    Zuccola, H. J., Filman, D. J., Coen, D. M., and Hogle, J. M. (2000) The crystal structure of an unusual processivity factor, herpes simplex virus UL42, bound to the C terminus of its cognate polymerase, Mol. Cell, 5, 267–278.PubMedGoogle Scholar
  53. 53.
    Liu, S., Knafels, J. D., Chang, J. S., Waszak, G. A., Baldwin, E. T., Deibel, M. R., Jr., Thomsen, D. R., Homa, F. L., Wells, P. A., Tory, M. C., Poorman, R. A., Gao, H., Qiu, X., and Seddon, A. P. (2006) Crystal structure of the herpes simplex virus 1 DNA polymerase, J. Biol. Chem., 281, 18193–18200.PubMedGoogle Scholar
  54. 54.
    Weller, S. K., and Coen, D. M. (2012) Herpes simplex viruses: mechanisms of DNA replication, Cold Spring Harbor Perspect. Biol., 4, a013011.Google Scholar
  55. 55.
    Burch, A. D., and Weller, S. K. (2005) Herpes simplex virus type 1 DNA polymerase requires the mammalian chaper-one hsp90 for proper localization to the nucleus, J. Virol., 79, 10740–10749.PubMedCentralPubMedGoogle Scholar
  56. 56.
    Sandbaumhuter, M., Dohner, K., Schipke, J., Binz, A., Pohlmann, A., Sodeik, B., and Bauerfeind, R. (2013) Cytosolic herpes simplex virus capsids not only require binding inner tegument protein pUL36 but also pUL37 for active transport prior to secondary envelopment, Cell. Microbiol., 15, 248–269.PubMedGoogle Scholar
  57. 57.
    Pasdeloup, D., McElwee, M., Beilstein, F., Labetoulle, M., and Rixon, F. J. (2012) Herpes virus tegument protein pUL37 interacts with dystonin/BPAG1 to promote capsid transport on microtubules during egress, J. Virol., 87, 2857–2867.PubMedGoogle Scholar
  58. 58.
    Ibiricu, I., Maurer, U. E., and Grunewald, K. (2013) Characterization of herpes simplex virus type 1 L-particle assembly and egress in hippocampal neurons by electron cryotomography, Cell. Microbiol., 15, 285–291.PubMedCentralPubMedGoogle Scholar
  59. 59.
    Stegen, C., Yakova, Y., Henaff, D., Nadjar, J., Duron, J., and Lippe, R. (2013) Analysis of virion-incorporated host proteins required for herpes simplex virus type 1 infection through a RNA interference screen, PloS one, 8, e53276.Google Scholar
  60. 60.
    Deshmane, S. L., and Fraser, N. W. (1989) During latency, herpes simplex virus type 1 DNA is associated with nucleosomes in a chromatin structure, J. Virol., 63, 943–947.PubMedCentralPubMedGoogle Scholar
  61. 61.
    Digard, P., Bebrin, W. R., Weisshart, K., and Coen, D. M. (1993) The extreme C terminus of herpes simplex virus DNA polymerase is crucial for functional interaction with processivity factor UL42 and for viral replication, J. Virol., 67, 398–406.PubMedCentralPubMedGoogle Scholar
  62. 62.
    Stow, N. D. (1993) Sequences at the C-terminus of the herpes simplex virus type 1 UL30 protein are dispensable for DNA polymerase activity but not for viral origin-dependent DNA replication, Nucleic Acids Res., 21, 87–92.PubMedCentralPubMedGoogle Scholar
  63. 63.
    Loregian, A., Piaia, E., Cancellotti, E., Papini, E., Marsden, H. S., and Palu, G. (2000) The catalytic subunit of herpes simplex virus type 1 DNA polymerase contains a nuclear localization signal in the UL42-binding region, Virology, 273, 139–148.PubMedGoogle Scholar
  64. 64.
    Kuhn, F. J., and Knopf, C. W. (1996) Herpes simplex virus type 1 DNA polymerase. Mutational analysis of the 3′-5′-exonuclease domain, J. Biol. Chem., 271, 2929245–29254PubMedGoogle Scholar
  65. 65.
    Crute, J. J., and Lehman, I. R. (1989) Herpes simplex-1 DNA polymerase. Identification of an intrinsic 5′-3′ exonuclease with ribonuclease H activity, J. Biol. Chem., 264, 1919266–19270PubMedGoogle Scholar
  66. 66.
    Bogani, F., and Boehmer, P. E. (2008) The replicative DNA polymerase of herpes simplex virus 1 exhibits apurinic/apyrimidinic and 5′-deoxyribose phosphate lyase activities, Proc. Natl. Acad. Sci. USA, 105, 111709–11714.PubMedCentralPubMedGoogle Scholar
  67. 67.
    Bogani, F., Corredeira, I., Fernandez, V., Sattler, U., Rutvisuttinunt, W., Defais, M., and Boehmer, P. E. (2010) Association between the herpes simplex virus-1 DNA polymerase and uracil DNA glycosylase, J. Biol. Chem., 285, 27664–27672.PubMedCentralPubMedGoogle Scholar
  68. 68.
    Terrell, S. L., and Coen, D. M. (2012) The pre-NH(2)-terminal domain of the herpes simplex virus 1 DNA polymerase catalytic subunit is required for efficient viral replication, J. Virol., 86, 11057–11065.PubMedCentralPubMedGoogle Scholar
  69. 69.
    Coen, D. M., and Schaffer, P. A. (2003) Anti-herpes virus drugs: a promising spectrum of new drugs and drug targets, Nature Rev. Drug Discov., 2, 278–288.Google Scholar
  70. 70.
    De Clercq, E., and Field, H. J. (2006) Antiviral prodrugs — the development of successful prodrug strategies for antiviral chemotherapy, Brit. J. Pharmacol., 147, 1–11.Google Scholar
  71. 71.
    Prusoff, W. H. (1959) Synthesis and biological activities of iododeoxyuridine, an analog of thymidine, Biochim. Biophys. Acta, 32, 295–296.PubMedGoogle Scholar
  72. 72.
    Elion, G. B., Furman, P. A., Fyfe, J. A., de Miranda, P., Beauchamp, L., and Schaeffer, H. J. (1977) Selectivity of action of an antiherpetic agent, 9-(2-hydroxyethoxymethyl) guanine, Proc. Natl. Acad. Sci. USA, 74, 5716–5720.PubMedCentralPubMedGoogle Scholar
  73. 73.
    Schaeffer, H. J., Beauchamp, L., de Miranda, P., Elion, G. B., Bauer, D. J., and Collins, P. (1978) 9-(2-Hydroxyethoxymethyl)guanine activity against viruses of the herpes group, Nature, 272, 583–585.PubMedGoogle Scholar
  74. 74.
    Elion, G. B. (1993) Acyclovir: discovery, mechanism of action, and selectivity, J. Med. Virol., Suppl. 1, 2–6.Google Scholar
  75. 75.
    Martin, J. C., Dvorak, C. A., Smee, D. F., Matthews, T. R., and Verheyden, J. P. (1983) 9-[(1,3-Dihydroxy-2-propoxy)methyl]guanine: a new potent and selective antiherpes agent, J. Med. Chem., 26, 759–761.PubMedGoogle Scholar
  76. 76.
    Thust, R., Tomicic, M., Klocking, R., Voutilainen, N., Wutzler, P., and Kaina, B. (2000) Comparison of the genotoxic and apoptosis-inducing properties of ganciclovir and penciclovir in Chinese hamster ovary cells transfected with the thymidine kinase gene of herpes simplex virus-1: implications for gene therapeutic approaches, Cancer Gene Ther., 7, 107–117.PubMedGoogle Scholar
  77. 77.
    Boyd, M. R., Bacon, T. H., Sutton, D., and Cole, M. (1987) Anti-herpes virus activity of 9-(4-hydroxy-3-hydroxy-methylbut-1-yl)guanine (BRL 39123) in cell culture, Antimicrob. Agents Chemother., 31, 1238–1242.PubMedCentralPubMedGoogle Scholar
  78. 78.
    Thackray, A. M., and Field, H. J. (1998) Famciclovir and valaciclovir differ in the prevention of herpes simplex virus type 1 latency in mice: a quantitative study, Antimicrob. Agents Chemother., 42, 1555–1562.PubMedCentralPubMedGoogle Scholar
  79. 79.
    Oberg, B. (1989) Antiviral effects of phosphonoformate (PFA, foscarnet sodium), Pharmacol. Therap., 40, 213–285.Google Scholar
  80. 80.
    Helgstrand, E., Eriksson, B., Johansson, N. G., Lannero, B., Larsson, A., Misiorny, A., Noren, J. O., Sjoberg, B., Stenberg, K., Stening, G., Stridh, S., and Oberg, B. (1978) Trisodium phosphonoformate, a new antiviral compound, Science, 201, 819–821.PubMedGoogle Scholar
  81. 81.
    De Clercq, E., Andrei, G., Snoeck, R., De Bolle, L., Naesens, L., Degreve, B., Balzarini, J., Zhang, Y., Schols, D., Leyssen, P., Ying, C., and Neyts, J. (2001) Acyclic/carbocyclic guanosine analogues as anti-herpes virus agents, Nucleosides Nucleotides Nucl. Acids, 20, 271–285.Google Scholar
  82. 82.
    Ivanov, A. V., Andronova, B. L., Galegov, G. A., and Jasko, M. V. (2005) Synthesis and antiherpetic activity of (Z)- and (E)-isomers of 9-(3-phosphonomethoxyprop-1-enyl)adenine, Bioorg. Khim., 31, 65–72.PubMedGoogle Scholar
  83. 83.
    Korovina, A. N., Jasko, M. V., Ivanov, A. V., Khandazhynskaya, A. L., Kramarov, E. V., Kornilaeva, G. V., and Kukhanova, M. K. (2008) Novel herpes simplex virus and human immunodeficiency virus inhibitors based on phosphonate nucleoside analogs, Moscow Univ. Chem. Bull., 63, 85–88.Google Scholar
  84. 84.
    Karpenko, I. L., Jasko, M. V., Andronova, V. L., Ivanov, A. V., Kukhanova, M. K., Galegov, G. A., and Skoblov, Y. S. (2003) Synthesis and antiherpetic activity of acyclovir phosphonates, Nucleosides Nucleotides Nucl. Acids, 22, 319–328.Google Scholar
  85. 85.
    Skoblov, Y. S., Karpenko, I. L., Jasko, M. V., Kukhanova, M. K., Andronova, V. L., Galegov, G. A., Sidorov, G. V., and Myasoedov, N. F. (2007) Cell metabolism of acyclovir phosphonate derivatives and anti-herpes virus activity of their combinations with alpha2-interferon, Chem. Biol. Drug Design, 69, 429–434.Google Scholar
  86. 86.
    Sanchez, R. M., Erhard, K., Hardwicke, M. A., Lin, H., McSurdy-Freed, J., Plant, R., Raha, K., Rominger, C. M., Schaber, M. D., Spengler, M. D., Moore, M. L., Yu, H., Luengo, J. I., Tedesco, R., and Rivero, R. A. (2012) Synthesis and structure-activity relationships of 1,2,4-triazolo[1,5-a]pyrimidin-7(3H)-ones as novel series of potent beta isoform selective phosphatidylinositol 3-kinase inhibitors, Bioorg. Med. Chem. Lett., 22, 3198–3202.PubMedGoogle Scholar
  87. 87.
    Deev, S. L., Yasko, M. V., Karpenko, I. L., Korovina, A. N., Khandazhinskaya, A. L., Andronova, V. L., Galegov, G. A., Shestakova, T. S., Ulomskii, E. N., Rusinov, V. L., Chupakhin, O. N., and Kukhanova, M. K. (2010) 1,2,4-Triazoloazine derivatives as a new type of herpes simplex virus inhibitors, Bioorg. Chem., 38, 265–270.PubMedGoogle Scholar
  88. 88.
    Revankar, G. R., and Robins, R. K. (1975) Synthesis and biological activity of some nucleosides resembling guanosine: imidazo(1,2-alpha)pyrimidine nucleosides, Ann. N. Y. Acad. Sci., 255, 166–176.PubMedGoogle Scholar
  89. 89.
    Kleymann, G., Fischer, R., Betz, U. A., Hendrix, M., Bender, W., Schneider, U., Handke, G., Eckenberg, P., Hewlett, G., Pevzner, V., Baumeister, J., Weber, O., Henninger, K., Keldenich, J., Jensen, A., Kolb, J., Bach, U., Popp, A., Maben, J., Frappa, I., Haebich, D., Lockhoff, O., and Rubsamen-Waigmann, H. (2002) New helicase-primase inhibitors as drug candidates for the treatment of herpes simplex disease, Nature Med., 8, 392–398.PubMedGoogle Scholar
  90. 90.
    Baumeister, J., Fischer, R., Eckenberg, P., Henninger, K., Ruebsamen-Waigmann, H., and Kleymann, G. (2007) Superior efficacy of helicase-primase inhibitor BAY 57-1293 for herpes infection and latency in the guinea pig model of human genital herpes disease, Antiviral Chem. Chemother., 18, 35–48.Google Scholar
  91. 91.
    Crute, J. J., Grygon, C. A., Hargrave, K. D., Simoneau, B., Faucher, A. M., Bolger, G., Kibler, P., Liuzzi, M., and Cordingley, M. G. (2002) Herpes simplex virus helicaseprimase inhibitors are active in animal models of human disease, Nature Med., 8, 386–391.PubMedGoogle Scholar
  92. 92.
    Katsumata, K., Chono, K., Sudo, K., Shimizu, Y., Kontani, T., and Suzuki, H. (2011) Effect of ASP2151, a herpes virus helicase-primase inhibitor, in a guinea pig model of genital herpes, Molecules, 16, 7210–7223.PubMedGoogle Scholar
  93. 93.
    Sergerie, Y., and Boivin, G. (2008) Hydroxyurea enhances the activity of acyclovir and cidofovir against herpes simplex virus type 1 resistant strains harboring mutations in the thymidine kinase and/or the DNA polymerase genes, Antiviral Res., 77, 77–80.PubMedGoogle Scholar
  94. 94.
    Duan, J., Liuzzi, M., Paris, W., Lambert, M., Lawetz, C., Moss, N., Jaramillo, J., Gauthier, J., Deziel, R., and Cordingley, M. G. (1998) Antiviral activity of a selective ribonucleotide reductase inhibitor against acyclovir-resistant herpes simplex virus type 1 in vivo, Antimicrob. Agents Chemother., 42, 1629–1635.PubMedCentralPubMedGoogle Scholar
  95. 95.
    Ekblad, M., Adamiak, B., Bergefall, K., Nenonen, H., Roth, A., Bergstrom, T., Ferro, V., and Trybala, E. (2007) Molecular basis for resistance of herpes simplex virus type 1 mutants to the sulfated oligosaccharide inhibitor PI-88, Virology, 367, 244–252.PubMedGoogle Scholar
  96. 96.
    Ekblad, M., Adamiak, B., Bergstrom, T., Johnstone, K. D., Karoli, T., Liu, L., Ferro, V., and Trybala, E. (2010) A highly lipophilic sulfated tetrasaccharide glycoside related to muparfostat (PI-88) exhibits virucidal activity against herpes simplex virus, Antiviral Res., 86, 196–203.PubMedGoogle Scholar
  97. 97.
    Johansson, M. E., Gustafsson, J. K., Sjoberg, K. E., Petersson, J., Holm, L., Sjovall, H., and Hansson, G. C. (2010) Bacteria penetrate the inner mucus layer before inflammation in the dextran sulfate colitis model, PloS one, 5, e12238.Google Scholar
  98. 98.
    Yasin, B., Wang, W., Pang, M., Cheshenko, N., Hong, T., Waring, A. J., Herold, B. C., Wagar, E. A., and Lehrer, R. I. (2004) Theta defensins protect cells from infection by herpes simplex virus by inhibiting viral adhesion and entry, J. Virol., 78, 5147–5156.PubMedCentralPubMedGoogle Scholar
  99. 99.
    Berlutti, F., Pantanella, F., Natalizi, T., Frioni, A., Paesano, R., Polimeni, A., and Valenti, P. (2011) Antiviral properties of lactoferrin — a natural immunity molecule, Molecules, 16, 6992–7018.PubMedGoogle Scholar
  100. 100.
    Coen, D. M. (1991) The implications of resistance to antiviral agents for herpes virus drug targets and drug therapy, Antiviral Res., 15, 287–300.PubMedGoogle Scholar
  101. 101.
    Andrei, G., Georgala, A., Topalis, D., Fiten, P., Aoun, M., Opdenakker, G., and Snoeck, R. (2013) Heterogeneity and evolution of thymidine kinase and DNA polymerase mutants of herpes simplex virus type 1: implications for antiviral therapy, J. Infect. Dis., 207, 1295–1305.PubMedGoogle Scholar
  102. 102.
    Korovina, A. N., Gus’kova, A. A., Skoblov, M. Iu., Andronova, V. L., Galegov, G. A., Kochetkov, S. N., Kukhanova, M. K., and Skoblov, Iu. S. (2010) Analysis of mutations in DNA polymerase and thymidine kinase genes of herpes simplex virus clinical isolates resistant to antiherpetic drugs, Mol. Biol. (Moscow), 44, 488–496.Google Scholar
  103. 103.
    Suzutani, T., Saijo, M., Nagamine, M., Ogasawara, M., and Azuma, M. (2000) Rapid phenotypic characterization method for herpes simplex virus and Varicella-Zoster virus thymidine kinases to screen for acyclovir-resistant viral infection, J. Clin. Microbiol., 38, 1839–1844.PubMedCentralPubMedGoogle Scholar
  104. 104.
    Hwang, Y. T., Smith, J. F., Gao, L., and Hwang, C. B. (1998) Mutations in the Exo III motif of the herpes simplex virus DNA polymerase gene can confer altered drug sensitivities, Virology, 246, 298–305.PubMedGoogle Scholar
  105. 105.
    Gus’kova, A. A., Skoblov, M. Y., Korovina, A. N., Yasko, M. V., Karpenko, I. L., Kukhanova, M. K., Andronova, V. L., Galegov, G. A., and Skoblov, Y. S. (2009) Antiherpetic properties of acyclovir 5′-hydrogenphosphonate and the mutation analysis of herpes virus resistant strains, Chem. Biol. Drug Design, 74, 3382–389.Google Scholar
  106. 106.
    Suzutani, T., Ishioka, K., De Clercq, E., Ishibashi, K., Kaneko, H., Kira, T., Hashimoto, K., Ogasawara, M., Ohtani, K., Wakamiya, N., and Saijo, M. (2003) Differential mutation patterns in thymidine kinase and DNA polymerase genes of herpes simplex virus type 1 clones passaged in the presence of acyclovir or penciclovir, Antimicrob. Agents Chemother., 47, 1707–1713.PubMedCentralPubMedGoogle Scholar
  107. 107.
    Bestman-Smith, J., and Boivin, G. (2003) Drug resistance patterns of recombinant herpes simplex virus DNA polymerase mutants generated with a set of overlapping cosmids and plasmids, J. Virol., 77, 7820–7829.PubMedCentralPubMedGoogle Scholar
  108. 108.
    Matthews, J. T., Carroll, R. D., Stevens, J. T., and Haffey, M. L. (1989) In vitro mutagenesis of the herpes simplex virus type 1 DNA polymerase gene results in altered drug sensitivity of the enzyme, J. Virol., 63, 4913–4918.PubMedCentralPubMedGoogle Scholar
  109. 109.
    Matthews, J. T., Terry, B. J., and Field, A. K. (1993) The structure and function of the HSV DNA replication proteins: defining novel antiviral targets, Antivir. Res., 20, 89–114.PubMedGoogle Scholar
  110. 110.
    Vere Hodge, R. A., and Field, H. J. (2013) Antiviral agents for herpes simplex virus, Adv. Pharmacol., 67, 1–38.PubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • M. K. Kukhanova
    • 1
  • A. N. Korovina
    • 1
    Email author
  • S. N. Kochetkov
    • 1
  1. 1.Engelhardt Institute of Molecular BiologyRussian Academy of SciencesMoscowRussia

Personalised recommendations