Biochemistry (Moscow)

, Volume 79, Issue 13, pp 1483–1514 | Cite as

How membrane surface affects protein structure

  • V. E. BychkovaEmail author
  • L. V. Basova
  • V. A. Balobanov


The immediate environment of the negatively charged membrane surface is characterized by decreased dielectric constant and pH value. These conditions can be modeled by water-alcohol mixtures at moderately low pH. Several globular proteins were investigated under these conditions, and their conformational behavior in the presence of phospholipid membranes was determined, as well as under conditions modeling the immediate environment of the membrane surface. These proteins underwent conformational transitions from the native to a molten globule-like state. Increased flexibility of the protein structure facilitated protein functioning. Our experimental data allow understanding forces that affect the structure of a protein functioning near the membrane surface (in other words, in the membrane field). Similar conformational states are widely reported in the literature. This indicates that the negatively charged membrane surface can serve as a moderately denaturing agent in the cell. We conclude that the effect of the membrane field on the protein structure must be taken into account.

Key words

anionic phospholipid membranes simple alcohols as a model globular proteins apo- and holomyoglobins apo- and holocytochromes c cytochrome b5 human α-lactalbumin conformational changes non-native protein states membrane-protein interactions pathways membrane field 


apoCyt c

apoform of cytochrome c


Ca2+-free form of human α-lactalbumin




circular dichroism


partial excess heat capacity

Cyt b5

cytochrome b 5






endoplasmic reticulum


guanidinium hydrochloride

holoCyt c

cytochrome c with bound heme


myoglobin with bound heme


intermediate state


fluorescence intensity at fluorescence spectrum maximum




anionic large bilayer vesicles




molten globule state


micelles of anionic lysoPhL


native state


mixture of Na-phosphates


nuclear magnetic resonance










retinol-binding protein


anionic small bilayer vesicles




completely unfolded state




enthalpy change


effective dielectric constant of a medium


wavelength of fluorescence spectrum maximum




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dolgikh, D. A., Gilmanshin, R. I., Brazhnikov, E. V., Bychkova, V. E., Semisotnov, G. V., Venyaminov, S. Yu., and Ptitsyn, O. B. (1981) α-Lactalbumin: compact state with fluctuating tertiary structure? FEBS Lett., 136, 311–315.PubMedGoogle Scholar
  2. 2.
    Dolgikh, D. A., Abaturov, L. V., Bolotina, I. A., Brazhnikov, E. V., Bushuev, V. N., Bychkova, V. E., Gilmanshin, R. I., Lebedev, Yu. O., Semisotnov, G. V., Tiktopulo, E. I., and Ptitsyn, O. B. (1985) Compact state of a protein molecule with pronounced small-scale mobility: bovine alpha-lactalbumin, Eur. Biophys. J., 13, 109–121.PubMedGoogle Scholar
  3. 3.
    Bychkova, V. E., and Ptitsyn, O. B. (1993) The molten globule in vitro and in vivo, Chemtracts — Biochem. Mol. Biol., 4, 133–163.Google Scholar
  4. 4.
    Bychkova, V. E., and Ptitsyn, O. B. (1993) The state of molten globules of protein molecules is more quickly becoming a rule, rather than an exception, Biofizika, 38, 58–66.PubMedGoogle Scholar
  5. 5.
    Ptitsyn, O. B. (1995) Molten globule and protein folding, Adv. Protein Chem., 47, 83–229.PubMedGoogle Scholar
  6. 6.
    Endo, T., and Schatz, G. (1988) Latent membrane perturbation activity of a mitochondrial precursor protein is exposed by unfolding, EMBO J., 7, 1153–1158.PubMedCentralPubMedGoogle Scholar
  7. 7.
    Eilers, M., Endo, T., and Schatz, G. (1989) Adriamycin, a drug interacting with acidic phospholipids, blocks import of precursor proteins by isolated yeast mitochondria, J. Biol. Chem., 264, 2945–2950.PubMedGoogle Scholar
  8. 8.
    Endo, T., Eilers, M., and Schatz, G. (1989) Binding of a tightly folded artificial mitochondrial precursor protein to the mitochondrial outer-membrane involves a lipid-mediated conformational change, J. Biol. Chem., 264, 2951–2956.PubMedGoogle Scholar
  9. 9.
    Van der Goot, F. G., Gonzales-Manas, J. M., Lakey, J. H., and Pattus, F. (1991) A molten-globule membrane-insertion intermediate of the pore-forming domain of colicin A, Nature, 354, 408–410.PubMedGoogle Scholar
  10. 10.
    Van der Goot, F. G., Lakey, J. H., and Pattus, F. (1992) The molten globule intermediate for protein insertion or translocation through membranes, Trends Cell Biol., 2, 343–348.PubMedGoogle Scholar
  11. 11.
    Schmitt, S., Prokisch, H., Schlunck, T., Camp II, D. G., Ahting, U., Waizenegger, T., Scharfe, C., Meitinger, T., Imhof, A., Neupert, W., Oefner, P. J., and Rapaport, D. (2006) Proteome analysis of mitochondrial outer membrane from Neurospora crassa, Proteomics, 6, 72–80.PubMedGoogle Scholar
  12. 12.
    Engelman, D. M. (2005) Membranes are more mosaic, than fluid, Nature, 438, 578–580.PubMedGoogle Scholar
  13. 13.
    Von Meer, G., Voelker, D. R., and Feigenson, G. W. (2008) Membrane lipids: where they are and how they behave, Nature Rev. Mol. Cell Biol., 9, 112–124.Google Scholar
  14. 14.
    Landau, L. D., and Lifshits, E. M. (1982) Theoretical Physics, Vol. 8. Electrodynamics of Continuous Media [in Russian], Nauka, Moscow, p. 60.Google Scholar
  15. 15.
    Eisenberg, M., Gresalfi, T., Riccio, T., and McLaughlin, S. (1979) Absorption of monovalent cations to bilayer membranes containing negative phospholipids, Biochemistry, 18, 5213–5223.PubMedGoogle Scholar
  16. 16.
    Prats, M., Teissie, J., and Toccane, J. F. (1986) Lateral proton conduction at lipid-water interfaces and its implications for the chemiosmotic-coupling hypothesis, Nature, 322, 756–758.Google Scholar
  17. 17.
    Ptitsyn, O. B. (1987) Protein folding: hypotheses and experiments, J. Prot. Chem., 6, 273–293.Google Scholar
  18. 18.
    Ptitsyn, O. B. (1992) The molten globule state, in Protein Folding (Creighton, T. E., ed.) New York, pp. 243–299.Google Scholar
  19. 19.
    Skulachev, V. P. (1988) Biomembrane Energetics, Spring-Verlag, Berlin-Heidelberg.Google Scholar
  20. 20.
    Finkelstein, A. V., and Ptitsyn, O. B. (2002) in Protein Physics, Academic Press, An Imprint of Elsevier Science, Amsterdam-Boston-London-New York-Oxford-Paris-San Diego-San Francisco-Singapore-Sydney-Tokyo, pp. 1–380.Google Scholar
  21. 21.
    Winitski, A. P., McLaughlin, A. C., McDaniel, R. V., Eisenberg, M., and McLaughlin, S. (1986) An experimental test of the discreteness-of-charge effect in positive and negative lipid bilayers, Biochemistry, 25, 8206–8214.Google Scholar
  22. 22.
    Wilkinson, K. D., and Mayer, A. N. (1986) Alcoholinduced conformational changes of ubiquitin, Arch. Biochem. Biophys., 250, 390–399.PubMedGoogle Scholar
  23. 23.
    Dufour, E., Bertrand-Harb, C., and Haertle, T. (1993) Reversible effects of medium dielectric constant on structural transformation of α-lactoglobulin and its retinol binding, Biopolymers, 33, 589–598.PubMedGoogle Scholar
  24. 24.
    Bychkova, V. E., Dujsekina, A. E., Klenin, S. I., Tiktopulo, E. I., Uversky, V. N., and Ptitsyn, O. B. (1996) Molten globule-like state of cytochrome c under conditions simulating those near the membrane surface, Biochemistry, 35, 6058–6063.PubMedGoogle Scholar
  25. 25.
    Dujsekina, A. E. (1998) Conformations of Proteins in Mediums with Moderately Low Values of a Dielectric Constant and pH: PhD Thesis [in Russian], Pushchino.Google Scholar
  26. 26.
    Poulos, T. L., and Mauk, A. G. (1983) Models for complexes formed between cytochrome b 5 and subunits of methemoglobin, J. Biol. Chem., 258, 7369–7373.PubMedGoogle Scholar
  27. 27.
    Livingston, D. J., McLachlan, S. J., La Mar, G. N., and Brown, W. D. (1985) Myoglobin-cytochrome b 5 interactions and the kinetic mechanism of metmyoglobin reductase, J. Biol. Chem., 260, 15699–15707.PubMedGoogle Scholar
  28. 28.
    Spatz, L., and Strittmatter, P. (1971) A form of cytochrome b 5 that contains an additional hydrophobic sequence of 40 amino acid residues, Proc. Natl. Acad. Sci. USA, 68, 1042–1046.PubMedCentralPubMedGoogle Scholar
  29. 29.
    Wang, Z.-Q., Wang, Y-H., Quan, W., Wang, H.-H., Chunyu, L.-J., Xie, Yi, and Huang, Z.-X. (1999) Methanol-induced unfolding and refolding of cytochrome b 5 and its P40V mutant monitored by UV-visible, CD, and fluorescence spectra, J. Prot. Chem., 18, 547–555.Google Scholar
  30. 30.
    Basova, L. V. (2004) Influence of a Membrane Surface on the Conformational State of Globular Proteins: PhD Thesis [in Russian], Pushchino.Google Scholar
  31. 31.
    Kamatari, Yu. O., Ohji, S., Konno, T., Seki, Ya., Soda, K., Kataoka, M., and Akasaka, K. (1999) The compact and expanded denatured conformations of apomyoglobin in the methanol-water solvent, Protein Sci., 8, 873–882.PubMedCentralPubMedGoogle Scholar
  32. 32.
    Bychkova, V. E., Dujsekina, A. E., Ptitsyn, O. B., Fantuzzi, A., and Rossi, G. L. (1998) Release of retinol and denaturation of its plasma carrier, retinol-binding protein, Fold. Des., 3, 285–291.PubMedGoogle Scholar
  33. 33.
    Bychkova, V. E., Berni, R., Rossi, G. L., Kutyshenko, V. P., and Ptitsyn, O. B. (1992) Retinol-binding protein is in the molten globule state at low pH, Biochemistry, 31, 7566–7571.PubMedGoogle Scholar
  34. 34.
    Dujsekina, A. E., Bychkova, V. E., Fantuzzi, A., Rossi, G. L., and Ptitsyn, O. B. (1998) Release of hydrophobic ligand from retinol-binding protein under conditions mimicked the membrane field, Mol. Biol. (Moscow), 32, 133–140.Google Scholar
  35. 35.
    Torta, F., Dyuysekina, A. E., Cavazzini, D., Fantuzzi, A., Bychkova, V. E., and Rossi, G. L. (2004) Solvent-induced ligand dissociation and conformational states of cellular retinol-binding protein type I, Biochim. Biophys. Acta, 1703, 21–29.PubMedGoogle Scholar
  36. 36.
    Stockman, B. J., Euvrard, A., and Scahill, T. A. (1993) Heteronuclear three-dimensional NMR spectroscopy of a partially denatured protein: the A-state of human ubiquitin, J. Biomol. NMR, 3, 285–296.PubMedGoogle Scholar
  37. 37.
    Wang, S. X., Sun, Y. T., and Sui, S. F. (2000) Membrane-induced conformational changes in human apolipoprotein H, Biochem. J., 348,Pt. 1, 103–106.PubMedCentralPubMedGoogle Scholar
  38. 38.
    Clement-Collin, V., Leroy, A., Monteilhet, C., and Aggerbeck, L. P. (1999) Mimicking lipid-binding-induced conformational changes in the human apolipoprotein E N-terminal receptor binding domain effects of low pH and propanol, Eur. J. Biochem., 264, 358–368.PubMedGoogle Scholar
  39. 39.
    Babu, K. R., and Douglas, D. J. (2000) Methanol-induced conformation of myoglobin at pH 4.0, Biochemistry, 39, 14702–14710.PubMedGoogle Scholar
  40. 40.
    Mozsolits, H., Unabia, S., Ahmad, A., Morton, C. J., Thomas, W. G., and Aguilar, M. I. (2002) Electrostatic and hydrophobic forces tether the proximal region of the angiotensin II receptor (AT1A) carboxyl terminus to anionic lipids, Biochemistry, 41, 7830–7840.PubMedGoogle Scholar
  41. 41.
    Bychkova, V. E. (1997) On functional role of non-native proteins, Uspekhi Biol. Khim., 37, 49–99.Google Scholar
  42. 42.
    Perutz, M. F. (1989) Myoglobin and hemoglobin: role of distal residues in reactions with haem ligands, Trends Biochem. Sci., 14, 42–44.PubMedGoogle Scholar
  43. 43.
    Cannon, J. B., Kuo, F. S., Pasternack, R. F., Wong, N. M., and Muller-Eberhard, U. (1984) Kinetics of the interaction of hemin liposomes with heme binding proteins, Biochemistry, 23, 3715–3721.PubMedGoogle Scholar
  44. 44.
    Hughson, F. M., Wright, P. E., and Baldwin, R. L. (1990) Structural characterization of a partly folded apomyoglobin intermediate, Science, 249, 1544–1548.PubMedGoogle Scholar
  45. 45.
    Griko, Yu. V., Privalov, P. L., Venyaminov, S. Yu., and Kutyshenko, V. P. (1988) Thermodynamic study of the apomyoglobin structure, J. Mol. Biol., 202, 127–138.PubMedGoogle Scholar
  46. 46.
    Postnikova, G. B., Komarov, Y. E., and Yumakova, E. M. (1991) Fluorescence study of the conformational properties of myoglobin structure. 1. pH-dependent changes of tryptophanyl fluorescence in intact and chemically modified sperm whale apomyoglobins, Eur. J. Biochem., 198, 223–232.PubMedGoogle Scholar
  47. 47.
    Jennings, P., and Wright, P. E. (1993) Formation of a molten globule intermediate early in the kinetic folding pathway of apomyoglobin, Science, 262, 892–896.PubMedGoogle Scholar
  48. 48.
    Gast, K., Damaschun, H., Misselwitz, R., Mueller-Frohne, M., Zirwer, D., and Damaschun, G. (1994) Compactness of protein molten globules: temperature-induced structural changes of the apomyoglobin folding intermediates, Eur. Biophys. J., 23, 297–305.PubMedGoogle Scholar
  49. 49.
    Nishii, I., Kataoka, M., and Goto, Y. (1995) Thermodynamic stability of the molten globule states of apomyoglobin, J. Mol. Biol., 250, 223–238.PubMedGoogle Scholar
  50. 50.
    Postnikova, G. B. (1999) Fluorescence study of conformational transitions in the myoglobin structure, Biochemistry (Moscow), 64, 267–286.Google Scholar
  51. 51.
    Nishimura, C., Dyson, H. J., and Wright, P. E. (2006) Identification of native and non-native structure in kinetic folding intermediates of apomyoglobin, J. Mol. Biol., 355, 139–156.PubMedGoogle Scholar
  52. 52.
    Samatova, E. N., Katina, N. S., Balobanov, V. A., Melnik, B. S., Dolgikh, D. A., Bychkova, V. E., and Finkelstein, A. V. (2009) How strong are side chain interactions in the folding intermediate? Protein Sci., 18, 2152–2159.PubMedCentralPubMedGoogle Scholar
  53. 53.
    Samatova, E. N., Melnik, B. S., Balobanov, V. A., Katina, N. S., Dolgikh, D. A., Semisotnov, G. V., Finkelstein, A. V., and Bychkova, V. E. (2010) Folding intermediate and folding nucleus for I/N and U/I/N transitions in apomyoglobin: contributions by conserved and non-conserved residues, Biophys. J., 98, 1694–1702.PubMedCentralPubMedGoogle Scholar
  54. 54.
    Antonini, E., and Brunori, M. (1971) Hemoglobin and myoglobin in their reactions with ligands, in Frontiers of Biology (Neuberger, A., and Tatum, E. L., eds.) Vol. 21, North-Holland Publishing Company, Amsterdam-London.Google Scholar
  55. 55.
    Bismuto, E., Colonna, G., Savy, F., and Irace, G. (1985) Myoglobin structure and regulation of solvent accessibility of heme pocket, Int. J. Pept. Protein Res., 26, 195–207.PubMedGoogle Scholar
  56. 56.
    Privalov, P. L., Griko, Yu. V., Venyaminov, S. Yu., and Kutyshenko, V. P. (1986) Cold denaturation of myoglobin, J. Mol. Biol., 190, 487–498.PubMedGoogle Scholar
  57. 57.
    Postnikova, G. B., Komarov, Y. E., and Yumakova, E. M. (1991) Fluorescence study of the conformational properties of myoglobin structure. 2. pH- and ligand-induced conformational changes in ferric- and ferrous myoglobins, Eur. J. Biochem., 198, 233–239.PubMedGoogle Scholar
  58. 58.
    Griko, Y. V., and Privalov, P. L. (1994) Thermodynamic puzzle of apomyoglobin unfolding, J. Mol. Biol., 235, 1318–1325.PubMedGoogle Scholar
  59. 59.
    Cocco, M. J., Kao, Y. H., and Lecomte, J. T. (1996) The native state of apomyoglobin described by proton NMR spectroscopy: the A-B-G-H interface of wild-type sperm whale apomyoglobin, Proteins, 25, 267–285.PubMedGoogle Scholar
  60. 60.
    Basova, L. V., Tiktopulo, E. I., Kutyshenko, V. P., Klenin, S. I., Balobanov, V. A., and Bychkova, V. E. (2014) Membrane-induced changes in the holomyoglobin tertiary structure: interplay with function, Eur. Biophys. J., 43, 317–329.PubMedGoogle Scholar
  61. 61.
    Basova, L. V., Tiktopulo, E. I., Kashparov, I. A., and Bychkova, V. E. (2004) The conformational state of apomyoglobin in the presence of phospholipid vesicles at neutral pH, Mol. Biol. (Moscow), 38, 323–332.Google Scholar
  62. 62.
    Vassilenko, K. S., and Uversky, V. N. (2002) Native-like secondary structure of molten globules, Biochim. Biophys. Acta, 1564, 168–177.Google Scholar
  63. 63.
    Tsvetkov, V. N., and Klenin, S. I. (1953) Diffusion coefficients of polystyrene fractions in dichloroethane, Dokl. Akad. Nauk SSSR, 88, 49–52.Google Scholar
  64. 64.
    Privalov, P. L. (1979) Stability of proteins: small globular proteins, Adv. Protein Chem., 33, 167–241.PubMedGoogle Scholar
  65. 65.
    Balobanov, V. A., Ilyina, N. B., Katina, N. S., Kashparov, I. A., Dolgikh, D. A., and Bychkova, V. E. (2010) Kinetics of interaction between apomyoglobin and phospholipid membrane, Mol. Biol. (Moscow), 44, 708–717.Google Scholar
  66. 66.
    Postnikova, G. B., and Tselikova, S. V. (2005) Myoglobin and mitochondria: kinetics of oxymyoglobin deoxygenation in mitochondria suspension, Biofizika, 50, 297–306.PubMedGoogle Scholar
  67. 67.
    Postnikova, G. B., and Shekhovtsova, E. A. (2013) Effect of artificial and natural phospholipid membranes on rate of sperm whale oxymyoglobin autooxidation, Biochemistry (Moscow), 78, 267–272.Google Scholar
  68. 68.
    Funk, W. D., Lo, T. P., Mauk, M. R., Brayer, C. D., MacGillivray, R. T., and Mauk, A. G. (1990) Mutagenic, electrochemical, and crystallographic investigation of the cytochrome b 5 oxidation-reduction equilibrium: involvement of asparagine 57, serine 64, and heme propionate 7, Biochemistry, 29, 5500–5508.PubMedGoogle Scholar
  69. 69.
    Mitoma, J., and Ito, A. (1992) The carboxy-terminal 10 amino acid residues of cytochrome b 5 are necessary for its targeting to the endoplasmic reticulum, EMBO J., 11, 4197–4203.PubMedCentralPubMedGoogle Scholar
  70. 70.
    Hultquist, D. E., and Passon, P. G. (1971) Catalysis of methemoglobin reduction by erythrocyte cytochrome b 5 and cytochrome b 5 reductase, Nature New. Biol., 229, 252–254.PubMedGoogle Scholar
  71. 71.
    Kawano, M., Shirabe, K., Nagai, T., and Takeshita, M. (1998) Role of carboxyl residues surrounding heme of human cytochrome b 5 in the electrostatic interaction with NADH-cytochrome b 5 reductase, Biochem. Biophys. Res. Commun., 245, 666–669.PubMedGoogle Scholar
  72. 72.
    Hildebrandt, A. G., and Estabrook, R. W. (1972) Evidence for the participation of cytochrome b 5 in hepatic microsomal mixed function oxidation reactions, Arch. Biochem. Biophys., 143, 66–79.Google Scholar
  73. 73.
    Yamazaki, H., Johnson, W. W., Ueng, Y-F., Shimada, T., and Guengerich, F. P. (1996) Lack of electron transfer from cytochrome b 5 in stimulation of catalytic activities of cytochrome P450 3A4. Characterization of a reconstituted cytochrome P450 3A4/NADPH-cytochrome P450 reductase system and studies with apocytochrome b 5, J. Biol. Chem., 271, 27438–27444.PubMedGoogle Scholar
  74. 74.
    Strittmatter, P., Spatz, L., Corcoran, D., Rogers, M. J., Setlow, B., and Redline, R. (1974) Purification and properties of rat liver microsomal stearyl coenzyme A desaturase, Proc. Natl. Acad. Sci. USA, 71, 4565–4569.PubMedCentralPubMedGoogle Scholar
  75. 75.
    Keyes, S. R., and Cinti, D. L. (1980) Biochemical properties of cytochrome b 5-dependent microsomal fatty acid elongation and identification of products, J. Biol. Chem., 255, 11357–11364.PubMedGoogle Scholar
  76. 76.
    Kozutsumi, Y., Kawano, T., Yamakawa, T., and Suruki, A. (1998) Participation of cytochrome b 5 in CMP-N-acetylneuraminic acid hydroxylation in mouse liver cytosol, J. Biochem., 108, 704–706.Google Scholar
  77. 77.
    Livingston, D. J., McLachlan, S. J., La Mar, G. N., and Brown, W. D. (1985) Myoglobin-cytochrome b 5 interactions and the kinetic mechanism of metmyoglobin reductase, J. Biol. Chem., 260, 15699–15707.PubMedGoogle Scholar
  78. 78.
    Gacon, G., Lostanlen, D., Labie, D., and Kaplan, J.-C. (1980) Interaction between cytochrome b 5 and hemoglobin: involvement of β66 (E10) and β95 (FG2) lysyl residues of hemoglobin, Proc. Natl. Acad. Sci. USA, 77, 1917–1921.PubMedCentralPubMedGoogle Scholar
  79. 79.
    Usanov, S. A., Bendzko, P., Pfeil, W., Janig, G. R., and Ruckpaul, K. (1983) The role of the hydrophobic fragment of cytochrome b 5 in interaction with cytochrome P-450, Bioorg. Khim., 9, 450–461.PubMedGoogle Scholar
  80. 80.
    Mathews, F. S., Levine, M., and Argos, P. (1972) Three-dimensional Fourier synthesis of calf liver cytochrome b 5 at 2.8 — resolution, J. Mol. Biol., 64, 449–464.PubMedGoogle Scholar
  81. 81.
    Veitch, N. C., Concar, D. W., Williams, R. J. P., and Whitford, D. (1988) Investigation of the solution structures and mobility of oxidized and reduced cytochrome b 5 by 2D NMR spectroscopy, FEBS Lett., 238, 49–55.PubMedGoogle Scholar
  82. 82.
    Whitford, D. (1992) The identification of cation binding domains on the surface of microsomal cytochrome b 5 using 1H NMR paramagnetic difference spectroscopy, Eur. J. Biochem., 203, 211–223.PubMedGoogle Scholar
  83. 83.
    Guiles, R. D., Basus, V. J., Kuntz, I., and Waskell, L. (1992) Sequence specific 1H and 15N resonance assignments for both equilibrium forms of the soluble heme binding domain of rat ferrocytochrome b 5, Biochemistry, 31, 11365–11375.PubMedGoogle Scholar
  84. 84.
    Muskett, F. W., Kelly, G. P., and Whitford, D. (1996) The solution structure of bovine ferricytochrome b 5 determined using heteronuclear NMR methods, J. Mol. Biol., 258, 172–189.PubMedGoogle Scholar
  85. 85.
    Mauk, A. G., Mauk, M. R., Moore, G. R., and Northrup, S. H. (1995) Experimental and theoretical analysis of the interaction between cytochrome c and cytochrome b 5, J. Bioenerg. Biomembr., 27, 311–330.PubMedGoogle Scholar
  86. 86.
    Stayton, P. S., Fisher, M. T., and Sligar, S. G. (1988) Determination of cytochrome b 5 association reactions. Characterization of metmyoglobin and cytochrome P-450 binding to genetically engineered cytochrome b5, J. Biol. Chem., 263, 13544–13548.PubMedGoogle Scholar
  87. 87.
    Stayton, P. S., Poulos, T. L., and Sligar, S. G. (1989) Putidaredoxin competitively inhibits cytochrome b 5-cytochrome P-450cam association: a proposed molecular model for a cytochrome P-450cam electron-transfer complex, Biochemistry, 28, 8201–8205.PubMedGoogle Scholar
  88. 88.
    Lederer, F. (1994) The cytochrome b 5-fold: an adaptable module, Biochimie, 76, 674–692.PubMedGoogle Scholar
  89. 89.
    Basova, L. V., Ilyina, N. B., Vasilenko, K. S., Tiktopulo, E. I., and Bychkova, V. E. (2002) Conformational states of the water-soluble fragment of cytochrome b 5: pH-induced denaturation, Mol. Biol. (Moscow), 36, 891–900.Google Scholar
  90. 90.
    Acharya, K. R., Ren, J. S., Stuart, D. I., Phillips, D. C., and Fenna, R. E. (1991) Crystal structure of human alphalactalbumin at 1.7 — resolution, J. Mol. Biol., 221, 571–581.PubMedGoogle Scholar
  91. 91.
    Kuwajima, K., Nitta, K., Yoneyama, M., and Sugai, S. (1976) Three-state denaturation of alpha-lactalbumin by guanidine chloride, J. Mol. Biol., 106, 359–373.PubMedGoogle Scholar
  92. 92.
    Permyakov, E. A., Yarmolenko, V. V., Kalinichenko, L. P., Morozova, L. A., and Burstein, E. A. (1981) Calcium binding to alpha-lactalbumin: structural arrangement and association constant evaluation by means of intrinsic fluorescence changes, Biochem. Biophys. Res. Commun., 100, 191–197.PubMedGoogle Scholar
  93. 93.
    Chenal, A., Vernier, G., Savarin, P., Bushmarina, N. A., Geze, A., Guillain, F., Gillet, D., and Forge, V. (2005) Conformational states and thermodynamics of alpha-lactalbumin bound to membranes: a case study of the effects of pH, calcium, lipid membrane curvature and charge, J. Mol. Biol., 349, 890–905.PubMedGoogle Scholar
  94. 94.
    Bychkova, V. E., Pain, R. H., and Ptitsyn, O. B. (1988) The “molten globule” state is involved in the translocation of proteins across membranes? FEBS Lett., 238, 231–234.PubMedGoogle Scholar
  95. 95.
    Bigay, J., and Bruno, A. (2012) Curvature, lipid packing, and electrostatics of membrane organelles: defining cellular territories in determining specificity, Dev. Cell, 23, 886–895.PubMedGoogle Scholar
  96. 96.
    Eilers, M., and Schatz, G. (1986) Binding of a specific lig- and inhibits import of a purified precursor protein into mitochondria, Nature, 322, 228–232.PubMedGoogle Scholar
  97. 97.
    Eilers, M., and Schatz, G. (1988) Protein unfolding and energetics of protein translocation across biological membranes, Cell, 52, 481–483.PubMedGoogle Scholar
  98. 98.
    Vestweber, D., and Schatz, G. (1988) Point mutations destabilizing a precursor protein enhance its posttranslational import into mitochondria, EMBO J., 7, 1147–1151.PubMedCentralPubMedGoogle Scholar
  99. 99.
    Glick, B., and Schatz, G. (1991) Import of proteins into mitochondria, Annu. Rev. Genet., 25, 21–44.PubMedGoogle Scholar
  100. 100.
    Vestweber, D., and Schatz, G. (1988) A chimeric mitochondrial precursor protein with internal disulfide bridges blocks import of authentic precursors into mitochondria and allows quantitation of import sites, J. Cell Biol., 107, 2037–2043.PubMedGoogle Scholar
  101. 101.
    Eilers, M., Hwang, S., and Schatz, G. (1988) Unfolding and refolding of a purified precursor protein during import into isolated mitochondria, EMBO J., 7, 1139–1145.PubMedCentralPubMedGoogle Scholar
  102. 102.
    Huang, S., Murphy, S., and Matouschek, A. (2000) Effect of the protein import machinery at the mitochondrial surface on precursor stability, Proc. Natl. Acad. Sci. USA, 97, 12991–12996.PubMedCentralPubMedGoogle Scholar
  103. 103.
    Hay, R., Bohni, P., and Gasser, S. (1984) How mitochondria import proteins, Biochim. Biophys. Acta, 779, 65–87.PubMedGoogle Scholar
  104. 104.
    Randall, L. L., and Hardy, S. J. S. (1986) Correlation of competence for export with lack of tertiary structure of the mature species. A study in vivo of maltose-binding protein from Escherichia coli, Cell, 46, 921–928.PubMedGoogle Scholar
  105. 105.
    Verner, K., and Schatz, G. (1988) Protein translocation across membranes, Science, 241, 1307–1313.PubMedGoogle Scholar
  106. 106.
    Bochkareva, E. S., Lissin, N. M., and Girshovich, A. S. (1988) Transient association of newly synthesized unfolded proteins with the heat-shock GroEL protein, Nature, 336, 254–257.PubMedGoogle Scholar
  107. 107.
    Kleinschmidt, J. H., and Tamm, L. K. (1996) Folding intermediates of a beta-barrel membrane protein. Kinetic evidence for a multi-step membrane insertion mechanism, Biochemistry, 35, 12993–13000.PubMedGoogle Scholar
  108. 108.
    Booth, P. J., and Curnow, P. (2009) Folding scene investigation: membrane proteins, Curr. Opin. Struct. Biol., 19, 8–13.PubMedCentralPubMedGoogle Scholar
  109. 109.
    Schwartz, M. P., and Matouschek, A. (1999) The dimensions of the protein import channels in the outer and inner mitochondrial membranes, Proc. Natl. Acad. Sci. USA, 96, 13086–13090.PubMedCentralPubMedGoogle Scholar
  110. 110.
    Diekert, K., de Kroon, A. I. P. M., Ahting, U., Niggermeyer, B., Neupert, W., de Kruijff, B., and Lill, R. (2001) Apocytochrome c requires the TOM complex for translocation across the mitochondrial outer membrane, EMBO J., 20, 5626–5635.PubMedCentralPubMedGoogle Scholar
  111. 111.
    Prakash, S., and Matouschek, A. (2004) Protein unfolding in the cell, Trends Biochem. Sci., 29, 593–600.PubMedGoogle Scholar
  112. 112.
    Bolliger, L., Junne, T., Schatz, G., and Lithgow, T. (1995) Acidic receptor domains on both sides of the outer membrane mediate translocation of precursor proteins into yeast mitochondria, EMBO J., 14, 6318–6326.PubMedCentralPubMedGoogle Scholar
  113. 113.
    Huang, S., Ratliff, K. S., and Matouschek, A. (2002) Protein unfolding by the mitochondrial membrane potential, Nat. Struct. Biol., 9, 301–307.PubMedGoogle Scholar
  114. 114.
    Cavard, D., Sauve, P., Heitz, F., Pattus, F., Martinez, C., Dijkman, R., and Lazdunski, C. (1988) Hydrodynamic properties of colicin A. Existence of a high-affinity lipid-binding site and oligomerization at acid pH, Eur. J. Biochem., 172, 507–512.PubMedGoogle Scholar
  115. 115.
    Muga, A., Gonzalez-Manas, J. M., Lakey, J. H., Pattus, F., and Surewicz, W. K. (1993) pH-dependent stability and membrane interaction of the pore-forming domain of colicin A, J. Biol. Chem., 268, 1553–1557.PubMedGoogle Scholar
  116. 116.
    Lakey, J. H., Gonzalez-Manas, J. M., van der Goot, F. G., and Pattus, F. (1992) The membrane insertion of colicins, FEBS Lett., 307, 26–29.PubMedGoogle Scholar
  117. 117.
    Parker, M. W., Tucker, A. D., Tsernoglou, D., and Pattus, F. (1990) Insights into membrane insertion based on studies of colicins, Trends Biochem. Sci., 15, 126–129.PubMedGoogle Scholar
  118. 118.
    Anderluh, G., and Lakey, J. H. (2008) Disparate proteins use similar architectures to damage membranes, Trends Biochem. Sci., 33, 482–490.PubMedGoogle Scholar
  119. 119.
    Merrill, A. R., Cohen, F. S., and Cramer, W. A. (1990) On the nature of the structural change of the colicin-E1 channel peptide necessary for its translocation competent state, Biochemistry, 29, 5829–5836.PubMedGoogle Scholar
  120. 120.
    Li, J. D., Carroll, J., and Ellar, D. J. (1991) Crystal structure of insecticidal delta-endotoxin from Bacillus thuringiensis at 2.5-Å resolution, Nature, 353, 815–821.PubMedGoogle Scholar
  121. 121.
    Zhao, J.-M., and London, E. (1988) Conformation and model membrane interactions of diphtheria toxin fragment A, J. Biol. Chem., 263, 15369–15377.PubMedGoogle Scholar
  122. 122.
    London, E. (1992) Diphtheria toxin: membrane interaction and membrane translocation, Biochim. Biophys. Acta, 1113, 25–51.PubMedGoogle Scholar
  123. 123.
    Jiang, J. X., Abrams, F. S., and London, E. I. (1991) Folding changes in membrane-inserted diphtheria toxin that may play important roles in its translocation, Biochemistry, 30, 3857–3864.PubMedGoogle Scholar
  124. 124.
    Cabiaux, V., Brasseur, R., Wattiez, R., Falmagne, P., Ruysschart, J.-M., and Goormaghtigh, E. (1989) Secondary structure of diphtheria toxin and its fragments interacting with acidic liposomes studied by polarized infrared spectroscopy, J. Biol. Chem., 264, 4928–4938.PubMedGoogle Scholar
  125. 125.
    Allured, V. S., Collier, R. J., Carroll, S. F., and McKay, D. B. (1986) Structure of exotoxin A of Pseudomonas aeruginosa at 3.0-Å resolution, Proc. Natl. Acad. Sci. USA, 83, 1320–1324.PubMedCentralPubMedGoogle Scholar
  126. 126.
    Tsurudome, M., Gluck, R., Graf, R., Falchetto, R., Schaller, U., and Brunner, J. (1992) Lipid interactions of the hemagglutinin HA2 NH2-terminal segment during influenza virus-induced membrane fusion, J. Biol. Chem., 267, 20225–20232.PubMedGoogle Scholar
  127. 127.
    Chenal, A., Prongidi-Fix, L., Perier, A., Aisenbrey, C., Vernier, G., Lambotte, S., Haertlein, M., Dauvergne, M. T., Fragneto, G., Bechinger, B., Gillet, D., Forge, V., and Ferrand, M. (2009) Deciphering membrane insertion of the diphtheria toxin T domain by specular neutron reflectometry and solid-state NMR spectroscopy, J. Mol. Biol., 391, 872–883.PubMedGoogle Scholar
  128. 128.
    Day, P. J., Pinheiro, T. J. T., Roberts, L. M., and Lord, J. M. (2002) Binding of ricin A-chain to negatively charged phospholipids vesicles leads to protein structural changes and destabilizes the lipid bilayer, Biochemistry, 41, 2836–2843.PubMedGoogle Scholar
  129. 129.
    Mayerhofer, P. U., Cook, J. P., Wahlman, J., Pinheiro, T. J. T., Moore, K. A. H., Lord, J. M., Johnson, A. E., and Roberts, L. M. (2009) Ricin A chain insertion into endoplasmic reticulum membranes is triggered by a temperature increase to 37°C, J. Biol. Chem., 284, 10232–10242.PubMedCentralPubMedGoogle Scholar
  130. 130.
    Vecsey-Semjen, B., Moellby, R., and van der Goot, F. G. (1996) Partial C-terminal unfolding is required for channel formation by staphylococcal α-toxin, J. Biol. Chem., 271, 8655–8660.PubMedGoogle Scholar
  131. 131.
    Karst, J. C., Baker, R., Devi, U., Swann, M. J., Davi, M., Roser, S. J., Ladant, D., and Chenal, A. (2012) Identification of a region that assists membrane insertion and translocation of the catalytic domain of Bordetella pertussis CyaA toxin, J. Biol. Chem., 287, 9200–9212.PubMedCentralPubMedGoogle Scholar
  132. 132.
    Massey, S., Banerjee, T., Pande, A. H., Taylor, M., Tatulian, S. A., and Teter, K. (2009) Stabilization of the tertiary structure of the cholera toxin A1 subunit inhibits toxin dislocation and cellular intoxication, J. Mol. Biol., 393, 1083–1096.PubMedCentralPubMedGoogle Scholar
  133. 133.
    Taylor, M., Banerjee, T., Navarro-Garcia, F., Huerta, J., Massey, S., Burlingame, M., Pande, A. H., Tatulian, S. A., and Teter, K. (2011) A therapeutic chemical chaperone inhibits cholera intoxication and unfolding/translocation of the cholera toxin A1 subunit, PLoS One, 6, e18825, doi: 10.1371/joural.pone.0018825.PubMedCentralPubMedGoogle Scholar
  134. 134.
    Pande, A. H., Moe, D., Jamnadas, M., Tatulian, S. A., and Teter, K. (2006) The pertussis toxin S1 is a thermally unstable protein susceptible to degradation by the 20S proteasome, Biochemistry, 45, 13734–13740.PubMedCentralPubMedGoogle Scholar
  135. 135.
    Pande, A. H., Scaglione, P., Taylor, M., Nemec, K. N., Tulhill, S., Moe, D., Holmes, R. K., Tatulian, S. A., and Teter, K. (2007) Conformational instability of the cholera toxin A1 polypeptide, J. Mol. Biol., 374, 1114–1128.PubMedCentralPubMedGoogle Scholar
  136. 136.
    Lesovoy, D. M., Bocharov, E. V., Lyukmanova, E. N., Kosinsky, Y. A., Shulepko, M. A., Dolgikh, D. A., Kirpichnikov, M. P., Efremov, R. G., and Arseniev, A. S. (2009) Specific membrane binding of neurotoxin II can facilitate its delivery to acetyl choline receptor, Biophys. J., 97, 2089–2097.PubMedCentralPubMedGoogle Scholar
  137. 137.
    Dubovskii, P. V., Lesovoy, D. M., Dubinnyi, M. A., Utkin, Y. N., and Arseniev, A. S. (2003) Interaction of the P-type cardiotoxin with phospholipid membranes, Eur. J. Biochem., 270, 2038–2046.PubMedGoogle Scholar
  138. 138.
    Kim, J. G., and Kim, H. M. (1989) Interaction of alpha-lactalbumin with phospholipid vesicles as studied by photoactivated hydrophobic labeling, Biochim. Biophys. Acta, 983, 1–8.PubMedGoogle Scholar
  139. 139.
    Halskau, O., Froystein, N. G., Muga, A., and Martinez, A. (2002) The membrane-bound conformational of α-lactalbumin studied by NMR-monitored 1H-exchange, J. Mol. Biol., 321, 99–110.PubMedGoogle Scholar
  140. 140.
    Vernier, G., Chenal, A., Vitrac, H., Barumandzadhe, R., Montagner, C., and Forge, V. (2007) Interactions of apomyoglobin with membranes: mechanism and effects on heme uptake, Protein Sci., 16, 391–400.PubMedCentralPubMedGoogle Scholar
  141. 141.
    Ahn, T., Kim, J-S., Lee, B-C., and Yun, C-H. (2001) Effects of lipids on the interaction of SecA with model membranes, Arch. Biochem. Biophys., 359, 14–20.Google Scholar
  142. 142.
    Pande, A. H., Tripathy, R. K., and Narkar, S. A. (2009) Membrane surface charge modulates lipoprotein complex forming capability of peptides derived from the C-terminal domain of apolipoprotein E, Biochim. Biophys. Acta, 1788, 1366–1376.PubMedGoogle Scholar
  143. 143.
    Thorolfsson, M., Doskeland, A. P., Muga, A., and Martinez, A. (2002) The binding of tyrosine hydroxylase to anionic lipid bilayers involves the N-terminal region of the enzyme, FEBS Lett., 519, 221–226.PubMedGoogle Scholar
  144. 144.
    Weinreb, G. E., Mukhopadhyay, K., Majumder, R., and Lentz, B. R. (2003) Cooperative roles of factor V(a) and phosphatidylserine-containing membranes as cofactors in prothrombin activation, J. Biol. Chem., 278, 5679–5684.PubMedGoogle Scholar
  145. 145.
    Shin, I., Kreimer, D., Silman, I., and Weiner, L. (1997) Membrane-promoted unfolding acetylcholinesterase: a possible mechanism for insertion into the lipid bilayer, Proc. Natl. Acad. Sci. USA, 94, 2848–2852.PubMedCentralPubMedGoogle Scholar
  146. 146.
    Shin, I., Silman, I., Bon, C., and Weiner, L. (1998) Liposome-catalyzed unfolding of acetylcholinesterase from Bungarus fasciatus, Biochemistry, 37, 4310–4316.PubMedGoogle Scholar
  147. 147.
    Shin, I., Wachtel, E., Roth, E., Bon, C., Silman, I., and Weiner, L. (2002) Thermal denaturation of Bungarus fasciatus acetylcholinesterase: is aggregation a driving force in protein unfolding? Protein Sci., 11, 2022–2032.PubMedCentralPubMedGoogle Scholar
  148. 148.
    Wang, Y., Grabowski, G. A., and Qi, X. (2003) Phospholipid vesicle fusion induced by saposin C, Arch. Biochem. Biophys., 415, 43–53.PubMedGoogle Scholar
  149. 149.
    Seddon, A. M., Lorch, M., Ces, O., Templer, R. H., Macrae, F., and Booth, P. J. (2008) Phosphatidylglycerol lipids enhance folding of an alpha helical membrane protein, J. Mol. Biol., 380, 548–556.PubMedGoogle Scholar
  150. 150.
    Lin, W-C., Iversen, L., Tu, H-L., Rhodes, C., Christensen, S. M., Iwing, J. S., Hansen, S. D., Huang, W. Y. C., and Groves, J. T. (2014) H-Ras forms dimers on membrane surfaces via a protein-protein interface, Proc. Natl. Acad. Sci. USA, 111, 2996–3001.PubMedCentralPubMedGoogle Scholar
  151. 151.
    Faini, M., Beck, R., Wieland, F. T., and Briggs, J. A. G. (2013) Vesicle coats: structure, function, and general principles of assembly, Trends Cell Biol., 23, 279–288.PubMedGoogle Scholar
  152. 152.
    De Jongh, H. H. J., Killian, J. A., and de Kruijff, B. (1992) A water-lipid interface induces a highly dynamic folded state in apocytochrome c and cytochrome c, which may represent a common folding intermediate, Biochemistry, 31, 1636–1643.PubMedGoogle Scholar
  153. 153.
    Pinheiro, T. J. T., and Watts, A. (1994) Resolution of individual lipids in mixed phospholipids membranes and specific lipid-cytochrome c interactions by magic-angle spinning solid-state phosphorus-31 NMR, Biochemistry, 33, 2459–2467.PubMedGoogle Scholar
  154. 154.
    Pinheiro, T. J. T., Elove, G. A., Watts, A., and Roder, H. (1997) Structural and kinetic description of cytochrome c unfolding induced by the interaction with lipid vesicles, Biochemistry, 36, 13122–13132.PubMedGoogle Scholar
  155. 155.
    Bryson, E. A., Rankin, S. E., Carey, M., Watts, A., and Pinheiro, T. J. T. (1999) Folding of apocytochrome c in lipid micelles: formation of alpha-helix precedes membrane insertion, Biochemistry, 38, 9758–9767.PubMedGoogle Scholar
  156. 156.
    Rankin, S. E., Watts, A., Roder, H., and Pinheiro, T. J. T. (1999) Folding of apocytochrome c induced by the interaction with negatively charged lipid micelles proceeds via a collapsed intermediate state, Protein Sci., 8, 381–393.PubMedCentralPubMedGoogle Scholar
  157. 157.
    Sanghera, N., and Pinheiro, T. J. T. (2000) Unfolding and refolding of cytochrome c driven by the interaction with lipid micelles, Protein Sci., 9, 1194–1202.PubMedCentralPubMedGoogle Scholar
  158. 158.
    Pinheiro, T. J. T., Cheng, H., Seeholzer, S. H., and Roder, H. (2000) Direct evidence for the cooperative unfolding of cytochrome c in lipid membranes from H-2H exchange kinetics, J. Mol. Biol., 303, 617–626.PubMedGoogle Scholar
  159. 159.
    Sanghera, N., and Pinheiro, T. J. T. (2002) Binding of prion protein to lipid membranes and implications for prion conversion, J. Mol. Biol., 315, 1241–1256.PubMedGoogle Scholar
  160. 160.
    Critchley, P., Kazlauskaite, J., Eason, R., and Pinheiro, T. J. T. (2004) Binding of prion proteins to lipid membranes, Biochem. Biophys. Res. Commun., 313, 559–567.PubMedGoogle Scholar
  161. 161.
    Davidson, W. S., Jonas, A., Clayton, D. F., and George, J. M. (1998) Stabilization of alpha-synuclein secondary structure upon binding to synthetic membranes, J. Biol. Chem., 273, 9443–9449.PubMedGoogle Scholar
  162. 162.
    Valastyan, J. S., Termine, D. J., and Lindquist, S. (2014) Splice isoform and pharmacological studies reveal that sterol depletion relocalizes alpha-synuclein and enhances its toxicity, Proc. Natl. Acad. Sci. USA, 111, 3014–3019.PubMedCentralPubMedGoogle Scholar
  163. 163.
    Chirita, C. N., Necula, M., and Kuret, J. (2003) Anionic micelles and vesicles induce tau fibrillization in vitro, J. Biol. Chem., 278, 25644–25650.PubMedGoogle Scholar
  164. 164.
    Silvestro, L., and Axelsen, P. H. (2000) Membrane-induced folding of cecropin A, Biophys. J., 79, 1465–1477.PubMedCentralPubMedGoogle Scholar
  165. 165.
    Hebda, J. A., Magzoub, M., and Miranker, A. D. (2014) Small molecule screening in context: lipid-catalyzed amyloid formation, Protein Sci., 23, 1341–1348; doi: 10.1002/pro.2518.PubMedGoogle Scholar
  166. 166.
    Rodriguez Camargo, D. C., Link, M. N., and Dames, S. A. (2012) The FKBP-rapamycin binding domain of human TOR undergoes strong conformational changes in the presence of membrane mimetics with and without the regulator phosphatidic acid, Biochemistry, 51, 4909–4921.PubMedGoogle Scholar
  167. 167.
    Moravcevic, K., Mendrola, J. M., Schmitz, K. R., Wang, Y-H., Slochower, D., Janmey, P. A., and Lemmon, M. A. (2010) Kinase associated-1 domains drive MARK/PAR1 kinases to membrane targets by binding acidic phospholipids, Cell, 143, 966–977.PubMedCentralPubMedGoogle Scholar
  168. 168.
    Lee, D. W., Banquy, X., Kristiansen, K., Kaufman, Y., Boggs, J. M., and Israelachvili, J. N. (2014) Lipid domains control myelin basic protein adsorption and membrane interactions between model myelin lipid bilayers, Proc. Natl. Acad. Sci. USA, 111, E768–E775.PubMedCentralPubMedGoogle Scholar
  169. 169.
    Kohler, C., Gogvadze, V., Hakansson, A., Svanborg, C., Orrenius, S., and Zhivotovsky, B. (2001) A folding variant of human alpha-lactalbumin induces mitochondrial permeability transition in isolated mitochondria, Eur. J. Biochem., 268, 186–191.PubMedGoogle Scholar
  170. 170.
    Svensson, M., Fast, J., Mossberg, A. K., Dueringer, C., Gustafsson, L., Hallgren, O., Brooks, C. L., Berliner, L., Linse, S., and Svanborg, C. (2003) Alpha-lactalbumin unfolding is not sufficient to cause apoptosis, but is required for the conversion to HAMLET (human alphalactalbumin made lethal to tumor cells), Protein Sci., 12, 2794–2804.PubMedCentralPubMedGoogle Scholar
  171. 171.
    Hallgren, O., Aits, S., Brest, P., Gustafsson, L., Mossberg, A. K., Wullt, B., and Svanborg, C. (2008) Apoptosis and tumor cell death in response to HAMLET (human alphalactalbumin made lethal to tumor cells), Adv. Exp. Med. Biol., 606, 217–240.PubMedGoogle Scholar
  172. 172.
    Pettersson-Kastberg, J., Mossberg, A. K., Trulsson, M., Yong, Y. J., Min, S., Lim, Y., O’Brien, J. E., Svanborg, C., and Mok, K. H. (2009) Alpha-lactalbumin, engineered to be nonnative and inactive, kills tumor cells when in complex with oleic acid: a new biological function resulting from partial unfolding, J. Mol. Biol., 394, 994–1010.PubMedGoogle Scholar
  173. 173.
    Booth, P. J., and Curnow, P. (2009) Folding scene investigation: membrane proteins, Curr. Opin. Struct. Biol., 19, 8–13.PubMedCentralPubMedGoogle Scholar
  174. 174.
    Liang, B., and Tamm, L. K. (2007) Structure of outer membrane protein G by solution NMR spectroscopy, Proc. Natl. Acad. Sci. USA, 104, 16140–16145.PubMedCentralPubMedGoogle Scholar
  175. 175.
    Milstein, S. J., Leipold, H., Sarubbi, D., Leone-Bay, A., Mlynek, G. M., Robinson, J. R., Kasimova, M., and Freire, E. (1998) Partially unfolded proteins efficiently penetrate cell membranes — implications for oral drug delivery, J. Control Release, 53, 259–267.PubMedGoogle Scholar
  176. 176.
    Kweon, D.-H., Kim, C. S., and Shin, Y.-K. (2003) Regulation of neuronal SNARE assembly by membrane, Nat. Struct. Biol., 10, 440–447.PubMedGoogle Scholar
  177. 177.
    Bowen, M., and Brunger, A. T. (2006) Conformation of the synaptobrevin transmembrane domain, Proc. Natl. Acad. Sci. USA, 103, 8378–8383.PubMedCentralPubMedGoogle Scholar
  178. 178.
    Ellena, J. F., Liang, B., Wiktor, M., Stein, A., Cafiso, D. S., Jahn, R., and Tamm, L. K. (2009) Dynamic structure of lipid-bound synaptobrevin suggests a nucleation-propagation mechanism for trans-SNARE complex formation, Proc. Natl. Acad. Sci. USA, 106, 20306–20311.PubMedCentralPubMedGoogle Scholar
  179. 179.
    Van den Bogaart, G., Meyenberg, K., Risselada, H. J., Amin, H., Willig, K. I., Hubrich, B. E., Dier, M., Hell, S. W., Grubmueller, H., Diederichsen, U., and Jahn, R. (2011) Membrane protein sequestering by ionic protein-lipid interactions, Nature, 479, 552–555.PubMedCentralPubMedGoogle Scholar
  180. 180.
    Mach, H., and Middaugh, C. R. (1995) Interaction of partially structured states of acidic fibroblast growth factor with phosphor-lipid membranes, Biochemistry, 34, 9913–9920.PubMedGoogle Scholar
  181. 181.
    Ugolev, A. M. (1967) Physiology and Pathology of Membrane (Contact) Digestion [in Russian], Nauka, Leningrad.Google Scholar
  182. 182.
    Stroll, B. R., Leipold, H. R., Milstein, S., and Edwards, D. A. (2000) A mechanistic analysis of carrier-mediated oral delivery of protein therapeutics, J. Control. Release, 64, 217–228.Google Scholar
  183. 183.
    Lennernas, H. (2007) Modeling gastrointestinal drug absorption requires more in vivo biopharmaceutical data: experience from in vivo dissolution and permeability studies in humans, Curr. Drug Metab., 8, 645–657.PubMedGoogle Scholar
  184. 184.
    Wawrezinieck, A., Pean, J. M., Wuethrich, P., and Benoit, J. P. (2008) Oral bioavailability and drug/carrier particulate systems, Med. Sci. (Paris), 24, 659–664.Google Scholar
  185. 185.
    Rankin, S. E., Watts, A., and Pinheiro, T. J. (1998) Electrostatic and hydrophobic contributions to the folding mechanism of apocytochrome c driven by the interactions with lipid, Biochemistry, 37, 12588–12595.PubMedGoogle Scholar
  186. 186.
    Bryson, E. A., Rankin, S. E., Goormaghtigh, E., Ruysschaert, J. M., Watts, A., and Pinheiro, T. J. (2000) Structure and dynamics of lipid-associated states of apocytochrome c, Eur. J. Biochem., 267, 1390–1396.PubMedGoogle Scholar
  187. 187.
    McLaughlin, S., and Murray, D. (2005) Plasma membrane phosphoinositide organization by protein electrostatics, Nature, 438, 605–611.PubMedGoogle Scholar
  188. 188.
    Li, L., Shi, X., Guo, X., Li, H., and Xu, C. (2014) Ionic protein-lipid interactions at plasma membrane: what can the charge do? Trends Biochem. Sci., 39, 130–140.PubMedGoogle Scholar
  189. 189.
    Derganc, J., Antonny, B., and Copic, A. (2013) Membrane bending: the power of protein imbalance, Trends Biochem. Sci., 38, 576–584.PubMedGoogle Scholar
  190. 190.
    Shibata, Y., Hu, J., Kozlov, M. M., and Rapoport, T. A. (2009) Mechanism shaping the membranes of cellular organelles, Annu. Rev. Cell Dev. Biol., 25, 329–354.PubMedGoogle Scholar
  191. 191.
    Zimmerberg, J., and Kozlov, M. M. (2006) How proteins produce cellular membrane curvature, Nature Rev. Mol. Cell Biol., 7, 9–19.Google Scholar
  192. 192.
    Sens, P., Johannes, L., and Bassereau, P. (2008) Biophysical approaches to protein-induced membrane deformations in trafficking, Curr. Opin. Cell Biol., 20, 476–482.PubMedGoogle Scholar
  193. 193.
    Copic, A., Latham, C. F., Horlbeck, M. A., D’Arcangelo, J. G., and Miller, E. A. (2012) ER cargo properties specify a requirement for COPII coat rigidity mediated by Sec 13p, Science, 335, 1359–1362.PubMedCentralPubMedGoogle Scholar
  194. 194.
    Leventis, R., and Silvius, J. R. (2010) Quantitative experimental assessment of macromolecular crowding effects at membrane surfaces, Biophys. J., 99, 2125–2133.PubMedCentralPubMedGoogle Scholar
  195. 195.
    Stachowiak, J. C., Hayden, C. C., and Sasaki, D. Y. (2010) Steric confinement of proteins on lipid membranes can drive curvature and tubulation, Proc. Natl. Acad. Sci. USA, 107, 7781–7786.PubMedCentralPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • V. E. Bychkova
    • 1
    Email author
  • L. V. Basova
    • 1
  • V. A. Balobanov
    • 1
  1. 1.Institute of Protein ResearchRussian Academy of SciencesPushchino, Moscow RegionRussia

Personalised recommendations